



# Systematic Review Lomentospora prolificans Disseminated Infections: A Systematic Review of Reported Cases

Afroditi Konsoula<sup>1</sup>, Aris P. Agouridis<sup>2,3</sup>, Lamprini Markaki<sup>4</sup>, Constantinos Tsioutis<sup>2</sup>, and Nikolaos Spernovasilis<sup>5,6,\*</sup>

- <sup>1</sup> Department of Pediatrics, General Hospital of Sitia, 72300 Sitia, Greece
- <sup>2</sup> School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
- <sup>3</sup> Department of Internal Medicine, German Oncology Center, 4108 Limassol, Cyprus
- <sup>4</sup> "Iliaktida" Pediatric & Adolescents Medical Center, 4001 Limassol, Cyprus
- <sup>5</sup> Department of Infectious Diseases, German Oncology Center, 4108 Limassol, Cyprus
- <sup>6</sup> School of Medicine, University of Crete, 71303 Heraklion, Greece
- \* Correspondence: Nikolaos.Spernovasilis@goc.com.cy; Tel.: +357-95988293

Abstract: Background: Lomentospora prolificans, a rare, highly virulent filamentous fungus with high rates of intrinsic resistance to antifungals, has been associated with different types of infections in immunocompromised as well as immunocompetent individuals. Objective: To systematically address all relevant evidence regarding L. prolificans disseminated infections in the literature. Methods: We searched Medline via PubMed and Scopus databases through July 2022. We performed a qualitative synthesis of published articles reporting disseminated infections from *L. prolificans* in humans. Results: A total of 87 studies describing 142 cases were included in our systematic review. The pathogen was most frequently reported in disseminated infections in Spain (n = 47), Australia (n = 33), the USA (n = 21), and Germany (n = 10). Among 142 reported cases, 48.5% were males. Underlying conditions identified for the majority of patients included malignancy (72.5%), hemopoietic stem cell transplantation (23.2%), solid organ transplantation (16%), and AIDS (2%). Lungs, central nervous system, skin, eyes, heart and bones/joints were the most commonly affected organs. Neutropenia was recorded in 52% of patients. The mortality rate was as high as 87.3%. Conclusions: To the best of our knowledge, this is the first systematic review conducted on disseminated infections due to this rare microorganism. Physicians should be aware that L. prolificans can cause a diversity of infections with high mortality and primarily affects immunocompromised and neutropenic patients.

Keywords: Lomentospora prolificans; fungal infection; dissemination; immunocompromised

## 1. Introduction

Lomentospora prolificans, formerly known as Scedosporium prolificans or Scedosporium inflatum, is a rare emerging opportunistic pathogen that primarily affects immunocompromised individuals but can also cause infections in healthy populations [1]. It is found in the environment, including soil, decaying organic matter, and contaminated water [2,3]. The first report as a pathogen in humans was in 1984, when Malloch and Salkin isolated this fungus from an immunocompetent patient with osteomyelitis [4].

*L. prolificans* can grow on standard mycological media such as Sabouraud's dextrose agar (SDA) or potato dextrose agar (PDA) [5]. Characteristic macroscopic features include olive-gray to black colony morphology and susceptibility to cycloheximide [6]. Microscopic features that may indicate the presence of *L. prolificans* include visualization of flask-shaped conidiophores which are inflated or swollen at the base, from which single, or clusters of, conidia emerge [6].

*L. prolificans* infection causes a wide range of clinical manifestations from localized to disseminated infections, depending on the immune status of the infected individual [7].



Citation: Konsoula, A.; Agouridis, A.P.; Markaki, L.; Tsioutis, C.; Spernovasilis, N. *Lomentospora prolificans* Disseminated Infections: A Systematic Review of Reported Cases. *Pathogens* 2023, *12*, 67. https:// doi.org/10.3390/pathogens12010067

Academic Editors: María Guadalupe Frías-De-León and María del Rocío Reyes Montes

Received: 29 November 2022 Revised: 26 December 2022 Accepted: 28 December 2022 Published: 31 December 2022



**Copyright:** © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Disseminated infection usually affects immunocompromised hosts and is accompanied with a high mortality rate, as highlighted in previous reviews [1,8].

*L. prolificans* is increasingly recognized as a cause of invasive fungal infection in geographic areas such as Australia [9], the United States [10,11], and some parts of Europe [12–14]. High rates of intrinsic resistance to several antifungals reduce the possibility of successful recovery [15]. The lack of or difficult access to rapid species-specific diagnostic methods further complicates the treatment of this infection [16].

Herein, we systematically address the literature on all relevant cases of disseminated infections caused by *L. prolificans* in humans.

## 2. Materials and Methods

#### 2.1. Study Design

The purpose of this systematic review is to evaluate and better understand the clinical profile and pathogenicity of disseminated infections caused by *L. prolificans*.

We performed a qualitative synthesis of published articles reporting disseminated infection from *L. prolificans* in humans.

### 2.2. Search Strategy

An extensive bibliographic search of Medline via PubMed and Scopus databases was conducted from inception until 31 July 2022. Only articles published in English were included. Initial searches were performed using the following search terms: "(*Lomentospora prolificans*) OR (*Scedosporium prolificans*) OR (*Scedosporium prolificans*) OR (*Scedosporium inflatum*)". Additional studies were identified from the references provided by retrieved studies.

## 2.3. Inclusion and Exclusion Criteria

The inclusion criteria for our systematic review included articles that contained at least one case of disseminated infection with *L. prolificans*. Disseminated infection was defined as (1) clinical syndrome consistent with infection and (2) recovery of the isolate from blood samples or microbiological and/or pathological evidence of infection at  $\geq$  2 noncontiguous sites. Only papers based on humans and written in English were considered eligible.

Studies were excluded if they did not fulfil inclusion criteria; if they reported only localized infection by *L. prolificans*; or if the infections were not in humans.

#### 2.4. Data Extraction

Studies were independently and thoroughly examined by two investigators (A.K., A.P.A.) and studies' characteristics (author, year, study design, country, patient age/sex, underlying disease/conditions, clinical manifestations, sample, treatment, outcome) were extracted. Any discrepancy between the reviewers was resolved by consensus. For the review of our analysis, which was designed according to the guidelines of 2020 [17], data extraction was performed with adherence to Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA model). Due to the study design, no institutional Review Board approval was obtained.

#### 2.5. Assessment of Risk of Bias

A systematic assessment of bias in the included studies was performed using the Joanna Briggs Institute (JBI) critical appraisal checklist for case reports [18]. The items used for the assessment of each study were as follows: patient's demographic characteristics, patient's history, patient's current clinical condition, diagnostic tests or assessment methods and the results, the intervention(s) or treatment procedure(s), post-intervention clinical condition, adverse events (harms) or unanticipated events, takeaway lessons. According to the recommendations of the JBI tool, a judgment of "1" indicates low risk of bias, whereas a "0" on any of the included questions negatively affects the overall quality the case reports. An overall score  $\leq$ 49% equals with high risk of bias, 50% to 69% equals with moderate risk

of bias, and  $\geq$ 70% equals with low risk of bias. Risk-of-bias assessment was performed independently by 2 reviewers (A.K., A.P.A.); disagreements were resolved by consensus.

#### 2.6. Statistical Analysis

Associations of survival with surgery and neutropenic/immunosuppressant patients were assessed using the Chi-square test ( $\chi^2$ ). Statistical significance was set at 5% significance level (p < 0.05). Data were processed and analyzed using IBM SPSS Statistics for Windows, Version 29.0 (Armonk, NY, USA: IBM Corp, USA).

#### 3. Results

#### 3.1. Study Selection

In Figure 1, the PRISMA flow chart reveals the selection process of included studies. With the above-mentioned search terms, we identified 1373 records on Medline via PubMed and 495 additional records on Scopus. After detecting and removing duplicates, 1494 articles remained, among which we initially excluded 1394 because of study design. Subsequently, we examined in detail the remaining 100 articles. Among them, 13 studies were rejected because selection criteria were not met (Supplementary Table S1 and Figure 1). Finally, 87 studies with a total of 142 cases (patients with disseminated *L. prolificans* infection) were included in our systematic review.

#### 3.2. Study Characteristics

The included studies were published between 1990 and 2022 (Table 1). A total of 142 individual cases from 87 publications of disseminated infection by L. prolificans fulfilled the inclusion criteria. Studies were more frequently reported in Spain (n = 41), Australia (n = 33), the USA (n = 21), Germany (n = 10), Japan (n = 8), USA/Spain (n = 6), France (n = 6), Mexico (n = 6), The Netherlands (n = 2), Canada (n = 2), South Korea (n = 1), Italy (n = 1), Brazil (n = 1), Belgium (n = 1), Thailand (n = 1), Poland (n = 1), and India (n = 1). Among a total of 127 adults, 5 children (defined as patients <16 years old), and 10 patients whose age was not specified, males represented 48.5% and females 45%, while in 6.3% sex was not mentioned. Underlying conditions, identified for the majority of patients, included malignancy (72.5%), hemopoietic stem cell transplantation (HSCT) (23.2%), solid organ transplantation (16%), and AIDS (2%). No underlying condition was reported in four patients. Neutropenia was recorded in 52% of patients. Lungs, central nervous system (CNS), skin, eyes, heart and bones/joints were the most commonly affected organs. Blood cultures were positive in 107 of 142 (75.3%) patients. The majority of patients systematically received amphotericin B, voriconazole, terbinafine, itraconazole, and fluconazole either as monotherapy or in combination therapy. The overall mortality rate was 87.3% (Table 1).

## 3.3. Clinical Outcomes

After performing the Chi-Square test, an association between surgery and survival was observed (Pearson Chi-Square = 21.044, p < 0.001). More specifically, patients who underwent surgery had a 11.329 times higher probability of surviving [95% CI, (3.388–37.881)]. Moreover, we found that immunocompetent patients had a 10.3 [95% CI, (1.333–83.333)] higher probability of surviving compared with neutropenic/immunosuppressant patients (Pearson Chi-Square = 7.320, p = 0.05).

## 3.4. Quality Appraisal

The overall quality was very good, as 72 articles had a low risk of bias, while 9 studies had a high risk of bias and 6 studies had a moderate risk of bias. Quality appraisal results are presented in Supplementary Table S2.

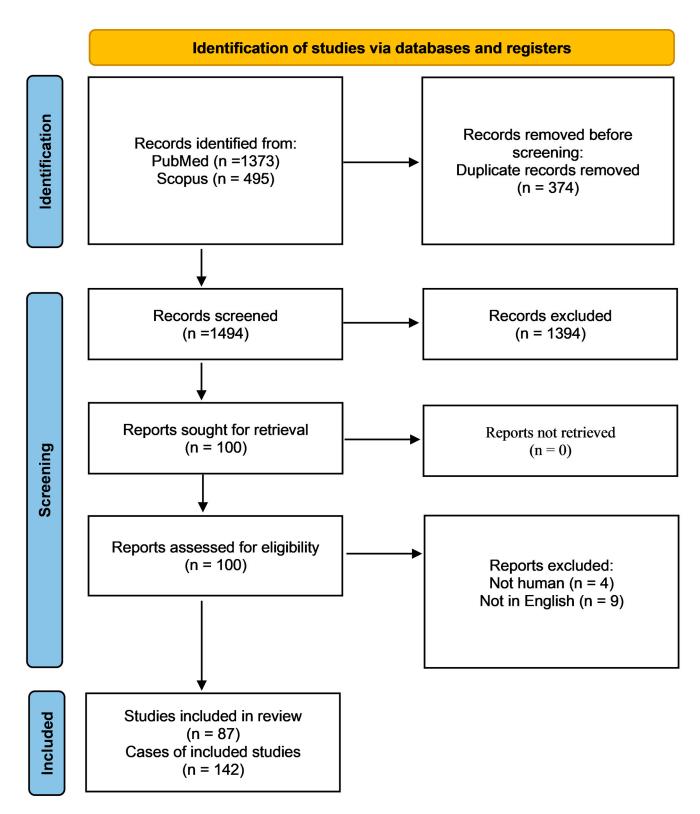



Figure 1. PRISMA flow diagram of article selection process.

| Author                   | Year | Study<br>Design                  | Country   | Patient<br>Age/Sex | Underlying<br>Disease/<br>Conditions | Clinical<br>Manifesta-<br>tions                                                  | Sample                                                                                   | Treatment                                                                    | Outcome  |
|--------------------------|------|----------------------------------|-----------|--------------------|--------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------|
| Aldoss<br>[19]           | 2019 | Retrospective<br>cohort<br>study | USA       | 55/F               | AML,<br>alloHSCT                     | Fungemia                                                                         | Blood<br>culture                                                                         | POS                                                                          | NA       |
| Alvarez<br>[14]          | 1995 | Case series                      | Spain     | 27/F               | AML                                  | Pneumonia,<br>fungemia                                                           | Blood<br>culture                                                                         | AMB                                                                          | Died     |
| Alvarez<br>[14]          | 1995 | Case series                      | Spain     | 45/F               | AML,<br>neutropenia                  | Pneumonia,<br>fungemia                                                           | Blood<br>culture                                                                         | AMB                                                                          | Died     |
| Alvarez<br>[14]          | 1995 | Case series                      | Spain     | 79/F               | ALL,<br>neutropenia                  | Pneumonia,<br>pleural<br>effusion,<br>fungemia                                   | Blood<br>culture                                                                         | AMB                                                                          | Died     |
| Alvarez<br>[14]          | 1995 | Case series                      | Spain     | 54/F               | AML,<br>neutropenia                  | Pneumonia,<br>fungemia                                                           | Blood,<br>tracheal<br>aspirate<br>culture                                                | AMB                                                                          | Died     |
| Álvarez-<br>Uría<br>[20] | 2020 | Case series                      | Spain     | 25/M               | Heart trans-<br>plantation           | Fungemia,<br>CNS, skin,<br>lung in-<br>volvement                                 | Blood,<br>skin,<br>sputum<br>culture                                                     | VRC +<br>TRB                                                                 | Died     |
| Ananda-<br>Rajah<br>[21] | 2008 | Case report                      | Australia | 58/M               | ALL,<br>neutropenia                  | Pneumonia,<br>fungemia,<br>embolic<br>skin lesions                               | Blood<br>culture                                                                         | VRC +<br>TRB                                                                 | Died     |
| Balandin<br>[22]         | 2016 | Case report                      | Spain     | 27/M               | CF, lung<br>transplanta-<br>tion     | Pneumonia,<br>pleural<br>empyema,<br>pulmonary<br>embolism,<br>mycotic<br>emboli | BAL,<br>pleural<br>fluid<br>culture,<br>thrombus<br>sample<br>with<br>fungal<br>elements | VRC +<br>TRB +<br>CAS +<br>intrapleu-<br>ral/neb<br>VRC POS<br>+ MTF<br>+ANF | Died     |
| Barbaric<br>[23]         | 2001 | Case series                      | Australia | 10/F               | ALL,<br>neutropenia                  | Pneumonia,<br>fungemia,<br>skin lesions                                          | Skin<br>biopsy,<br>catheter<br>tip, blood<br>culture                                     | AMB +<br>G-CSF                                                               | Died     |
| Berenguer<br>[12]        | 1997 | Case series                      | Spain     | 56/M               | Acute<br>leukaemia,<br>neutropenia   | Pneumonia,<br>fungemia                                                           | Blood, res-<br>piratory<br>cultures                                                      | AMB +<br>ITC                                                                 | Died     |
| Berenguer<br>[12]        | 1997 | Case series                      | Spain     | 52/M               | Acute<br>leukaemia,<br>neutropenia   | Fungemia,<br>lung, eye in-<br>volvement                                          | Blood<br>culture                                                                         | FLC                                                                          | Died     |
| Berenguer<br>[12]        | 1997 | Case series                      | Spain     | 48/M               | Acute<br>leukaemia,<br>neutropenia   | Pneumonia,<br>skin lesions                                                       | Skin,<br>bone<br>culture                                                                 | AMB +<br>FLC +<br>Surgery                                                    | Survived |
| Boan [24]                | 2020 | Case series                      | Australia | 71/F               | CLL                                  | Pneumonia                                                                        | Urine,<br>sputum<br>culture                                                              | VRC +<br>TRB +<br>ANF +<br>L-AMB                                             | Died     |
| Boan [24]                | 2020 | Case series                      | Australia | 63/M               | AML,<br>neutropenia                  | Pneumonia                                                                        | Blood<br>culture                                                                         | VRC +<br>TRB +<br>ANF                                                        | Died     |

**Table 1.** Study characteristics of Lomentospora prolificans infections reported in the literature.

| Author                        | Year | Study<br>Design            | Country                 | Patient<br>Age/Sex | Underlying<br>Disease/<br>Conditions | Clinical<br>Manifesta-<br>tions                                                                       | Sample                                                                    | Treatment                                                                                                  | Outcome                                                        |
|-------------------------------|------|----------------------------|-------------------------|--------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Boan [24]                     | 2020 | Case series                | Australia               | 25/F               | AML,<br>alloHSCT,<br>neutropenia     | Fungemia,<br>osteomyeli-<br>tis                                                                       | Blood,<br>stern-<br>oclavicu-<br>lar joint<br>tissue,<br>urine<br>culture | VRC +<br>TRB +<br>ANF +<br>MTF +<br>Surgical<br>debride-<br>ment of<br>stern-<br>oclavicu-<br>lar<br>joint | Died                                                           |
| Boglione-<br>Kerriena<br>[25] | 2019 | Case report                | France                  | 61/NA              | MM,<br>autoHSCT                      | Fungemia,<br>eye<br>infection,<br>meningitis,<br>brain<br>abscess,<br>calculus<br>pyelonephri-<br>tis | Blood,<br>urinary<br>tract stone<br>culture                               | VRC +<br>TRB +<br>MTF + in-<br>travitreal<br>VRC +<br>Surgical<br>removal<br>of the<br>urinary<br>stone    | Died<br>(not<br>related<br>to the<br>fungal<br>infec-<br>tion) |
| Bouza<br>[26]                 | 1996 | Case report                | Spain                   | 74/F               | AML,<br>neutropenia                  | Fungemia,<br>pneumonia,<br>skin lesions                                                               | Blood,<br>skin<br>biopsy<br>culture                                       | AMB +<br>G-CSF +<br>ITC                                                                                    | Survived                                                       |
| Buil [27]                     | 2020 | Case report                | The<br>Nether-<br>lands | NA/F               | -                                    | Fungemia                                                                                              | Blood,<br>stool<br>culture                                                | NA                                                                                                         | Died                                                           |
| Chiam<br>[28]                 | 2013 | Case report                | Australia               | 9/F                | AML,<br>neutropenia,<br>BMT          | Endophthalm<br>fungemia                                                                               | itis,Blood<br>culture                                                     | AMB +<br>G-CSF +<br>intravit-<br>real VRC<br>VRC +<br>CAS +<br>TRB +<br>MTF +<br>Vitrec-<br>tomy           | Survived                                                       |
| Cobo [29]                     | 2017 | Retrospective cohort study | Spain                   | 53/M               | AML,<br>neutropenia                  | Fungemia                                                                                              | Blood<br>culture                                                          | VRC +<br>TRB                                                                                               | Died                                                           |
| Cooley [9]                    | 2007 | Case series                | Australia               | NA                 | ALL,<br>alloHSCT,<br>neutropenia     | Fungemia,<br>septic<br>arthritis                                                                      | Blood,<br>synovium<br>cartilage,<br>prostate<br>culture                   | NA                                                                                                         | Died                                                           |
| Cooley [9]                    | 2007 | Case series                | Australia               | NA                 | AML,<br>alloHSCT                     | Pneumonia,<br>fungemia                                                                                | Blood,<br>BAL,<br>lung,<br>sputum<br>culture                              | NA                                                                                                         | Died                                                           |
| Cooley [9]                    | 2007 | Case series                | Australia               | NA                 | NHL,<br>alloHSCT,<br>neutropenia     | Fungemia                                                                                              | Blood<br>culture                                                          | None                                                                                                       | Died                                                           |
| Cooley [9]                    | 2007 | Case series                | Australia               | NA                 | AML,<br>alloHSCT                     | Fungemia                                                                                              | Blood,<br>BAL,<br>lung, skin<br>culture                                   | ITC +<br>AMB                                                                                               | Died                                                           |

| Author                   | Year | Study<br>Design                  | Country                 | Patient<br>Age/Sex | Underlying<br>Disease/<br>Conditions              | Clinical<br>Manifesta-<br>tions                                                        | Sample                                                                                                                | Treatment                                                                 | Outcome  |
|--------------------------|------|----------------------------------|-------------------------|--------------------|---------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------|
| Cooley [9]               | 2007 | Case series                      | Australia               | NA                 | MDS                                               | Sinusitis                                                                              | Sputum,<br>maxillary<br>sinus,<br>peri-<br>cardium,<br>my-<br>ocardium,<br>kidney,<br>skin, lung<br>culture           | ITC +<br>TRB +<br>Surgery                                                 | Died     |
| Cooley [9]               | 2007 | Case series                      | Australia               | NA                 | AML,<br>neutropenia                               | Chest wall<br>cellulitis,<br>skin<br>nodules,<br>soft tissue<br>infection              | Chest<br>wall,<br>Hickman<br>catheter<br>culture                                                                      | VRC +<br>TRB +<br>Surgery                                                 | Survived |
| Damron-<br>glerd<br>[30] | 2014 | Case report                      | Thailand                | 17/M               | MDS, AML,<br>neutropenia                          | Skin lesions,<br>pneumonia,<br>sinusitis,<br>fungemia                                  | Skin<br>biopsy,<br>sinus,<br>tracheal<br>suction,<br>blood<br>culture                                                 | VRC +<br>TRB                                                              | Died     |
| de Battle<br>[31]        | 2000 | Case report                      | Spain                   | 45/M               | Acute<br>multilinear<br>leukaemia,<br>neutropenia | Fungemia,<br>mycotic<br>emboli,<br>pneumonia,<br>pleuritic<br>effusion,<br>skin lesion | Blood<br>culture                                                                                                      | AMB                                                                       | Died     |
| DeSimone<br>[10]         | 2021 | Retrospective<br>cohort<br>study | USA                     | 59/M               | Lung trans-<br>plantation                         | Skin and<br>subcuta-<br>neous<br>infection,<br>fungemia                                | Blood,<br>urine,<br>bilateral<br>lower<br>extremity<br>skin<br>(autopsy),<br>lung<br>(autopsy)<br>culture             | VRC +<br>MICA +<br>Surgical<br>debride-<br>ment                           | Died     |
| DeSimone<br>[10]         | 2021 | Retrospective<br>cohort<br>study | USA                     | 56/F               | Lung trans-<br>plantation                         | Endophth-<br>almitis,<br>septic<br>arthritis                                           | Bilateral<br>knee<br>synovial<br>tissue,<br>right<br>ankle<br>joint aspi-<br>ration,<br>aorta<br>(autopsy)<br>culture | CAS +<br>VRC +<br>AMB +<br>TRB +<br>ALB +<br>Surgical<br>debride-<br>ment | Died     |
| Elsayed<br>[32]          | 1999 | Case report                      | Canada                  | 28/F               | ALL,<br>neutropenia                               | Fungemia                                                                               | Blood<br>culture                                                                                                      | FLC +<br>AMB                                                              | Died     |
| Farag [33]               | 1992 | Case report                      | Australia               | 72/F               | NHL,<br>neutropenia                               | Fungemia,<br>skin lesions                                                              | Blood,<br>CSF<br>culture                                                                                              | AMB +<br>FCS                                                              | Died     |
| Feltkamp<br>[34]         | 1997 | Case report                      | The<br>Nether-<br>lands | 42/M               | AML,<br>neutropenia                               | Fungemia,<br>pneumonia,<br>brain<br>emboli, skin<br>lesions                            | Blood,<br>CSF, BAL,<br>sputum,<br>skin<br>biopsy<br>culture                                                           | AMB +<br>FCS                                                              | Died     |

| Author              | Year | Study<br>Design | Country   | Patient<br>Age/Sex | Underlying<br>Disease/<br>Conditions | Clinical<br>Manifesta-<br>tions                                                                                                                      | Sample                                                         | Treatment                                                                                           | Outcome |
|---------------------|------|-----------------|-----------|--------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------|
| Gosbell<br>[35]     | 1999 | Case series     | Australia | 68/M               | AML,<br>neutropenia                  | Fungemia,<br>pneumonia                                                                                                                               | Nasal<br>swab,<br>blood<br>culture                             | AMB                                                                                                 | Died    |
| Gosbell<br>[35]     | 1999 | Case series     | Australia | 33/F               | AML,<br>neutropenia                  | Fungemia,<br>pneumonia,<br>meningoen-<br>cephalitis,<br>endoph-<br>thalmitis,<br>renal/<br>myocardial/<br>brain<br>abscesses,<br>mycotic<br>aneurysm | Blood,<br>CSF<br>culture                                       | L-AMB +<br>ITC +<br>FLC +<br>AMB (in-<br>traocular<br>injection)                                    | Died    |
| Gosbell<br>[35]     | 1999 | Case series     | Australia | 48/F               | AMML,<br>neutropenia                 | Fungemia,<br>skin lesions                                                                                                                            | Blood,<br>skin<br>lesion<br>culture                            | L-AMB<br>(only one<br>dose<br>given)                                                                | Died    |
| Gosbell<br>[35]     | 1999 | Case series     | Australia | 46/M               | NHL,<br>neutropenia                  | Fungemia,<br>pneumonia                                                                                                                               | Blood<br>culture                                               | AMB                                                                                                 | Died    |
| Gow-Lee<br>[36]     | 2021 | Case report     | USA       | 63/M               | NHL,<br>neutropenia,<br>autoHSCT     | Pneumonia,<br>fungemia,<br>septic<br>arthritis                                                                                                       | BAL,<br>blood,<br>synovial<br>fluid<br>culture                 | VRC +<br>MICA +<br>TRB +<br>GM-CSF +<br>L-AMB +<br>Surgical<br>debride-<br>ment/<br>amputa-<br>tion | Died    |
| Grenouillet<br>[37] | 2009 | Case series     | France    | 68/M               | NHL,<br>neutropenia                  | Fungemia,<br>pneumonia                                                                                                                               | Sputum,<br>blood<br>culture                                    | AMB +<br>ITC                                                                                        | Died    |
| Grenouillet<br>[37] | 2009 | Case series     | France    | 44/M               | CML,<br>alloHSCT                     | Fungemia,<br>gingival<br>abscess                                                                                                                     | Gingival<br>abscess,<br>blood,<br>urine,<br>trachea<br>culture | VRC +<br>TRB                                                                                        | Died    |
| Grenouillet<br>[37] | 2009 | Case series     | France    | 67/M               | NHL,<br>alloHSCT                     | Fungemia,<br>pneumonia                                                                                                                               | Blood,<br>urine,<br>BAL<br>culture                             | VRC +<br>CAS                                                                                        | Died    |
| Guerrero<br>[38]    | 2001 | Case series     | Spain     | 45/F               | AML,<br>neutropenia                  | Fungemia,<br>skin lesions,<br>pneumonia                                                                                                              | Blood<br>culture                                               | None                                                                                                | Died    |
| Guerrero<br>[38]    | 2001 | Case series     | Spain     | 64/M               | AML,<br>neutropenia                  | Fungemia,<br>pneumonia,<br>cerebral<br>abscesses                                                                                                     | Blood<br>culture                                               | AMB +<br>ITC                                                                                        | Died    |
| Guerrero<br>[38]    | 2001 | Case series     | Spain     | 27/F               | AML,<br>neutropenia                  | Fungemia,<br>pneumonia,<br>pleural<br>effusion,<br>meningoen-<br>cephalitis,<br>skin lesions                                                         | Blood<br>culture                                               | L-AMB +<br>ITC                                                                                      | Died    |
| Guerrero<br>[38]    | 2001 | Case series     | Spain     | 72/F               | AML,<br>neutropenia                  | Fungemia,<br>pneumonia                                                                                                                               | Blood<br>culture                                               | L-AMB +<br>ITC                                                                                      | Died    |

Table 1. Cont.

| Author                        | Year | Study<br>Design | Country   | Patient<br>Age/Sex | Underlying<br>Disease/<br>Conditions      | Clinical<br>Manifesta-<br>tions                                  | Sample                                                                | Treatment                                                                                                                                                                                                   | Outcome  |
|-------------------------------|------|-----------------|-----------|--------------------|-------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Guerrero<br>[38]              | 2001 | Case series     | Spain     | 72/F               | AML,<br>neutropenia                       | Fungemia                                                         | Blood<br>culture                                                      | None                                                                                                                                                                                                        | Died     |
| Hanmantgad<br>[39]            | 2017 | Case report     | USA       | 71/M               | AML,<br>neutropenia                       | Fungemia                                                         | Blood<br>culture                                                      | G-CSF                                                                                                                                                                                                       | Died     |
| Howden<br>[40]                | 2003 | Case report     | Australia | 53/F               | MM, BMT,<br>neutropenia                   | Sinusitis, os-<br>teomyelitis,<br>discitis,<br>aneurysm          | Sinus,<br>lumbar<br>spine,<br>hepatic<br>artery<br>wall<br>culture    | ITC +<br>Surgical<br>decom-<br>pression<br>of<br>sinusitis<br>ITC +TRB<br>+<br>Laminec-<br>tomy/<br>surgical<br>debride-<br>ment VRC<br>+ TRB +<br>GM-CSF +<br>Excision<br>of hepatic<br>artery<br>aneurysm | Survived |
| Jain [41]                     | 2017 | Case report     | USA       | 65/M               | AML,<br>neutropenia                       | Pneumonia,<br>fungemia,<br>skin lesions                          | Respiratory,<br>blood,<br>scrotal<br>lesion<br>culture                | L-AMB +<br>POS +<br>ISA                                                                                                                                                                                     | Died     |
| Kimura<br>[42]                | 2010 | Case report     | Japan     | 58/F               | AML,<br>neutropenia                       | Pneumonia,<br>fungemia                                           | Blood<br>culture                                                      | MICA +<br>G-CSF                                                                                                                                                                                             | Died     |
| Kubisiak-<br>Rzepczyk<br>[43] | 2013 | Case report     | Poland    | 21/F               | ALL,<br>alloHSCT                          | Fungemia                                                         | Blood<br>culture                                                      | VRC                                                                                                                                                                                                         | Died     |
| Maertens<br>[44]              | 2000 | Case report     | Belgium   | 77/M               | AML,<br>neutropenia                       | Pneumonia,<br>renal<br>abscess,<br>skin lesions                  | BAL,<br>abscess<br>culture                                            | AMBITC<br>+ Vitrec-<br>tomy                                                                                                                                                                                 | Died     |
| Marin [45]                    | 1991 | Case report     | Spain     | 66/M               | AML,<br>neutropenia                       | Pneumonia,<br>fungemia,<br>endoph-<br>thalmitis,<br>skin lesions | Skin<br>lesions,<br>blood,<br>urine,<br>vitreous<br>culture           | AMB                                                                                                                                                                                                         | Died     |
| Westerman<br>[46]             | 1999 | Case report     | Australia | 65/F               | AML,<br>neutropenia                       | Fungemia                                                         | Blood,<br>sputum,<br>faecal<br>culture                                | AMB                                                                                                                                                                                                         | Died     |
| McKelvie<br>[47]              | 2001 | Case report     | Australia | 59/M               | AML,<br>neutropenia                       | Endophthal-<br>mitis,<br>fungemia,<br>pneumonia                  | Blood<br>culture                                                      | Intravitreal<br>AMB +<br>AMB +<br>VRC                                                                                                                                                                       | Died     |
| Nambiar<br>[48]               | 2017 | Case report     | USA       | 65/M               | NHL,<br>neutropenia                       | Fungemia                                                         | Blood<br>culture                                                      | None                                                                                                                                                                                                        | Died     |
| Nenoff [49]                   | 1996 | Case report     | Germany   | 60/M               | AIDS, Burkitt<br>lymphoma,<br>neutropenia | -                                                                | Kidney,<br>spleen,<br>my-<br>ocardium<br>tissue<br>autopsy<br>culture | FLC +<br>G-CSF                                                                                                                                                                                              | Died     |

| Author                 | Year | Study<br>Design | Country        | Patient<br>Age/Sex | Underlying<br>Disease/<br>Conditions                           | Clinical<br>Manifesta-<br>tions                                                                   | Sample                                                                                                    | Treatment                      | Outcome |
|------------------------|------|-----------------|----------------|--------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------|---------|
| Nielsen<br>[50]        | 1993 | Case report     | USA            | 17/M               | AML,<br>neutropenia                                            | Fungemia,<br>pneumonia,<br>skin lesions                                                           | Blood,<br>skin, lung<br>tissue<br>culture                                                                 | AMB                            | Died    |
| Nishimori<br>[51]      | 2014 | Case report     | Japan          | 71/F               | AML,<br>neutropenia                                            | Fungemia                                                                                          | Blood,<br>fecal<br>culture                                                                                | MICAL-<br>AMB                  | Died    |
| Penteado<br>[52]       | 2018 | Case report     | Brazil         | 17/M               | X-linked<br>chronic gran-<br>ulomatous<br>disease,<br>AlloHSCT | Fungemia,<br>pneumonia                                                                            | Blood,<br>urine<br>culture                                                                                | VRC                            | Died    |
| Pickles [53]           | 1996 | Case series     | Australia      | 41/M               | AML,<br>neutropenia                                            | Pneumonia                                                                                         | Kidney,<br>lung, liver<br>autopsy<br>culture                                                              | AMB                            | Died    |
| Rabodon-<br>irina [54] | 1994 | Case report     | France         | 50/F               | Lung trans-<br>plantation                                      | Fungemia,<br>pleural<br>effusion,<br>pneumonia                                                    | Pleural<br>fluid,<br>central<br>venous<br>catheter,<br>blood<br>culture                                   | AMB                            | Died    |
| Reinoso<br>[55]        | 2013 | Case report     | Spain          | 35/F               | AML,<br>neutropenia                                            | Fungemia,<br>pneumonia,<br>pleural<br>effusion,<br>endoph-<br>thalmitis,<br>orbital<br>cellulitis | Vitreous<br>fluid cul-<br>ture/PCR,<br>blood<br>culture                                                   | VRC +<br>TRB + Vit-<br>rectomy | Died    |
| Rivier [56]            | 2011 | Case report     | France         | 70/M               | MDS, AML,<br>neutropenia                                       | Fungemia                                                                                          | Sputum,<br>blood<br>culture                                                                               | G-<br>CSFPOSCAS                | Died    |
| Rolfe [11]             | 2014 | Case series     | USA            | 44/M               | AML,<br>alloHSCT                                               | Fungemia                                                                                          | BAL,<br>blood,<br>skin<br>culture                                                                         | VRC +<br>AMB                   | Died    |
| Salesa [57]            | 1993 | Case report     | Spain          | 56/F               | AML,<br>autoHSCT,<br>neutropenia                               | Fungemia,<br>skin lesions                                                                         | Blood<br>culture                                                                                          | AMB +<br>GM-CSF                | Died    |
| Simarro<br>[58]        | 2001 | Case report     | Spain          | 34/F               | AML,<br>neutropenia                                            | Fungemia,<br>pneumonia                                                                            | Blood<br>culture                                                                                          | L-AMB                          | Died    |
| Simarro<br>[58]        | 2001 | Case report     | Spain          | 20/F               | ALL,<br>neutropenia                                            | Fungemia                                                                                          | Blood<br>culture                                                                                          | AMB                            | Died    |
| Song [59]              | 2010 | Case report     | South<br>Korea | 8/M                | ALL,<br>neutropenia                                            | Fungemia,<br>pneumonia,<br>skin lesions                                                           | Blood<br>culture                                                                                          | ITC                            | Died    |
| Sparrow<br>[60]        | 1992 | Case report     | Australia      | 3/M                | Neuroblast-<br>oma,<br>autoHSCT                                | Skin lesions,<br>fungemia                                                                         | Skin<br>biopsy,<br>blood,<br>urine,<br>endotra-<br>cheal<br>tube,<br>faeces,<br>throat<br>swab<br>culture | AMB                            | Died    |

Table 1. Cont.

| Author              | Year | Study<br>Design                  | Country   | Patient<br>Age/Sex | Underlying<br>Disease/<br>Conditions                                 | Clinical<br>Manifesta-<br>tions                                      | Sample                                                                                                        | Treatment                                                                                                              | Outcome                                                                      |
|---------------------|------|----------------------------------|-----------|--------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Spielberger<br>[61] | 1995 | Case report                      | USA       | 32/F               | AML,<br>AlloHSCT,<br>neutropenia                                     | Pneumonia,<br>fungemia                                               | Sputum,<br>blood<br>culture                                                                                   | AMB +<br>ITC                                                                                                           | Died                                                                         |
| Stefanovic<br>[62]  | 2016 | Case report                      | Canada    | 44/M               | Hemoph-<br>agocytic<br>lymphohistio-<br>cytosis, NHL,<br>neutropenia | Pneumonia,<br>fungemia                                               | BAL,<br>blood<br>culture                                                                                      | VRC +<br>MICA                                                                                                          | NA                                                                           |
| Tapia [63]          | 1994 | Case series                      | Spain     | 45/M               | MM,<br>autoHSCT,<br>neutropenia                                      | Fungemia,<br>meningism,<br>pneumonia                                 | Blood<br>culture                                                                                              | None                                                                                                                   | Died                                                                         |
| Tapia [63]          | 1994 | Case series                      | Spain     | 49/M               | AML,<br>neutropenia                                                  | Pneumonia,<br>hemiplegia                                             | BAL<br>culture,<br>autopsy<br>lung, liver,<br>kidneys,<br>brain<br>(ischemic<br>lesion)<br>fungal<br>invasion | AMB +<br>ITC +<br>Surgical<br>resection<br>of lung<br>nodule                                                           | Died                                                                         |
| Teh [64]            | 2019 | Retrospective<br>cohort<br>study | Australia | 68/M               | CLL                                                                  | Fungemia                                                             | Blood<br>culture                                                                                              | CAS                                                                                                                    | Died                                                                         |
| Tey [65]            | 2020 | Case report                      | Australia | 60/F               | CLL,<br>neutropenia                                                  | Fungemia,<br>pneumonia,<br>septic<br>emboli<br>brain, skin,<br>chest | Blood<br>culture                                                                                              | VRC +<br>TRB +<br>G-CSF                                                                                                | Died                                                                         |
| Tong [66]           | 2007 | Case report                      | Australia | 61/M               | AML,<br>alloHSCT                                                     | Fungemia,<br>endoph-<br>thalmitis                                    | Blood<br>culture                                                                                              | CAS +<br>VRC +<br>TRB + in-<br>travitreal<br>VRC                                                                       | Died<br>(no evi-<br>dence of<br>fungal<br>infec-<br>tion in<br>au-<br>topsy) |
| Trubiano<br>[67]    | 2014 | Case report                      | Australia | 67/M               | AML                                                                  | Fungemia,<br>endoph-<br>thalmitis                                    | Vitreous<br>fluid, eye,<br>temporal<br>lobe<br>specimen<br>culture                                            | CAS +<br>VRC +<br>TRB + in-<br>travitreal<br>VRC + Vit-<br>rectomy/<br>enucle-<br>ation/<br>temporal<br>lobec-<br>tomy | Survived                                                                     |
| Valerio<br>[68]     | 2021 | Case report                      | Spain     | 25/M               | Heart trans-<br>plantation                                           | Fungemia,<br>pneumonia,<br>skin lesions                              | Blood,<br>catheter<br>tip,<br>tracheal<br>aspirate,<br>skin<br>biopsy<br>culture                              | L-AMB +<br>VRC +<br>TRB                                                                                                | Died                                                                         |

| Author                           | Year | Study<br>Design | Country   | Patient<br>Age/Sex | Underlying<br>Disease/<br>Conditions       | Clinical<br>Manifesta-<br>tions                                                                                       | Sample                                                                                                            | Treatment                                                                                                              | Outcome  |
|----------------------------------|------|-----------------|-----------|--------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------|
| Whyte<br>[69]                    | 2005 | Case report     | Australia | 8/F                | ALL                                        | Pneumonia,<br>septic<br>arthritis, os-<br>teomyelitis,<br>discitis,<br>epidural<br>fluid<br>collection                | Lung<br>biopsy,<br>joint<br>aspirate,<br>laminec-<br>tomy, disc<br>debride-<br>ment<br>speci-<br>mens<br>culture  | L-<br>AMBVRC<br>+ TRB +<br>G-CSF +<br>Laminec-<br>tomy/<br>disc<br>debride-<br>ment/<br>surgical<br>joints<br>washouts | Survived |
| Wilson<br>[70]                   | 2022 | Case report     | Australia | 43/F               | AML,<br>neutropenia                        | Fungemia,<br>pneumonia,<br>skin lesions,<br>septic<br>arthritis, os-<br>teomyelitis,<br>intracere-<br>bral<br>lesions | Blood,<br>synovial<br>fluid<br>culture                                                                            | VRC +<br>TRB +<br>MTF +<br>Debride-<br>ment/<br>synovec-<br>tomy/<br>arthro-<br>scopic<br>washout                      | Died     |
| Wise [71]                        | 1993 | Case report     | Australia | 53/M               | Renal trans-<br>plantation                 | Pneumonia,<br>peritonitis                                                                                             | Peritoneal,<br>wound<br>swabs,<br>pleural,<br>ileostomy,<br>jejunal<br>fluid<br>culture                           | AMBMIC                                                                                                                 | Died     |
| Wood [72]                        | 1992 | Case series     | Australia | 52/M               | AML                                        | Fungemia,<br>endoph-<br>thalmitis                                                                                     | Vitreous<br>aspirate,<br>urine,<br>blood,<br>skin<br>biopsy<br>culture,<br>autopsy<br>renal<br>abscess<br>culture | AMB +<br>FCS                                                                                                           | Died     |
| Wood [72]                        | 1992 | Case series     | Australia | 46/M               | ALL,<br>neutropenia                        | Fungemia                                                                                                              | Blood<br>from<br>Hickman<br>catheter<br>culture                                                                   | None                                                                                                                   | Died     |
| Strickland<br>[73]               | 1998 | Case series     | USA       | 51/F               | Breast cancer,<br>autoHSCT,<br>neutropenia | Fungemia,<br>pneumonia,<br>pericardial<br>effusion,<br>pleural<br>effusion                                            | Blood<br>culture,<br>autopsy<br>speci-<br>mens<br>(heart,<br>lung,<br>liver)                                      | AMB                                                                                                                    | Died     |
| Carreter<br>de<br>Granda<br>[74] | 2001 | Case report     | Spain     | 52/F               | MM, BMT,<br>neutropenia                    | Fungemia,<br>endocardi-<br>tis,<br>endoph-<br>thalmitis,<br>brain<br>mycotic<br>aneurysm                              | Blood,<br>valve<br>specimen<br>culture                                                                            | L-AMB +<br>ITC +<br>Valve<br>replace-<br>ment                                                                          | Died     |

| Author                         | Year | Study<br>Design | Country   | Patient<br>Age/Sex | Underlying<br>Disease/<br>Conditions                         | Clinical<br>Manifesta-<br>tions                                                                           | Sample                                                                                                           | Treatment                                                                | Outcome  |
|--------------------------------|------|-----------------|-----------|--------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------|
| Freeman<br>[75]                | 2007 | Case series     | USA       | 24/F               | Hyper IgE<br>syndrome                                        | Pneumonia,<br>cerebritis                                                                                  | Lung<br>tissue<br>autopsy<br>culture,<br>cerebritis/<br>pyeloneph-<br>ritis with<br>budding<br>hyphae<br>autopsy | AMB +<br>POS                                                             | Died     |
| Fernandez-<br>Guerrero<br>[76] | 2011 | Case report     | Spain     | 29/F               | ALL                                                          | Endocarditis,<br>septic<br>arthritis, os-<br>teomyelitis,<br>mycotic<br>aneurysm,<br>endoph-<br>thalmitis | Blood,<br>vitreous<br>fluid,<br>embolus,<br>valve veg-<br>etations<br>culture                                    | VRC +<br>L-AMB +<br>TRB +<br>Embolec-<br>tomy/<br>valve re-<br>placement | Died     |
| Kelly [77]                     | 2016 | Case report     | Australia | 75/F               | Ovarian<br>carcinoma                                         | Endocarditis,<br>cerebral<br>emboli,<br>fungemia                                                          | Blood<br>culture                                                                                                 | VRC                                                                      | Died     |
| O' Hearn<br>[78]               | 2010 | Case report     | USA       | 38/F               | Heart trans-<br>plantation                                   | Endophthal-<br>mitis                                                                                      | Vitreous<br>specimen,<br>chest wall<br>lesion<br>culture                                                         | Intravitreal<br>AMB/VRC<br>+ VRC +<br>TRB + Vit-<br>rectomy              | Survived |
| Ochi [79]                      | 2015 | Case report     | Japan     | 66/F               | AML,<br>neutropenia                                          | Fungemia,<br>sinusitis,<br>pulmonary/<br>splenic<br>emboli, en-<br>docarditis                             | Blood,<br>sputum,<br>CSF<br>culture                                                                              | FLCVRC<br>+ L-<br>AMBVRC<br>+ TRB +<br>G-CSF                             | Died     |
| Ohashi<br>[80]                 | 2011 | Case report     | Japan     | 58/M               | Monoclonal<br>gammopathy<br>of<br>undermined<br>significance | Fungemia,<br>pneumonia                                                                                    | Blood,<br>sputum<br>culture                                                                                      | ITCL-<br>AMBMICA<br>+ VRC                                                | Died     |
| Sayah [81]                     | 2013 | Case report     | USA       | 70/F               | Lung trans-<br>plantation                                    | Pericarditis,<br>mycotic<br>aneurysm,<br>pneumonia                                                        | BAL, peri-<br>cardial<br>culture                                                                                 | VRC +<br>TRB +<br>MICA +<br>Peri-<br>cardiec-<br>tomy                    | Died     |
| Smita [82]                     | 2015 | Case report     | India     | 50/M               | Pacemaker<br>implantation,<br>diabetes                       | Fungemia,<br>endocardi-<br>tis                                                                            | Blood,<br>valve<br>tissue<br>specimen<br>culture                                                                 | L-<br>AMBVRC<br>+<br>POSVRC<br>+ TRB +<br>Valve re-<br>placement         | Survived |
| Tascini<br>[83]                | 2006 | Case report     | Italy     | 75/M               | Pacemaker<br>implantation                                    | Endocarditis,<br>pneumonia                                                                                | Tips of<br>the lead<br>culture                                                                                   | VRC +<br>Pace-<br>maker<br>removal                                       | Survived |
| Uno [84]                       | 2014 | Case report     | Japan     | 35/M               | Renal trans-<br>plantation                                   | Fungemia,<br>endocardi-<br>tis,<br>meningitis,<br>pneumonia                                               | Blood,<br>sputum,<br>CSF<br>culture                                                                              | ITRA +<br>MICAL-<br>AMB +<br>VRC                                         | Died     |

Table 1. Cont.

| Author                   | Year | Study<br>Design | Country   | Patient<br>Age/Sex | Underlying<br>Disease/<br>Conditions                    | Clinical<br>Manifesta-<br>tions                                                | Sample                                                                                                                       | Treatment                                     | Outcome |
|--------------------------|------|-----------------|-----------|--------------------|---------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------|
| Wakabay-<br>ashi<br>[85] | 2016 | Case report     | Japan     | 64/F               | Chronic<br>osteomyelitis                                | Fungemia,<br>endocardi-<br>tis,<br>endoph-<br>thalmitis,<br>osteomyeli-<br>tis | Blood<br>culture                                                                                                             | FLC                                           | Died    |
| Ahmad<br>[86] #          | 2010 | Case report     | USA       | 50/M               | Rheumatic<br>disease                                    | Fungemia,<br>brain<br>emboli                                                   | Blood<br>culture                                                                                                             | L-AMB +<br>Valve<br>replace-<br>ment          | Died    |
| Spanevello<br>[87]       | 2010 | Case report     | Australia | 28/F               | Acute undif-<br>ferentiated<br>leukemia,<br>neutropenia | Pseudoane-<br>urysm,<br>cerebral<br>hemor-<br>rhage                            | Blood,<br>sinus<br>material<br>culture                                                                                       | VRC +<br>TRB                                  | Died    |
| Beldarrain<br>[88]       | 2000 | Case report     | Spain     | 42/F               | AML,<br>neutropenia                                     | Fungemia,<br>pneumonia,<br>ischemic<br>brain infarct                           | Blood<br>culture                                                                                                             | FLC                                           | Died    |
| Guadalajara<br>[89]      | 2018 | Case report     | Spain     | 36/F               | Multiple<br>sclerosis, glu-<br>cocorticoids             | Mycotic<br>cerebral<br>aneurysm,<br>ischemic<br>stroke                         | Fungal<br>structures<br>in the<br>arterial<br>wall of<br>ruptured<br>aneurysm,<br>thrombus,<br>larynx,<br>small<br>intestine | None                                          | Died    |
| Tamaki<br>[90]           | 2016 | Case report     | Japan     | 62/M               | AML,<br>neutropenia,<br>alloHSCT                        | Meningitis,<br>fungemia                                                        | Blood,<br>CSF<br>culture<br>and PCR                                                                                          | MICAL-<br>AMB +<br>VRC                        | Died    |
| Takata<br>[91]           | 2020 | Case report     | Japan     | 70/F               | AML                                                     | Endophthal-<br>mitis, brain<br>aneurysm,<br>fungemia                           | Blood<br>culture,<br>fungal<br>structures<br>in the<br>arterial<br>wall of<br>the<br>aneurysm                                | CAS +<br>AMBVRC<br>+<br>Aneurysm<br>resection | Died    |
| Marco de<br>Lucas [92]   | 2006 | Case series     | Spain     | 37/M               | AML,<br>alloHSCT,<br>neutropenia                        | Orbit<br>cellulitis,<br>multiple<br>brain<br>lesions,<br>pneumonia             | Autopsy                                                                                                                      | AMB +<br>ITC +<br>FLC                         | Died    |
| Marco de<br>Lucas [92]   | 2006 | Case series     | Spain     | 66/M               | AML,<br>neutropenia                                     | Multiple<br>brain<br>lesions,<br>pneumonia                                     | Autopsy                                                                                                                      | AMB +<br>ITC +<br>FLC                         | Died    |
| Marco de<br>Lucas [92]   | 2006 | Case series     | Spain     | 45/M               | MM,<br>alloHSCT,<br>neutropenia                         | Arterial<br>brain<br>thrombosis,<br>pneumonia                                  | Blood<br>culture,<br>Autopsy                                                                                                 | AMB +<br>ITC +<br>FLC                         | Died    |

 Table 1. Cont.

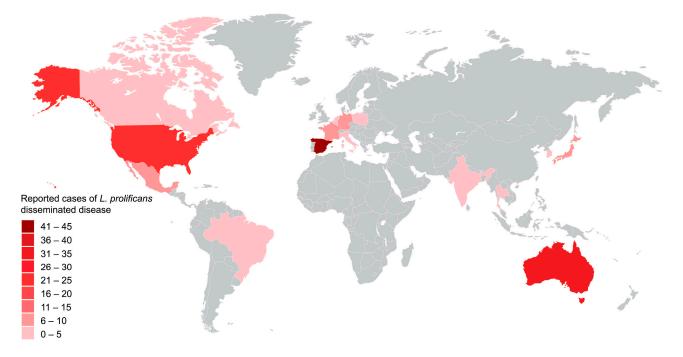
| Author                        | Year | Study<br>Design | Country | Patient<br>Age/Sex | Underlying<br>Disease/<br>Conditions       | Clinical<br>Manifesta-<br>tions                                                                 | Sample                                                  | Treatment                        | Outcome  |
|-------------------------------|------|-----------------|---------|--------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------|----------|
| Marco de<br>Lucas [92]        | 2006 | Case series     | Spain   | 18/F               | MDS,<br>AlloHSCT,<br>neutropenia           | Pansinusitis,<br>orbital<br>cellulitis,<br>multiple<br>brain<br>lesions,<br>pneumonia           | Autopsy                                                 | AMB +<br>ITC +<br>FLC            | Died     |
| Marco de<br>Lucas [92]        | 2006 | Case series     | Spain   | 36/M               | AML,<br>alloHSCT,<br>neutropenia           | Multiple<br>brain<br>lesions,<br>pneumonia                                                      | Autopsy                                                 | AMB +<br>ITC +<br>FLC            | Died     |
| Marco de<br>Lucas [92]        | 2006 | Case series     | Spain   | 52/F               | MM,<br>autoHSCT,<br>neutropenia            | Endocarditis,<br>subarach-<br>noid<br>hemor-<br>rhage,<br>bilateral<br>panuveitis,<br>pneumonia | Blood<br>culture                                        | AMB +<br>ITC +<br>FLC            | Died     |
| Elizondo-<br>Zertuche<br>[93] | 2017 | Case series     | Mexico  | 48/F               | CML, BMT                                   | Fungemia                                                                                        | BAL,<br>urine,<br>blood<br>culture                      | ITC +<br>CAS                     | Died     |
| Elizondo-<br>Zertuche<br>[93] | 2017 | Case series     | Mexico  | 61/M               | AIDS                                       | Fungemia                                                                                        | Blood<br>culture                                        | FLC                              | Died     |
| Elizondo-<br>Zertuche<br>[93] | 2017 | Case series     | Mexico  | 47/F               | CML                                        | Sepsis                                                                                          | BAL,<br>vitreous<br>culture                             | None                             | Died     |
| Elizondo-<br>Zertuche<br>[93] | 2017 | Case series     | Mexico  | 57/F               | Renal trans-<br>plantation                 | Fungemia                                                                                        | Blood<br>culture                                        | AMB                              | Died     |
| Elizondo-<br>Zertuche<br>[93] | 2017 | Case series     | Mexico  | 67/M               | AML                                        | Fungemia                                                                                        | Blood,<br>peritoneal<br>fluid<br>culture                | FLC +<br>AMB                     | Died     |
| Elizondo-<br>Zertuche<br>[93] | 2017 | Case series     | Mexico  | 40/M               | AML                                        | Fungemia                                                                                        | Blood<br>culture                                        | AMB                              | Died     |
| Idigoras<br>[94]              | 2001 | Case series     | Spain   | 44/F               | AML,<br>neutropenia                        | Fungemia,<br>pneumonia,<br>conjuncti-<br>val effusion,<br>cutaneous<br>eruption                 | Blood<br>culture                                        | AMB                              | Died     |
| Idigoras<br>[94]              | 2001 | Case series     | Spain   | 55/F               | Breast cancer,<br>autoHSCT,<br>neutropenia | Fungemia                                                                                        | Blood<br>culture                                        | ITC +<br>G-CSF                   | Survived |
| Idigoras<br>[94]              | 2001 | Case series     | Spain   | 28/M               | AIDS                                       | Fungemia,<br>pneumonia                                                                          | BAL,<br>blood,<br>urine,<br>feces,<br>sputum<br>culture | None                             | Died     |
| Idigoras<br>[94]              | 2001 | Case series     | Spain   | 65/M               | AML,<br>neutropenia                        | Fungemia,<br>skin lesions,<br>pneumonia                                                         | Blood,<br>sputum<br>culture                             | FLC +<br>ITC +<br>AMB +<br>G-CSF | Died     |

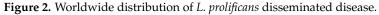
Table 1. Cont.

| Author            | Year | Study<br>Design                  | Country | Patient<br>Age/Sex | Underlying<br>Disease/<br>Conditions  | Clinical<br>Manifesta-<br>tions                                                                     | Sample                                                                             | Treatment                                                                   | Outcome  |
|-------------------|------|----------------------------------|---------|--------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------|
| Idigoras<br>[94]  | 2001 | Case series                      | Spain   | 56/F               | AML,<br>neutropenia                   | Fungemia,<br>pneumonia                                                                              | Blood<br>culture                                                                   | FLC +<br>G-CSF                                                              | Died     |
| Idigoras<br>[94]  | 2001 | Case series                      | Spain   | 28/M               | AML                                   | Fungemia,<br>spondy-<br>lodiscitis,<br>abdominal<br>abscess,<br>skin lesions,<br>cholecysti-<br>tis | Blood,<br>wound,<br>abscess<br>culture                                             | FLC +<br>ITC +<br>AMB +<br>G-CSF +<br>TRB +<br>VRC +<br>Abscess<br>drainage | Died     |
| Jenks [95]        | 2018 | Retrospective<br>cohort<br>study | USA     | NA/NA              | NHL                                   | Fungemia                                                                                            | Blood<br>culture                                                                   | MICA +<br>L-AMB                                                             | Died     |
| Jenks [95]        | 2018 | Retrospective<br>cohort<br>study | USA     | NA/NA              | Chronic gran-<br>ulomatous<br>disease | Fungemia                                                                                            | Blood<br>culture                                                                   | VRC +<br>TRB                                                                | Survived |
| Vagefi<br>[96]    | 2005 | Case report                      | USA     | 56/F               | Lung trans-<br>plantation             | Pneumonia,<br>endoph-<br>thalmitis                                                                  | Bronchial<br>bruising,<br>vitreous<br>culture                                      | VRC +<br>TRB + in-<br>travitreal<br>AMB/VRC                                 | Died     |
| Johnson<br>[97]   | 2014 | Retrospective<br>cohort<br>study | USA     | 54/M               | Mutlivisceral<br>transplanta-<br>tion | NA                                                                                                  | Autopsy<br>heart,<br>peri-<br>cardium,<br>pleura,<br>kidneys,<br>brain             | AMB +<br>CAS +<br>VRC                                                       | Died     |
| Johnson<br>[97]   | 2014 | Retrospective<br>cohort<br>study | USA     | 51/F               | Mutlivisceral<br>transplanta-<br>tion | NA                                                                                                  | Autopsy<br>peri-<br>cardium,<br>eyes,<br>dermis,<br>heart,<br>kidneys,<br>pancreas | AMB +<br>CAS +<br>VRC                                                       | Died     |
| Nasif [98]        | 2021 | Case report                      | USA     | 48/M               | Renal trans-<br>plantation            | Thigh,<br>brain, shin<br>abscesses,<br>femoral<br>artery<br>mycotic<br>aneurysm                     | Thigh,<br>brain,<br>shin<br>abscesses<br>culture                                   | POS +<br>AMB +<br>Surgery-<br>TRB +<br>VRC +<br>Surgery                     | Died     |
| Tintelnot<br>[13] | 2009 | Retrospective<br>cohort<br>study | Germany | 54/F               | Renal trans-<br>plantation            | Fungemia,<br>pneumonia,<br>skin lesions,<br>sepsis                                                  | Blood<br>culture                                                                   | L-AMB +<br>FCS +<br>MIC                                                     | Died     |
| Tintelnot<br>[13] | 2009 | Retrospective<br>cohort<br>study | Germany | 53/F               | AML                                   | Fungemia,<br>pneumonia,<br>skin lesions,<br>endoph-<br>thalmitis,<br>sepsis                         | Blood<br>culture                                                                   | AMB +<br>FCS                                                                | Died     |
| Tintelnot<br>[13] | 2009 | Retrospective<br>cohort<br>study | Germany | 61/F               | Long term<br>corticos-<br>teroids     | Fungemia,<br>pneumonia                                                                              | Blood,<br>tracheal<br>secretions<br>culture                                        | None                                                                        | Died     |

Table 1. Cont.

| Author            | Year | Study<br>Design                  | Country   | Patient<br>Age/Sex | Underlying<br>Disease/<br>Conditions           | Clinical<br>Manifesta-<br>tions               | Sample                                          | Treatment                | Outcome  |
|-------------------|------|----------------------------------|-----------|--------------------|------------------------------------------------|-----------------------------------------------|-------------------------------------------------|--------------------------|----------|
| Tintelnot<br>[13] | 2009 | Retrospective<br>cohort<br>study | Germany   | 44/F               | CML, BMT                                       | Fungemia,<br>pneumonia,<br>sepsis             | BAL,<br>urine,<br>catheter,<br>blood<br>culture | CAS                      | Died     |
| Tintelnot<br>[13] | 2009 | Retrospective<br>cohort<br>study | Germany   | NA/M               | BMT                                            | Fungemia,<br>endoph-<br>thalmitis,<br>sepsis  | Blood<br>culture                                | POS                      | Died     |
| Tintelnot<br>[13] | 2009 | Retrospective<br>cohort<br>study | Germany   | 40/M               | AML                                            | Fungemia,<br>sepsis                           | Blood<br>culture                                | AMB                      | Died     |
| Tintelnot<br>[13] | 2009 | Retrospective<br>cohort<br>study | Germany   | 64/M               | AML                                            | Fungemia,<br>brain in-<br>volvement           | Blood<br>culture                                | None                     | Died     |
| Tintelnot<br>[13] | 2009 | Retrospective<br>cohort<br>study | Germany   | 60/M               | Chronic<br>idiopathic<br>myelofibrosis,<br>BMT | Fungemia,<br>sepsis                           | Blood,<br>BAL<br>culture                        | VRC +<br>CAS             | Died     |
| Tintelnot<br>[13] | 2009 | Retrospective<br>cohort<br>study | Germany   | 47/F               | COPD, lung<br>transplanta-<br>tion             | Endophthal-<br>mitis,<br>sepsis               | BAL,<br>vitreous<br>fluid<br>culture            | POS +<br>CASL-<br>AMBVRC | Died     |
| Husain<br>[99] *  | 2005 | Case series                      | USA/Spain | 55/M               | Small bowel<br>transplanta-<br>tion            | Peritoneum<br>involve-<br>ment                | NA                                              | AMB                      | Died     |
| Husain<br>[99] *  | 2005 | Case series                      | USA/Spain | 40/M               | Kidney/<br>pancreas<br>transplanta-<br>tion    | CNS,<br>pulmonary<br>involve-<br>ment         | NA                                              | VRC                      | Survived |
| Husain<br>[99] *  | 2005 | Case series                      | USA/Spain | 51/F               | Small bowel<br>transplanta-<br>tion            | Aneurysm                                      | NA                                              | AMB +<br>VRC +<br>CAS    | Died     |
| Husain<br>[99] *  | 2005 | Case series                      | USA/Spain | 17/M               | Liver trans-<br>plantation                     | Pulmonary<br>involve-<br>ment                 | NA                                              | VRC                      | Died     |
| Husain<br>[99] *  | 2005 | Case series                      | USA/Spain | 44/F               | Heart trans-<br>plantation                     | Pulmonary,<br>sinus, skin<br>involve-<br>ment | NA                                              | AMB                      | Died     |
| Husain<br>[99] *  | 2005 | Case series                      | USA/Spain | 68/M               | Kidney/liver<br>transplanta-<br>tion           | Skin in-<br>volvement                         | NA                                              | VRC                      | Survived |


Table 1. Cont.


AML: acute myeloid leukemia, ALL: acute lymphoblastic leukemia, AMML: acute myelomonocytic leukemia, NHL: non-Hodgkin lymphoma, CML: chronic myeloid leukemia, MM: multiple myeloma, MDS: myelodysplastic syndrome, BMT: bone marrow transplantation, AlloHSCT: allogenic hemopoietic stem cell transplantation, AutoHSCT: autologous hemopoietic stem cell transplantaton, COPD: chronic obstructive pulmonary disease, AMB: amphotericin B, L-AMB: liposomal amphotericin B, VRC: voriconazole, TRB: terbinafine, POS: posaconazole, CAS: caspofungin, MTF: miltefosine, ANF: anidulafungin, ITC: itraconazole, ALB: albaconazole, FLC: fluconazole, FCS: flucytosine, ISA: isavuconazole, MIC: miconazole, MICA: micafungin, NA: not applicable. \* This study includes six solid organ recipients with *L. prolificans* infection affecting many systems, but it is not clearly stated if dissemination is present. # Information extracted from other articles [77,85].

#### 4. Discussion

The current systematic review focuses on disseminated infections caused by *L. prolificans* in humans. To the best of our knowledge, this is the first systematic review conducted on disseminated infections due to this rare microorganism.

*L. prolificans* is a rare filamentous fungus found primarily in the environment, including soil, decaying organic matter, and contaminated water [2,3]. Regarding the epidemiology of *L. prolificans* disseminated infection, cases were initially reported in the dry climates of Spain, Australia and the southwestern United States. Recently, however, there have been publications from other countries, specifically Germany, Japan, France, Mexico, The Netherlands, Canada, South Korea, Italy, Brazil, Belgium, Thailand, Poland, and India (Figure 2). Excluded studies due to different language concern cases reported in the aforementioned countries (Supplementary material).





This pathogen can infect both immunocompetent and immunocompromised patients and thus acts both as a primary and an opportunistic pathogen [100]. Skin, soft tissue, muscle, bone, and joint infections are more common in immunocompetent hosts, and infection usually requires disruption of the anatomic barrier by trauma, surgery, or corticosteroid injections [1,101]. Almost all cases presented in this review involve diseases and conditions indicative of severe immunosuppression. Airway colonization is common in patients with cystic fibrosis and lung transplantation [1,102,103]. Structural changes in the airways, long-term immunosuppression, and previous exposure to antifungal drugs contribute to the higher prevalence of *L. prolificans* in these patient populations [102–104].

Disseminated infection is the most common pattern of *L. prolificans* infection reported, and is associated with very high mortality rate, as shown in our systematic review. Risk factors for dissemination include solid organ transplantation, HSCT, malignancies (especially hematologic), AIDS, neutropenia, and immunosuppressive therapy [1,8,105,106]. The primary location of the fungus, the degree of immunosuppression, and the speed of disease progression determine the clinical outcome. Primary location of the fungus, such as eyes, joint, bone, and skin plays an important role in clinical outcome, since resection of surgically amenable lesions is significantly associated with improved survival [105,107]. This comes in agreement with our results, since those patients who underwent surgery had higher survival rate. The most frequent clinical manifestations of disseminated disease include fever and CNS, heart and/or respiratory involvement, along with skin lesions, particularly numerous erythematous non-pruritic skin nodules with or without a necrotic center [1,7,44].

Several determinants of pathogenesis have a role in the manifestation of disease [100], associated with germination [108], biofilm formation [109], destruction of lung epithelial

cells [109], and infiltration of blood vessels [110], resulting in widespread dissemination to distal organs [110]. Important molecules in the fungal cell wall that enhance fungal virulence include peptidorhamnomannan, glucosylceramide, and melanin [111]. The susceptibility of this fungus to innate immunity, particularly to neutrophils, may explain the high rate of prevalence in neutropenic patients [106]. Therefore, correction of neutropenia is of paramount importance, associated with a favorable outcome [26]. At the same time, a weak innate systemic response of microglial cells in the CNS explains the propensity of this fungus to invade and live in the CNS, a phenomenon known as neurotropism [112]. Detection of L. prolificans in clinical specimens relies principally on direct microscopic examination of fresh specimens or histopathologic analysis, together with culture on appropriate culture media [5]. Histopathologic examination can provide valuable evidence of invasive disease, but culture is necessary because different molds share the same characteristics under the microscope [5]. Direct microscopy and culture are the cornerstone of proven fungal infection [113]. A positive culture from the respiratory system in the absence of radiologic or endobronchial changes may indicate colonization [114]. Disseminated infection can be detected with blood cultures. Positive blood culture is rare in most molds, except those capable of angioinvasion with widespread dissemination, such as Scedosporium/Lomentospora and *Fusarium* species, and zygomycetes such as *Rhizopus* and *Mucor* [110] As shown in this systematic review, blood cultures were positive in 107 of 142 (75.3%) patients. However, their diagnostic utility is limited because most blood cultures become positive late in the course of the disease due to slow growth of the microorganism [1]. Molecular techniques, such as PCR, either panfungal or species-specific, followed by DNA sequencing, can detect invasive fungal infections directly from fresh and formalin-fixed paraffin-embedded (FFPE) material, but only in conjunction with histopathologic examination [115–117]. Several case reports have mentioned high serum 1, 3-beta-D-glucan (BDG) levels in patients with L. pro*lificans* infection [51,80], while some other reports, mentioned low serum BDG levels [118]. Hence, although this panfungal biomarker (BDG) may be useful in diagnosis when invasive fungal infection is suspected [5], its clinical utility is controversial. Therefore, results should always be interpreted in conjunction with the other diagnostic methods mentioned above. Matrix-assisted laser desorption/ionization time-of-flight is rapid and reliable method for identifying *L. prolificans*, but is used by only few laboratories [119,120].

Treatment of *L. prolificans* infection is challenging because this fungus has intrinsic resistance to most antifungal agents used in clinical practice. The treatment strategy for disseminated disease includes a combination of surgical and antifungal therapy, as well as correction of underlying immune deficiencies [121]. Once invasive *L. prolificans* is suspected or confirmed, surgical removal of infected tissue should be initiated if feasible [121]. Current clinical practice guidelines recommend that first-line antifungal treatment with voriconazole and terbinafine plus or minus other antifungal agents over a period of at least 4 to 6 months is associated with a favorable outcome [121]. According to Jenks et al., combination therapy with voriconazole plus terbinafine may be associated with improved treatment outcomes compared with other antifungal regimens for the treatment of invasive *L. prolificans* infections [122]. Clinical evaluation, laboratory studies (inflammatory markers, microbiologic studies), and imaging should be reviewed frequently to assess respond to treatment. Frequency depends on the concomitant conditions, disease severity and initial response to treatment.

Inherent resistance to most available treatments raises the need for new classes of antifungal agents [123]. Olorofim, a key enzyme in the biosynthesis of pyrimidines, has the ability to inhibit dihydroorotate dehydrogenase [124]. It is currently in Phase IIB clinical trials for the treatment of invasive mold infections, including *L. prolificans*, in patients with limited treatment options [124]. The efficacy of olorofim has been demonstrated in in vitro studies and improved clinical outcomes have been observed in two case reports [124–126].

This study has several limitations. It was not possible to perform a meta-analysis because all data are based on case reports and small case series. The above limitations could have affected the quality of our findings and conclusions. However, by using the JBI critical

appraisal checklist for each article included in our systematic review, we attempted to minimize the risk of bias and increase quality. The geographic distribution of publications that were included in our review probably reflects research and clinical interest rather than presence of the fungus only in these areas and environments. Finally, despite the high number of titles analyzed in our review, several studies on invasive infections by *L. prolificans* were excluded, as they did not fulfil inclusion criteria. Although excluded, these studies provide important clinical information on these infections [8,102,107,122].

#### 5. Conclusions

Disseminated disease caused by *L. prolificans* is a rare infection with significant mortality, and should be suspected especially in immunocompromised and neutropenic patients. Early diagnosis and careful interpretation of culture results are important in the management of these patients. Novel antifungal agents and further exploration of therapeutic options are needed to improve the outcome of this highly fatal infection. Healthcare providers treating patients with disseminated fungal infection should be aware of this life-threatening pathogen.

**Supplementary Materials:** The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/pathogens12010067/s1. Table S1: Reasons for exclusion of studies from the systematic review; Table S2: Reported cases and their risk of bias according to the Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Case Reports.

**Author Contributions:** Conceptualization, A.P.A., C.T., and N.S.; methodology, A.K. and A.P.A.; formal analysis, A.K. and A.P.A.; investigation, A.K., A.P.A. and L.M.; writing—original draft preparation, A.K., A.P.A., and C.T.; writing—review and editing, A.P.A., L.M., and N.S.; supervision, N.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

**Acknowledgments:** The authors would like to acknowledge Ognyan Iskrenov for his assistance with Figure 2.

Conflicts of Interest: The authors declare no conflict of interest.

#### References

- Rodriguez-Tudela, J.L.; Berenguer, J.; Guarro, J.; Kantarcioglu, A.S.; Horre, R.; de Hoog, G.S.; Cuenca-Estrella, M. Epidemiology and Outcome of Scedosporium Prolificans Infection, a Review of 162 Cases. *Med. Mycol.* 2009, 47, 359–370. [CrossRef] [PubMed]
- Summerbell, R.C.; Krajden, S.; Kane, J. Potted Plants in Hospitals as Reservoirs of Pathogenic Fungi. *Mycopathologia* 1989, 106, 13–22. [CrossRef] [PubMed]
- 3. Hennebert, G.L. Lomentospora Prolificans, a New Hyphomycete from Greenhouse Soil. Mycotaxon 1974, 1, 50.
- 4. Malloch, D.; Salkin, I.F. A New Species of Scedosporium Associated with Osteomyelitis in Humans. Mycotaxon 1984, 21, 247–255.
- Chen, S.C.-A.; Halliday, C.L.; Hoenigl, M.; Cornely, O.A.; Meyer, W. Scedosporium and Lomentospora Infections: Contemporary Microbiological Tools for the Diagnosis of Invasive Disease. J. Fungi 2021, 7, 23. [CrossRef] [PubMed]
- 6. De Hoog, G.S.; Guarro, J.; Gene, J.; Ahmed, S.; Al-Hatmi, A.M.S.; Figueras, J.; Vitale, R.G. *Atlas of Clinical Fungi*, 3rd ed.; Utrecht/Reus, 2019; Available online: https://www.clinicalfungi.org/ (accessed on 30 October 2022).
- Cortez, K.J.; Roilides, E.; Quiroz-Telles, F.; Meletiadis, J.; Antachopoulos, C.; Knudsen, T.; Buchanan, W.; Milanovich, J.; Sutton, D.A.; Fothergill, A.; et al. Infections Caused by *Scedosporium* spp. *Clin. Microbiol. Rev.* 2008, 21, 157–197. [CrossRef]
- Seidel, D.; Meißner, A.; Lackner, M.; Piepenbrock, E.; Salmanton-García, J.; Stecher, M.; Mellinghoff, S.; Hamprecht, A.; Durán Graeff, L.; Köhler, P.; et al. Prognostic Factors in 264 Adults with Invasive Scedosporium Spp. and Lomentospora Prolificans Infection Reported in the Literature and FungiScope<sup>®</sup>. Crit. Rev. Microbiol. 2019, 45, 1–21. [CrossRef]
- Cooley, L.; Spelman, D.; Thursky, K.; Slavin, M. Infection with Scedosporium Apiospermum and S. Prolificans, Australia. *Emerg. Infect. Dis.* 2007, 13, 1170–1177. [CrossRef]
- 10. DeSimone, M.S.; Crothers, J.W.; Solomon, I.H.; Laga, A.C. Scedosporium and Lomentospora Infections Are Infrequent, Difficult to Diagnose by Histology, and Highly Virulent. *Am. J. Clin. Pathol.* **2021**, *156*, 1044–1057. [CrossRef]
- 11. Rolfe, N.E.; Sandin, R.L.; Greene, J.N. Scedosporium Infections at a Cancer Center over a 10-Year Period (2001–2010). *Infect. Dis. Clin. Pract.* 2014, 22, 71–74. [CrossRef]
- Berenguer, J.; Rodríguez-Tudela, J.L.; Richard, C.; Alvarez, M.; Sanz, M.A.; Gaztelurrutia, L.; Ayats, J.; Martinez-Suarez, J.V. Deep Infections Caused by Scedosporium Prolificans. A Report on 16 Cases in Spain and a Review of the Literature. Scedosporium Prolificans Spanish Study Group. *Medicine* 1997, 76, 256–265. [CrossRef] [PubMed]

- Tintelnot, K.; Just-Nübling, G.; Horré, R.; Graf, B.; Sobottka, I.; Seibold, M.; Haas, A.; Kaben, U.; De Hoog, G.S. A Review of German Scedosporium Prolificans Cases from 1993 to 2007. *Med. Mycol.* 2009, 47, 351–358. [CrossRef] [PubMed]
- Alvarez, M.; Lopez Ponga, B.; Rayon, C.; Garcia Gala, J.; Roson Porto, M.C.; Gonzalez, M.; Martinez-Suarez, J.V.; Rodriguez-Tudela, J.L. Nosocomial Outbreak Caused by Scedosporium Prolificans (Inflatum): Four Fatal Cases in Leukemic Patients. J. Clin. Microbiol. 1995, 33, 3290–3295. [CrossRef] [PubMed]
- Cuenca-Estrella, M.; Alastruey-Izquierdo, A.; Alcazar-Fuoli, L.; Bernal-Martinez, L.; Gomez-Lopez, A.; Buitrago, M.J.; Mellado, E.; Rodriguez-Tudela, J.L. In Vitro Activities of 35 Double Combinations of Antifungal Agents against Scedosporium Apiospermum and Scedosporium Prolificans. *Antimicrob. Agents Chemother.* 2008, 52, 1136–1139. [CrossRef] [PubMed]
- 16. Cuenca-Estrella, M.; Bassetti, M.; Lass-Flörl, C.; Rácil, Z.; Richardson, M.; Rogers, T.R. Detection and Investigation of Invasive Mould Disease. *J. Antimicrob. Chemother.* **2011**, *66* (Suppl. 1), i15–i24. [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. *BMJ* 2021, 372, n71. [CrossRef]
- Chapter 7: Systematic Reviews of Etiology and Risk-JBI Manual for Evidence Synthesis-JBI Global Wiki. Available online: https: //jbi-global-wiki.refined.site/space/MANUAL/4687372/Chapter+7%3A+Systematic+reviews+of+etiology+and+risk (accessed on 15 November 2022).
- Aldoss, I.; Dadwal, S.; Zhang, J.; Tegtmeier, B.; Mei, M.; Arslan, S.; Al Malki, M.M.; Salhotra, A.; Ali, H.; Aribi, A.; et al. Invasive Fungal Infections in Acute Myeloid Leukemia Treated with Venetoclax and Hypomethylating Agents. *Blood Adv.* 2019, 3, 4043–4049. [CrossRef]
- Álvarez-Uría, A.; Guinea, J.V.; Escribano, P.; Gómez-Castellá, J.; Valerio, M.; Galar, A.; Vena, A.; Bouza, E.; Muñoz, P. Invasive Scedosporium and Lomentosora Infections in the Era of Antifungal Prophylaxis: A 20-Year Experience from a Single Centre in Spain. *Mycoses* 2020, 63, 1195–1202. [CrossRef]
- Ananda-Rajah, M.R.; Grigg, A.; Slavin, M.A. Breakthrough Disseminated Scedosporium Prolificans Infection in a Patient with Relapsed Leukaemia on Prolonged Voriconazole Followed by Posaconazole Prophylaxis. *Mycopathologia* 2008, 166, 83–86. [CrossRef]
- Balandin, B.; Aguilar, M.; Sánchez, I.; Monzón, A.; Rivera, I.; Salas, C.; Valdivia, M.; Alcántara, S.; Pérez, A.; Ussetti, P. Scedosporium Apiospermum and S. Prolificans Mixed Disseminated Infection in a Lung Transplant Recipient: An Unusual Case of Long-Term Survival with Combined Systemic and Local Antifungal Therapy in Intensive Care Unit. *Med. Mycol. Case Rep.* 2016, *11*, 53–56. [CrossRef]
- Barbaric, D.; Shaw, P.J. Scedosporium Infection in Immunocompromised Patients: Successful Use of Liposomal Amphotericin B and Itraconazole. *Med. Pediatr. Oncol.* 2001, 37, 122–125. [CrossRef] [PubMed]
- Boan, P.; Pang, S.; Gardam, D.J.; Darragh, H.; Wright, M.; Coombs, G.W. Investigation of a Lomentospora Prolificans Case Cluster with Whole Genome Sequencing. *Med. Mycol. Case Rep.* 2020, 29, 1–4. [CrossRef] [PubMed]
- 25. Boglione-Kerrien, C.; Verdier, M.-C.; Gautier-Veyret, E.; Hennart, B.; Belaz, S.; Revest, M.; Lemaitre, F. Using Unusual Drug-Drug Interactions to Maximize Voriconazole Treatment Efficacy. *Med. Mal. Infect.* **2019**, *49*, 555–557. [CrossRef] [PubMed]
- Bouza, E.; Muñoz, P.; Vega, L.; Rodríguez-Créixems, M.; Berenguer, J.; Escudero, A. Clinical Resolution of Scedosporium Prolificans Fungemia Associated with Reversal of Neutropenia Following Administration of Granulocyte Colony-Stimulating Factor. *Clin. Infect. Dis.* 1996, 23, 192–193. [CrossRef]
- 27. Buil, J.B.; Pickkers, P.; van der Lee, H.A.L.; Verweij, P.E. A Mould Infection in Disguise. *Clin. Microbiol. Infect.* **2021**, *27*, 854–855. [CrossRef]
- Chiam, N.; Rose, L.V.T.; Waters, K.D.; Elder, J.E. Scedosporium Prolificans Endogenous Endophthalmitis. J. AAPOS 2013, 17, 627–629. [CrossRef]
- Cobo, F.; Lara-Oya, A.; Rodríguez-Granger, J.; Sampedro, A.; Aliaga-Martínez, L.; Navarro-Marí, J.M. Infections Caused by Scedosporium/Lomentospora Species: Clinical and Microbiological Findings in 21 Cases. *Med. Mycol.* 2018, 56, 917–925. [CrossRef]
- 30. Damronglerd, P.; Phuphuakrat, A.; Santanirand, P.; Sungkanuparph, S. Disseminated Scedosporium prolificans infection in a patient with acute myeloid leukemia and prolonged febril neutropenia. *J. Infect. Dis. Antimicrob. Agents* **2014**, *31*, 101–105.
- 31. de Batlle, J.; Motjé, M.; Balanzà, R.; Guardia, R.; Ortiz, R. Disseminated Infection Caused by Scedosporium Prolificans in a Patient with Acute Multilineal Leukemia. *J. Clin. Microbiol.* **2000**, *38*, 1694–1695. [CrossRef]
- 32. Elsayed, S.; Lannigan, R.; Chin-Yee, I. Scedosporium Prolificans Fungemia. Can. J. Infect. Dis. 1999, 10, 75–76. [CrossRef]
- Farag, S.S.; Firkin, F.C.; Andrew, J.H.; Lee, C.S.; Ellis, D.H. Fatal Disseminated Scedosporium Inflatum Infection in a Neutropenic Immunocompromised Patient. J. Infect. 1992, 25, 201–204. [CrossRef] [PubMed]
- 34. Feltkamp, M.C.; Kersten, M.J.; van der Lelie, J.; Burggraaf, J.D.; de Hoog, G.S.; Kuijper, E.J. Fatal Scedosporium Prolificans Infection in a Leukemic Patient. *Eur. J. Clin. Microbiol. Infect. Dis.* **1997**, *16*, 460–464. [CrossRef] [PubMed]
- Gosbell, I.B.; Morris, M.L.; Gallo, J.H.; Weeks, K.A.; Neville, S.A.; Rogers, A.H.; Andrews, R.H.; Ellis, D.H. Clinical, Pathologic and Epidemiologic Features of Infection with Scedosporium Prolificans: Four Cases and Review. *Clin. Microbiol. Infect.* 1999, 5, 672–686. [CrossRef]

- 36. Gow-Lee, V.J.; Moyers, J.T.; Rogstad, D.K. Fatal Recurrent Disseminated Lomentospora Prolificans Infection during Autologous Hematopoietic Stem Cell Transplantation: A Case Report and Review, and Discussion on the Importance of Prolonged Neutropenia. *Transpl. Infect. Dis.* **2021**, 23, e13701. [CrossRef] [PubMed]
- 37. Grenouillet, F.; Botterel, F.; Crouzet, J.; Larosa, F.; Hicheri, Y.; Forel, J.-M.; Helias, P.; Ranque, S.; Delhaes, L. Scedosporium Prolificans: An Emerging Pathogen in France? *Med. Mycol.* **2009**, *47*, 343–350. [CrossRef] [PubMed]
- Guerrero, A.; Torres, P.; Duran, M.T.; Ruiz-Díez, B.; Rosales, M.; Rodriguez-Tudela, J.L. Airborne Outbreak of Nosocomial Scedosporium Prolificans Infection. *Lancet* 2001, 357, 1267–1268. [CrossRef] [PubMed]
- 39. Hanmantgad, M.; Nog, R.; Seiter, K. Acute Myeloid Leukemia and Fatal Scedosporium Prolificans Sepsis after Eculizumab Treatment for Paroxysmal Nocturnal Hemoglobinuria: A Case Report. *Stem Cell Investig.* **2017**, *4*, 100. [CrossRef]
- 40. Howden, B.P.; Slavin, M.A.; Schwarer, A.P.; Mijch, A.M. Successful Control of Disseminated Scedosporium Prolificans Infection with a Combination of Voriconazole and Terbinafine. *Eur. J. Clin. Microbiol. Infect. Dis.* **2003**, *22*, 111–113. [CrossRef]
- Jain, P.; Nagarajan, P.; Prayag, P.; Benton, C.B.; Kadia, T.; Groisberg, R.; Kontoyiannis, D.P.; Mulanovich, V.E.; Pemmaraju, N. Mixed Angioinvasive Exserohilum and Scedosporium Infection in a Patient with AML. *Am. J. Hematol.* 2017, *92*, 119–120. [CrossRef]
- 42. Kimura, M.; Maenishi, O.; Ito, H.; Ohkusu, K. Unique Histological Characteristics of Scedosporium That Could Aid in Its Identification. *Pathol. Int.* **2010**, *60*, 131–136. [CrossRef]
- Kubisiak-Rzepczyk, H.; Gil, L.; Zawirska, A.; Kubisiak-Michalska, A.; Mol, A.; Reich, A.; Komarnicki, M.; Adamski, Z. Scedosporium Prolificans Fungaemia in a Patient with Acute Lymphoblastic Leukaemia. *J. Mycol. Med.* 2013, 23, 261–264. [CrossRef] [PubMed]
- Maertens, J.; Lagrou, K.; Deweerdt, H.; Surmont, I.; Verhoef, G.E.; Verhaegen, J.; Boogaerts, M.A. Disseminated Infection by Scedosporium Prolificans: An Emerging Fatality among Haematology Patients. Case Report and Review. Ann. Hematol. 2000, 79, 340–344. [CrossRef]
- Marin, J.; Sanz, M.A.; Sanz, G.F.; Guarro, J.; Martínez, M.L.; Prieto, M.; Gueho, E.; Menezo, J.L. Disseminated Scedosporium Inflatum Infection in a Patient with Acute Myeloblastic Leukemia. *Eur. J. Clin. Microbiol. Infect. Dis.* 1991, 10, 759–761. [CrossRef] [PubMed]
- Westerman, D.A.; Speed, B.R.; Prince, H.M. Fatal Disseminated Infection by Scedosporium Prolificans during Induction Therapy for Acute Leukemia: A Case Report and Literature Review. *Pathology* **1999**, *31*, 393–394. [CrossRef] [PubMed]
- McKelvie, P.A.; Wong, E.Y.; Chow, L.P.; Hall, A.J. Scedosporium Endophthalmitis: Two Fatal Disseminated Cases of Scedosporium Infection Presenting with Endophthalmitis. *Clin. Exp. Ophthalmol.* 2001, *29*, 330–334. [CrossRef]
- Nambiar, P.H.; Tokarczyk, M.; DeSimone, J.A. Answer to October 2017 Photo Quiz. J. Clin. Microbiol. 2017, 55, 3149–3150. [CrossRef]
- 49. Nenoff, P.; Gütz, U.; Tintelnot, K.; Bosse-Henck, A.; Mierzwa, M.; Hofmann, J.; Horn, L.C.; Haustein, U.F. Disseminated Mycosis Due to Scedosporium Prolificans in an AIDS Patient with Burkitt Lymphoma. *Mycoses* **1996**, *39*, 461–465. [CrossRef]
- Nielsen, K.; Lang, H.; Shum, A.C.; Woodruff, K.; Cherry, J.D. Disseminated Scedosporium Prolificans Infection in an Immunocompromised Adolescent. *Pediatr. Infect. Dis. J.* 1993, 12, 882–884. [CrossRef]
- Nishimori, M.; Takahashi, T.; Suzuki, E.; Kodaka, T.; Hiramoto, N.; Itoh, K.; Tsunemine, H.; Yarita, K.; Kamei, K.; Takegawa, H.; et al. Fatal Fungemia with Scedosporium Prolificans in a Patient with Acute Myeloid Leukemia. *Med. Mycol. J.* 2014, 55, E63–E70. [CrossRef]
- Penteado, F.D.; Litvinov, N.; Sztajnbok, J.; Thomaz, D.Y.; Dos Santos, A.M.; Vasconcelos, D.M.; Motta, A.L.; Rossi, F.; Fernandes, J.F.; Marques, H.H.S.; et al. Lomentospora Prolificans Fungemia in Hematopoietic Stem Cell Transplant Patients: First Report in South America and Literature Review. *Transpl. Infect. Dis.* 2018, 20, e12908. [CrossRef]
- Pickles, R.W.; Pacey, D.E.; Muir, D.B.; Merrell, W.H. Experience with Infection by Scedosporium Prolificans Including Apparent Cure with Fluconazole Therapy. J. Infect. 1996, 33, 193–197. [CrossRef] [PubMed]
- Rabodonirina, M.; Paulus, S.; Thevenet, F.; Loire, R.; Gueho, E.; Bastien, O.; Mornex, J.F.; Celard, M.; Piens, M.A. Disseminated Scedosporium Prolificans (S. Inflatum) Infection after Single-Lung Transplantation. *Clin. Infect. Dis.* 1994, 19, 138–142. [CrossRef] [PubMed]
- Reinoso, R.; Carreño, E.; Hileeto, D.; Corell, A.; Pastor, J.C.; Cabrero, M.; Vázquez, L.; Calonge, M. Fatal Disseminated Scedosporium Prolificans Infection Initiated by Ophthalmic Involvement in a Patient with Acute Myeloblastic Leukemia. *Diagn Microbiol. Infect. Dis.* 2013, *76*, 375–378. [CrossRef] [PubMed]
- Rivier, A.; Perny, J.; Debourgogne, A.; Thivillier, C.; Lévy, B.; Gérard, A.; Machouart, M. Fatal Disseminated Infection Due to Scedosporium Prolificans in a Patient with Acute Myeloid Leukemia and Posaconazole Prophylaxis. *Leuk. Lymphoma* 2011, 52, 1607–1610. [CrossRef] [PubMed]
- 57. Salesa, R.; Burgos, A.; Ondiviela, R.; Richard, C.; Quindos, G.; Ponton, J. Fatal Disseminated Infection by Scedosporium Inflatum after Bone Marrow Transplantation. *Scand. J. Infect. Dis.* **1993**, *25*, 389–393. [CrossRef]
- Simarro, E.; Marín, F.; Morales, A.; Sanz, E.; Pérez, J.; Ruiz, J. Fungemia Due to Scedosporium Prolificans: A Description of Two Cases with Fatal Outcome. *Clin. Microbiol. Infect.* 2001, 7, 645–647. [CrossRef]
- Song, M.J.; Lee, J.H.; Lee, N.Y. Fatal Scedosporium Prolificans Infection in a Paediatric Patient with Acute Lymphoblastic Leukaemia. *Mycoses* 2011, 54, 81–83. [CrossRef]

- 60. Sparrow, S.A.; Hallam, L.A.; Wild, B.E.; Baker, D.L. Scedosporium Inflatum: First Case Report of Disseminated Infection and Review of the Literature. *Pediatr. Hematol. Oncol.* **1992**, *9*, 293–295. [CrossRef]
- 61. Spielberger, R.T.; Tegtmeier, B.R.; O'Donnell, M.R.; Ito, J.I. Fatal Scedosporium Prolificans (S. Inflatum) Fungemia Following Allogeneic Bone Marrow Transplantation: Report of a Case in the United States. *Clin. Infect. Dis.* **1995**, *21*, 1067. [CrossRef]
- 62. Stefanovic, A.; Wright, A.; Tang, V.; Hoang, L. Positive Blood Cultures in a Patient Recovering from Febrile Neutropenia. *JMM Case Rep.* **2016**, *3*, e005038. [CrossRef]
- 63. Tapia, M.; Richard, C.; Baro, J.; Salesa, R.; Figols, J.; Zurbano, F.; Zubizarreta, A. Scedosporium Inflatum Infection in Immunocompromised Haematological Patients. *Br. J. Haematol.* **1994**, *87*, 212–214. [CrossRef]
- 64. Teh, B.W.; Chui, W.; Handunnetti, S.; Tam, C.; Worth, L.J.; Thursky, K.A.; Slavin, M.A. High Rates of Proven Invasive Fungal Disease with the Use of Ibrutinib Monotherapy for Relapsed or Refractory Chronic Lymphocytic Leukemia. *Leuk. Lymphoma* **2019**, 60, 1572–1575. [CrossRef]
- Tey, A.; Mohan, B.; Cheah, R.; Dendle, C.; Gregory, G. Disseminated Lomentospora Prolificans Infection in a Patient on Idelalisib-Rituximab Therapy for Relapsed Chronic Lymphocytic Leukaemia. *Ann. Hematol.* 2020, 99, 2455–2456. [CrossRef]
- Tong, S.Y.C.; Peleg, A.Y.; Yoong, J.; Handke, R.; Szer, J.; Slavin, M. Breakthrough Scedosporium Prolificans Infection While Receiving Voriconazole Prophylaxis in an Allogeneic Stem Cell Transplant Recipient. *Transpl. Infect. Dis.* 2007, 9, 241–243. [CrossRef]
- Trubiano, J.A.; Paratz, E.; Wolf, M.; Teh, B.W.; Todaro, M.; Thursky, K.A.; Slavin, M.A. Disseminated Scedosporium Prolificans Infection in an "Extensive Metaboliser": Navigating the Minefield of Drug Interactions and Pharmacogenomics. *Mycoses* 2014, 57, 572–576. [CrossRef]
- Valerio, M.; Vásquez, V.; Álvarez-Uria, A.; Zatarain-Nicolás, E.; Pavone, P.; Martínez-Jiménez, M.D.C.; Barrio-Gutiérrez, J.M.; Cuerpo, G.; Guinea-Ortega, J.; Vena, A.; et al. Disseminated Lomentosporiosis in a Heart Transplant Recipient: Case Report and Review of the Literature. *Transpl. Infect. Dis.* 2021, 23, e13574. [CrossRef]
- 69. Whyte, M.; Irving, H.; O'Regan, P.; Nissen, M.; Siebert, D.; Labrom, R. Disseminated Scedosporium Prolificans Infection and Survival of a Child with Acute Lymphoblastic Leukemia. *Pediatr. Infect. Dis. J.* **2005**, *24*, 375–377. [CrossRef]
- Wilson, P.A.; MacKenzie, S. Disseminated Lomentospora Prolificans Infection in a Patient With Acute Myeloid Leukemia Salvage Therapy With Miltefosine. *Infect. Dis. Clin. Pract.* 2022, 30, 1–3. [CrossRef]
- Wise, K.A.; Speed, B.R.; Ellis, D.H.; Andrew, J.H. Two Fatal Infections in Immunocompromised Patients Caused by Scedosporium Inflatum. *Pathology* 1993, 25, 187–189. [CrossRef]
- 72. Wood, G.M.; McCormack, J.G.; Muir, D.B.; Ellis, D.H.; Ridley, M.F.; Pritchard, R.; Harrison, M. Clinical Features of Human Infection with Scedosporium Inflatum. *Clin. Infect. Dis.* **1992**, *14*, 1027–1033. [CrossRef]
- 73. Strickland, L.B.; Sandin, R.L.; Greene, J.N.; Ahmad, N. A Breast Cancer Patient with Disseminated Scedosporium Prolificans Infection. *Infect. Med.* **1998**, *15*, 849.
- Carreter de Granda, M.E.; Richard, C.; Conde, E.; Iriondo, A.; Marco de Lucas, F.; Salesa, R.; Zubizarreta, A. Endocarditis Caused by Scedosporium Prolificans after Autologous Peripheral Blood Stem Cell Transplantation. *Eur. J. Clin. Microbiol. Infect. Dis.* 2001, 20, 215–217. [CrossRef]
- 75. Freeman, A.F.; Kleiner, D.E.; Nadiminti, H.; Davis, J.; Quezado, M.; Anderson, V.; Puck, J.M.; Holland, S.M. Causes of Death in Hyper-IgE Syndrome. *J. Allergy Clin. Immunol.* 2007, 119, 1234–1240. [CrossRef]
- 76. Fernandez Guerrero, M.L.; Askari, E.; Prieto, E.; Gadea, I.; Román, A. Emerging Infectious Endocarditis Due to Scedosporium Prolificans: A Model of Therapeutic Complexity. *Eur. J. Clin. Microbiol. Infect. Dis.* **2011**, *30*, 1321–1324. [CrossRef]
- Kelly, M.; Stevens, R.; Konecny, P. Lomentospora Prolificans Endocarditis–Case Report and Literature Review. BMC Infect. Dis. 2016, 16, 36. [CrossRef]
- O'Hearn, T.M.; Geiseler, P.J.; Bhatti, R.A.; Eliott, D. Control of Disseminated Scedosporium Prolificans Infection and Endophthalmitis. *Retin. Cases Brief Rep.* 2010, 4, 18–19. [CrossRef] [PubMed]
- Ochi, Y.; Hiramoto, N.; Takegawa, H.; Yonetani, N.; Doi, A.; Ichikawa, C.; Imai, Y.; Ishikawa, T. Infective Endocarditis Caused by Scedosporium Prolificans Infection in a Patient with Acute Myeloid Leukemia Undergoing Induction Chemotherapy. *Int. J. Hematol.* 2015, 101, 620–625. [CrossRef]
- Ohashi, R.; Kato, M.; Katsura, Y.; Takekawa, H.; Hoshika, Y.; Sugawara, T.; Yoshimi, K.; Togo, S.; Nagaoka, T.; Seyama, K.; et al. Breakthrough Lung Scedosporium Prolificans Infection with Multiple Cavity Lesions in a Patient Receiving Voriconazole for Probable Invasive Aspergillosis Associated with Monoclonal Gammopathy of Undetermined Significance (MGUS). *Med. Mycol. J.* 2011, 52, 33–38. [CrossRef]
- Sayah, D.M.; Schwartz, B.S.; Kukreja, J.; Singer, J.P.; Golden, J.A.; Leard, L.E. Scedosporium Prolificans Pericarditis and Mycotic Aortic Aneurysm in a Lung Transplant Recipient Receiving Voriconazole Prophylaxis. *Transpl. Infect. Dis.* 2013, 15, E70–E74. [CrossRef]
- Smita, S.; Sunil, S.; Amarjeet, K.; Anil, B.; Yatin, M. Surviving a Recurrent Scedosporium Prolificans Endocarditis: Mention If Consent Was Taken. *Indian J. Med. Microbiol.* 2015, 33, 588–590. [CrossRef]
- Tascini, C.; Bongiorni, M.G.; Leonildi, A.; Giannola, G.; Soldati, E.; Arena, G.; Doria, R.; Germenia, C.; Menichetti, F. Pacemaker Endocarditis with Pulmonary Cavitary Lesion Due to Scedosporium Prolificans. J. Chemother. 2006, 18, 667–669. [CrossRef]

- Uno, K.; Kasahara, K.; Kutsuna, S.; Katanami, Y.; Yamamoto, Y.; Maeda, K.; Konishi, M.; Ogawa, T.; Yoneda, T.; Yoshida, K.; et al. Infective Endocarditis and Meningitis Due to Scedosporium Prolificans in a Renal Transplant Recipient. J. Infect. Chemother. 2014, 20, 131–133. [CrossRef]
- 85. Wakabayashi, Y.; Okugawa, S.; Tatsuno, K.; Ikeda, M.; Misawa, Y.; Koyano, S.; Tsuji, E.; Yanagimoto, S.; Hatakeyama, S.; Moriya, K.; et al. Scedosporium Prolificans Endocarditis: Case Report and Literature Review. *Intern. Med.* **2016**, *55*, 79–82. [CrossRef]
- Ahmad, S.; Zia, S.; Sarwari, A.R. Scedosporium Prolificans Endocarditis: Case Report and Review of Literature. W. Va. Med. J. 2010, 106, 24–26.
- 87. Spanevello, M.; Morris, K.L.; Kennedy, G.A. Pseudoaneurysm Formation by Scedosporium Prolificans Infection in Acute Leukaemia. *Intern. Med. J.* 2010, 40, 793. [CrossRef]
- 88. Gomez Beldarrain, M.; Garca-Monco, J.C.; Ojanguren, J.; Zabalza, I.; De Miguel, E. Scedosporum Prolificans Infection: An Unusual Cause of Cerebral Infarct [3]. *Am. J. Med.* **2000**, *108*, 679–680. [CrossRef]
- Guadalajara, M.C.V.; Hernández González, A.; Carrasco García de León, S.; Rojo, M.G.; Del Real Francia, M.Á. Mycotic Cerebral Aneurysms Secondary to Scedosporium Prolificans Infection in a Patient with Multiple Sclerosis. J. Clin. Neurol. 2018, 14, 601–603. [CrossRef]
- Tamaki, M.; Nozaki, K.; Onishi, M.; Yamamoto, K.; Ujiie, H.; Sugahara, H. Fungal Meningitis Caused by Lomentospora Prolificans after Allogeneic Hematopoietic Stem Cell Transplantation. *Transpl. Infect. Dis.* 2016, 18, 601–605. [CrossRef]
- Takata, S.; Tamase, A.; Hayashi, Y.; Anzawa, K.; Shioya, A.; Iinuma, Y.; Iizuka, H. Ruptured Fungal Aneurysm of the Peripheral Middle Cerebral Artery Caused by Lomentospora Infection: A Case Report and Literature Review. *Interdiscip. Neurosurg. Adv. Tech. Case Manag.* 2020, 21, 100743. [CrossRef]
- 92. Marco de Lucas, E.; Sádaba, P.; Lastra García-Barón, P.; Ruiz Delgado, M.L.; Cuevas, J.; Salesa, R.; Bermúdez, A.; González Mandly, A.; Gutiérrez, A.; Fernández, F.; et al. Cerebral Scedosporiosis: An Emerging Fungal Infection in Severe Neutropenic Patients: CT Features and CT Pathologic Correlation. *Eur. Radiol.* 2006, 16, 496–502. [CrossRef]
- Elizondo-Zertuche, M.; Montoya, A.M.; Robledo-Leal, E.; Garza-Veloz, I.; Sánchez-Núñez, A.L.; Ballesteros-Elizondo, R.; González, G.M. Comparative Pathogenicity of Lomentospora Prolificans (Scedosporium Prolificans) Isolates from Mexican Patients. *Mycopathologia* 2017, 182, 681–689. [CrossRef] [PubMed]
- Idigoras, P.; Pérez-Trallero, E.; Piñeiro, L.; Larruskain, J.; López-Lopategui, M.C.; Rodríguez, N.; González, J.M. Disseminated Infection and Colonization by Scedosporium Prolificans: A Review of 18 Cases, 1990-1999. *Clin. Infect. Dis.* 2001, 32, E158–E165. [CrossRef] [PubMed]
- Jenks, J.D.; Reed, S.L.; Seidel, D.; Koehler, P.; Cornely, O.A.; Mehta, S.R.; Hoenigl, M. Rare Mould Infections Caused by Mucorales, Lomentospora Prolificans and Fusarium, in San Diego, CA: The Role of Antifungal Combination Therapy. *Int. J. Antimicrob. Agents* 2018, 52, 706–712. [CrossRef]
- 96. Vagefi, M.R.; Kim, E.T.; Alvarado, R.G.; Duncan, J.L.; Howes, E.L.; Crawford, J.B. Bilateral Endogenous Scedosporium Prolificans Endophthalmitis after Lung Transplantation. *Am. J. Ophthalmol.* **2005**, *139*, 370–373. [CrossRef]
- Johnson, L.S.; Shields, R.K.; Clancy, C.J. Epidemiology, Clinical Manifestations, and Outcomes of Scedosporium Infections among Solid Organ Transplant Recipients. *Transpl. Infect. Dis.* 2014, 16, 578–587. [CrossRef]
- Nasif, A.; Siebenaller, D.; DeRiso, A.; Shah, H.; Alharthi, S.; Nazzal, M. Disseminated Lomentospora Prolificans Infection Presenting with Arterial Exsanguination. J. Vasc. Surg. Cases Innov. Tech. 2021, 7, 785–789. [CrossRef]
- Husain, S.; Muñoz, P.; Forrest, G.; Alexander, B.D.; Somani, J.; Brennan, K.; Wagener, M.M.; Singh, N. Infections Due to Scedosporium Apiospermum and Scedosporium Prolificans in Transplant Recipients: Clinical Characteristics and Impact of Antifungal Agent Therapy on Outcome. *Clin. Infect. Dis.* 2005, 40, 89–99. [CrossRef]
- Konsoula, A.; Tsioutis, C.; Markaki, I.; Papadakis, M.; Agouridis, A.P.; Spernovasilis, N. Lomentospora Prolificans: An Emerging Opportunistic Fungal Pathogen. *Microorganisms* 2022, 10, 1317. [CrossRef]
- Daniele, L.; Le, M.; Parr, A.F.; Brown, L.M. Scedosporium Prolificans Septic Arthritis and Osteomyelitis of the Hip Joints in an Immunocompetent Patient: A Case Report and Literature Review. *Case Rep. Orthop.* 2017, 2017, 3809732. [CrossRef]
- Vazirani, J.; Westall, G.P.; Snell, G.I.; Morrissey, C.O. Scedosporium Apiospermum and Lomentospora Prolificans in Lung Transplant Patients-A Single Center Experience over 24 Years. *Transpl. Infect. Dis.* 2021, 23, e13546. [CrossRef]
- Tamm, M.; Malouf, M.; Glanville, A. Pulmonary Scedosporium Infection Following Lung Transplantation. *Transpl. Infect. Dis.* 2001, 3, 189–194. [CrossRef] [PubMed]
- 104. Pianalto, K.M.; Alspaugh, J.A. New Horizons in Antifungal Therapy. J. Fungi 2016, 2, 26. [CrossRef] [PubMed]
- 105. Jenks, J.D.; Seidel, D.; Cornely, O.A.; Chen, S.; van Hal, S.; Kauffman, C.; Miceli, M.H.; Heinemann, M.; Christner, M.; Jover Sáenz, A.; et al. Clinical Characteristics and Outcomes of Invasive Lomentospora Prolificans Infections: Analysis of Patients in the FungiScope<sup>®</sup> Registry. *Mycoses* 2020, 63, 437–442. [CrossRef] [PubMed]
- 106. Bronnimann, D.; Garcia-Hermoso, D.; Dromer, F.; Lanternier, F.; French Mycoses Study Group. Characterization of the isolates at the NRCMA Scedosporiosis/Lomentosporiosis Observational Study (SOS): Clinical Significance of Scedosporium Species Identification. *Med. Mycol.* 2021, 59, 486–497. [CrossRef] [PubMed]
- 107. Seidel, D.; Hassler, A.; Salmanton-García, J.; Koehler, P.; Mellinghoff, S.C.; Carlesse, F.; Cheng, M.P.; Falces-Romero, I.; Herbrecht, R.; Jover Sáenz, A.; et al. Invasive Scedosporium Spp. and Lomentospora Prolificans Infections in Pediatric Patients: Analysis of 55 Cases from FungiScope® and the Literature. *Int. J. Infect. Dis.* 2020, *92*, 114–122. [CrossRef] [PubMed]

- 108. de Mello, T.P.; Aor, A.C.; de Oliveira, S.S.C.; Branquinha, M.H.; Santos, A.L.S.D. Conidial Germination in Scedosporium Apiospermum, S. Aurantiacum, S. Minutisporum and Lomentospora Prolificans: Influence of Growth Conditions and Antifungal Susceptibility Profiles. *Mem. Inst. Oswaldo Cruz* 2016, 111, 484–494. [CrossRef] [PubMed]
- Mello, T.P.; Aor, A.C.; Gonçalves, D.S.; Seabra, S.H.; Branquinha, M.H.; Santos, A.L.S. Assessment of Biofilm Formation by Scedosporium Apiospermum, S. Aurantiacum, S. Minutisporum and Lomentospora Prolificans. *Biofouling* 2016, 32, 737–749. [CrossRef]
- 110. Kauffman, C.A. Fungal Infections. Proc. Am. Thorac. Soc. 2006, 3, 35-40. [CrossRef]
- 111. Rollin-Pinheiro, R.; da Silva Xisto, M.I.D.; Rochetti, V.P.; Barreto-Bergter, E. Scedosporium Cell Wall: From Carbohydrate-Containing Structures to Host-Pathogen Interactions. *Mycopathologia* **2020**, *185*, 931–946. [CrossRef]
- 112. Pellon, A.; Ramirez-Garcia, A.; Guruceaga, X.; Zabala, A.; Buldain, I.; Antoran, A.; Anguita, J.; Rementeria, A.; Matute, C.; Hernando, F.L. Microglial Immune Response Is Impaired against the Neurotropic Fungus Lomentospora Prolificans. *Cell Microbiol.* 2018, 20, e12847. [CrossRef]
- 113. Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. *Clin. Infect. Dis.* 2020, 71, 1367–1376. [CrossRef]
- 114. Buldain, I.; Martin-Souto, L.; Antoran, A.; Areitio, M.; Aparicio-Fernandez, L.; Rementeria, A.; Hernando, F.L.; Ramirez-Garcia, A. The Host Immune Response to Scedosporium/Lomentospora. *J. Fungi* **2021**, *7*, 75. [CrossRef] [PubMed]
- 115. Lau, A.; Chen, S.; Sorrell, T.; Carter, D.; Malik, R.; Martin, P.; Halliday, C. Development and Clinical Application of a Panfungal PCR Assay to Detect and Identify Fungal DNA in Tissue Specimens. *J. Clin. Microbiol.* **2007**, *45*, 380–385. [CrossRef]
- 116. Buitrago, M.J.; Bernal-Martinez, L.; Castelli, M.V.; Rodriguez-Tudela, J.L.; Cuenca-Estrella, M. Performance of Panfungal- and Specific-PCR-Based Procedures for Etiological Diagnosis of Invasive Fungal Diseases on Tissue Biopsy Specimens with Proven Infection: A 7-Year Retrospective Analysis from a Reference Laboratory. J. Clin. Microbiol. 2014, 52, 1737–1740. [CrossRef] [PubMed]
- Ruiz-Díez, B.; Martín-Díez, F.; Rodríguez-Tudela, J.L.; Alvárez, M.; Martínez-Suárez, J.V. Use of Random Amplification of Polymorphic DNA (RAPD) and PCR-Fingerprinting for Genotyping a Scedosporium Prolificans (Inflatum) Outbreak in Four Leukemic Patients. *Curr. Microbiol.* 1997, 35, 186–190. [CrossRef] [PubMed]
- 118. Odabasi, Z.; Paetznick, V.L.; Rodriguez, J.R.; Chen, E.; McGinnis, M.R.; Ostrosky-Zeichner, L. Differences in Beta-Glucan Levels in Culture Supernatants of a Variety of Fungi. *Med. Mycol.* 2006, 44, 267–272. [CrossRef]
- Wilkendorf, L.S.; Bowles, E.; Buil, J.B.; van der Lee, H.A.L.; Posteraro, B.; Sanguinetti, M.; Verweij, P.E. Update on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Identification of Filamentous Fungi. J. Clin. Microbiol. 2020, 58, e01263-20. [CrossRef]
- Zvezdanova, M.E.; Escribano, P.; Ruiz, A.; Martínez-Jiménez, M.C.; Peláez, T.; Collazos, A.; Guinea, J.; Bouza, E.; Rodríguez-Sánchez, B. Increased Species-Assignment of Filamentous Fungi Using MALDI-TOF MS Coupled with a Simplified Sample Processing and an in-House Library. *Med. Mycol.* 2019, 57, 63–70. [CrossRef]
- 121. Hoenigl, M.; Salmanton-García, J.; Walsh, T.J.; Nucci, M.; Neoh, C.F.; Jenks, J.D.; Lackner, M.; Sprute, R.; Al-Hatmi, A.M.S.; Bassetti, M.; et al. Global Guideline for the Diagnosis and Management of Rare Mould Infections: An Initiative of the European Confederation of Medical Mycology in Cooperation with the International Society for Human and Animal Mycology and the American Society for Microbiology. *Lancet Infect. Dis.* 2021, *21*, e246–e257. [CrossRef]
- 122. Jenks, J.D.; Seidel, D.; Cornely, O.A.; Chen, S.; van Hal, S.; Kauffman, C.; Miceli, M.H.; Heinemann, M.; Christner, M.; Jover Sáenz, A.; et al. Voriconazole plus Terbinafine Combination Antifungal Therapy for Invasive Lomentospora Prolificans Infections: Analysis of 41 Patients from the FungiScope<sup>®</sup> Registry 2008–2019. *Clin. Microbiol. Infect.* 2020, 26, 784.e1–784.e5. [CrossRef]
- 123. Hoenigl, M.; Sprute, R.; Egger, M.; Arastehfar, A.; Cornely, O.A.; Krause, R.; Lass-Flörl, C.; Prattes, J.; Spec, A.; Thompson, G.R.; et al. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. *Drugs* 2021, *81*, 1703–1729. [CrossRef] [PubMed]
- 124. Wiederhold, N.P. Review of the Novel Investigational Antifungal Olorofim. J. Fungi 2020, 6, E122. [CrossRef] [PubMed]
- 125. Chen, S.; Rai, N.J.; Cunneen, S.; Cornelissen, K.; Rex, J.H.; Heath, C.H.; Harvey, E. A Case of Lomentospora Prolificans Treated with the Novel Antifungal Olorofim. In Proceedings of the 30th European Congress of Clinical Microbiology and Infectious Diseases, Paris, France, 18–21 April 2020; pp. 18–21.
- 126. Tio, S.H.; Thursky, K.; Ng, G.; Rex, J.H.; Carney, D.; Slavin, M. Olorofim for a Case of Severe Disseminated Lomentospora Prolificans Infections. In Proceedings of the 30th European Congress of Clinical Microbiology and Infectious Diseases, Paris, France, 18–21 April 2020; pp. 18–21.

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.