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Abstract: Pre-trained machine learning models have recently been widely used to detect COVID-19
automatically from X-ray images. Although these models can selectively retrain their layers for
the desired task, the output remains biased due to the massive number of pre-trained weights and
parameters. This paper proposes a novel batch normalized convolutional neural network (BNCNN)
model to identify COVID-19 cases from chest X-ray images in binary and multi-class frameworks with
a dual aim to extract salient features that improve model performance over pre-trained image analysis
networks while reducing computational complexity. The BNCNN model has three phases: Data
pre-processing to normalize and resize X-ray images, Feature extraction to generate feature maps, and
Classification to predict labels based on the feature maps. Feature extraction uses four repetitions of a
block comprising a convolution layer to learn suitable kernel weights for the features map, a batch
normalization layer to solve the internal covariance shift of feature maps, and a max-pooling layer to
find the highest-level patterns by increasing the convolution span. The classifier section uses two
repetitions of a block comprising a dense layer to learn complex feature maps, a batch normalization
layer to standardize internal feature maps, and a dropout layer to avoid overfitting while aiding the
model generalization. Comparative analysis shows that when applied to an open-access dataset,
the proposed BNCNN model performs better than four other comparative pre-trained models for
three-way and two-way class datasets. Moreover, the BNCNN requires fewer parameters than the
pre-trained models, suggesting better deployment suitability on low-resource devices.

Keywords: chest X-ray; COVID-19; deep learning; batch normalized convolutional neural network
(BNCNN); classification

1. Introduction

The coronavirus (COVID-19) remains a global health problem that negatively impacts
our lives and the global economy. The initial infection was reported on January 2020 of
twenty-seven patients with Pneumonia and an epidemiological link to a live wild animal
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market [1]. The actual host remained unknown; however, the transmission can be through
inhaling duplets produced by the cough or sneeze of an infected person within six feet.
Likewise, studies have shown that the transmission can be through touching virus-covered
surfaces and passing it to their mouth, nose, or possibly eyes [2,3]. To tackle this, there has
to be a solution where the suspected patients receive faster confirmation of the presence
of the disease. This can be provided by imaging modalities, such as chest radiographs
(X-ray) or Computed Tomography (CT) scan images. The radiologists can give an opinion
by analyzing and applying some image analysis methods to diagnose COVID-19 cases.
It was confirmed that X-rays or CTs contain valuable information related to this disease.
Therefore, a faster and more accurate diagnosis can be performed using radiologic images
with Machine Learning (ML) techniques to determine COVID-19 cases [4].

Nowadays, ML techniques have become essential tools in medical diagnosis, and
several studies have confirmed their capabilities for diagnosing COVID-19 [2,3,5,6]. Fur-
thermore, these techniques assist physicians and health experts in diagnosing patients with
pulmonary embolism, pulmonary circulation, or body temperature to improve the speed
and accuracy in detecting COVID-19 cases [7–10]. Recently, the deep learning algorithm
has gained special attention due to its potential to effectively extract relevant features
from medical images as a part of its search process and classify them for disease diagnosis.
These models can help radiologists and health experts to interpret, identify, and triage
positive-infected COVID-19 cases.

Visual Geometry Group (VGG)-16, VGG-19, and other pre-trained models require
large-scale datasets to optimize their model parameters in TL [11]. Although Transfer
Learning (TL) models allow flexibility in retraining some or all the layers of such models
for the desired task, the output of most layers remains biased due to a considerable number
of pre-trained weights and parameters by these models [12]. Despite promising results
reported for COVID-19 detection from chest X-ray images, most existing approaches
have not provided parameter requirements in the pre-trained models to improve model
classification capability. Therefore, further efforts are still needed to reduce computation
complexity and the required parameters to train those models. In this paper, a novel model,
namely BNCNN, is proposed. It uses batch normalization [13] to increase the model’s
generalization and dropout layers [14] to improve training speed and avoid the model
overfitting COVID-19 detection from X-ray images. The BNCNN can be considered a
diagnostic system for COVID-19, which is necessary for critical conditions, as it can be
helpful to the radiologists and their decisions in specifying COVID-19 cases from X-ray
images. The main contributions of this paper can be summarised as follows:

A BNCNN model comprising a pre-processor, a feature extractor, and a classifier
is proposed. The pre-processor resizes and normalizes input X-ray images to improve
feature mapping and reduce classification loss. The feature extractor comprises four
repetitions of the cascaded convolution layer to learn feature maps, a batch normalization
layer to solve the internal covariance shift of feature maps, and a max-pooling layer to
increase the convolution span for generating high-level patterns. The classifier comprises
two repetitions of a dense layer to learn complex feature maps, a batch normalization
layer to standardize internal feature maps, and a dropout layer to avoid overfitting while
improving generalization. The proposed BNCNN model retains the pre-processor and
features extractor while only the number of neurons in the output layer of the classifier is
changed for binary and muti-class COVID-19 detection.

The performance of the BNCNN model is investigated against four pre-trained models,
namely, VGG-16, VGG-19, Inception-V3, and ResNet-50, for COVID-19 detection from
X-ray images.

The proposed model requires fewer parameters than other pre-trained models making
it more suitable for implementation on low-resource devices.

This paper is organized as follows: Section 2 describes the COVID-19 dataset, feature
extraction, and adaptation of the pre-trained image classification models, and Section 3
presents experimental results. Finally, Section 4 concludes the paper.
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2. Proposed Model

The pre-trained VGG models inspire the proposed model intending to reduce com-
putation complexity while increasing the classification accuracy of COVID-19 detection.
Various tasks explored the state-of-the-art VGG models due to their excellent capability
for feature extraction. These models can be well understood in two sections: Feature
extraction and classifier. The first section embeds the raw input into low-dimensional
vectors further accepted by the classifier for generating desired class labels. The proposed
BNCNN is inspired by the repetition of block structures of feature extraction, as in the
VGG model. The proposed BNCNN-based COVID-19 detection system has three primary
phases: Data pre-processing, Feature extraction, and Classification. We explain each phase
in the following subsections.

2.1. Data Pre-Processing

The proposed model uses chest X-ray images of COVID-19 patients and other subjects.
Researchers from the University of Doha and the University of Dhaka collected this dataset,
and it is publicly available with metadata on the ‘Kaggle’ [15]. The dataset contains
three classes, including COVID-19, Normal and Viral Pneumonia images. Samples of
X-ray images from each of the three classes in the dataset are provided in Figure 1. For
experiments and evaluation, the dataset is partitioned into three mutually exclusive and
exhaustive subsets for training (80%), validation (10%), and testing (10%). These subsets
are summarised in Table 1.
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verts the label into a 3D vector with all zeros except for the one corresponding to the image
class. It can be noted that the actual order of the classes in these three dimensions does not
affect the classifier performance [16].

2.2. Feature Extraction 
The feature extraction phase comprises the first twelve layers, while the remaining 

are for the classifier phase. Architectural details of the BNCNN model, the output dimen-
sion at each layer, and the number of trainable/non-trainable parameters are provided in 

Figure 1. Example of pre-processed X-ray images for (a) COVID-19, (b) Normal, and (c) Viral Pneumonia.



Pathogens 2023, 12, 17 4 of 16

Table 1. Dataset description.

Dataset COVID-19 Normal Viral Pneumonia Subtotal

Training 2892 8153 1076 12,121
Validation 362 1019 134 1514

Testing 362 1020 135 1518

Subtotal 3616 10,192 1345 15,153

The X-ray images in the dataset are uniformly pre-processed to facilitate the learning
process. Each X-ray image is resized to 150 × 150 pixels, unlike 224 × 224 as in VGG
models. It reduces the network’s input dimension and trainable and non-trainable weights
of the BNCNN model. Each X-ray image is divided by 255, resulting in a normalized image
in 0–1, which facilitates weight learning by avoiding vanishing and exploding gradients.
Data augmentation strategies are used to simulate real-life scenarios and avoid the risks
of overfitting. All subsets are augmented independently with a rotation ranging from
−10 to 10 degrees, a zooming range of 0–10%, shearing of 0–10%, a horizontal stride of
0–10%, a vertical stride of 0–10%, and horizontally flip to improve generalization and
increase diversity in the learning process by the models. The pixel values unavailable in
the augmented image are replaced by the nearest pixel values. Examples of pre-processed
chest X-ray images from each of the three classes are shown in Figure 1. The vertical flip
is avoided because it will be easy for an ordinary user to identify vertical orientation in
chest X-ray images. The class label for each image is encoded using one-hot encoding. It
converts the label into a 3D vector with all zeros except for the one corresponding to the
image class. It can be noted that the actual order of the classes in these three dimensions
does not affect the classifier performance [16].

2.2. Feature Extraction

The feature extraction phase comprises the first twelve layers, while the remaining are
for the classifier phase. Architectural details of the BNCNN model, the output dimension at
each layer, and the number of trainable/non-trainable parameters are provided in Table 2.
Inspired by the VGG models, the feature extraction phase of the proposed BNCNN uses
four repetitions of a block of similar layers. Each block comprises a convolution layer to
learn kernel weights suitable for the features map, followed by a batch normalization layer
to solve the internal covariance shift of feature maps [13] and a max-pooling layer to find
the highest-level patterns in the input images by increasing the span of the convolution
calculation [16].

fmax(m, n) = max(I(h, v), I(h + 1, v), I(h, v + 1), I(h + 1, v + 1)) (1)

where h = m + s and v = n + s.
Herein, m and n are horizontal and vertical indices of the image, and s is stride. A

detailed illustration can be found in [17]. Each convolution layer comprises 3× 3 filters with
stride and padding of 1 and a ReLU activation function. The number of filters in convolution
layers increases from the input to the output layers. A batch normalization layer after
every convolution layer increases the model’s generalization capability. It standardizes the
output of the previous layer to have a mean of zero and a Standard Deviation of one. These
layers keep track of input variable statistics during training and standardize input during
testing. The standardized variables can be scaled at the transformed output to have the
desired statistics updated during training and maintained for testing. Hence, these layers
have an equal number of trainable and non-trainable parameters. A max-pooling layer
reduces the dimension of the input feature map without any parameters. All max-pooling
layers use a stride and maximum size of two, halving the dimension of the input feature
map at each occurrence.
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Table 2. A summary of the parameters used in the proposed BNCNN model.

Layer Type Output Shape Parameter Type No. of Parameters

Convolution 2D (None, 150, 150, 16) Trainable 448

Batch Normalization (None, 150, 150, 16) Trainable +
Non-trainable 32 + 32

Max. Pooling 2D (None, 75, 75, 16) 0
Convolution 2D (None, 75, 75, 32) Trainable 4640

Batch Normalization (None, 75, 75, 32) Trainable +
Non-trainable 64 + 64

Max. Pooling 2D (None, 37, 37, 32) 0
Convolution 2D (None, 37, 37, 64) Trainable 18,496

Batch Normalization (None, 37, 37, 64) Trainable +
Non-trainable 128 + 128

Max. Pooling 2D (None, 37, 37, 64) 0
Convolution 2D (None, 18, 18, 128) Trainable 73,856

Batch Normalization (None, 18, 18, 128) Trainable +
Non-trainable 256 + 256

Max. Pooling 2D (None, 9, 9, 128) 0
Flatten (None, 10368) 0
Dense (None, 256) Trainable 2,654,464

Batch Normalization (None, 256) Trainable +
Non-trainable 512 + 512

Dropout (None, 256) 0
Dense (None, 128) Trainable 32,896

Batch Normalization (None, 128) Trainable +
Non-trainable 256 + 256

Dropout (None, 128) 0
Softmax (None, 3)/(None, 2) Trainable 387/258

Total trainable 2,786,435/2,786,306
Total non-trainable 1248

Total 2,787,683/2,787,554

2.3. Classification

The classifier starts with the flattening layer to convert all output of the previous phase
(i.e., feature extraction) into a vector. This phase replaces convolution and max-pooling
layers with dense and dropout layers. It comprises two repetitions of a block of the dense
layer for feature mapping, followed by a batch normalization layer to standardize internal
feature maps. The dropout layer avoids overfitting while aiding the model generalization,
and a softmax layer generates a probabilistic output for each class label.

The number of neurons in the dense layer decreases from 256 to 128 from input to out-
put to remove redundant features. Furthermore, it reduces the model’s computational com-
plexity as the number of trainable parameters for dense layers increases exponentially with
the number of neurons. All dropout layers use a drop factor of 0.2, indicating that randomly
selected 20% weights are updated in each iteration to increase the model’s generalization.

The architecture of the BNCNN remains unchanged for three-way and two-way classi-
fications except for the softmax layer. In three-way classification, the softmax layer uses
three output nodes with 387 trainable parameters, resulting in 2,786,435 trainable parame-
ters. While in two-way classification, two output nodes with 258 trainable parameters are
used, resulting in 2,786,306 trainable parameters.

The Adaptive Moment Estimation (Adam) optimizer iteratively updates network
weights using the training data. This optimizer combines Stochastic Gradient Descent
(SGD) and Root Mean Square Propagation (RMSP). The choice of Adam optimizer facilitates
adjusting the learning rate for each weight in the network by computing the first and
second moments of the gradient, adaptive learning rate, and history-based updates for
faster convergence. Moreover, it shows the best accuracy compared to SGD and RMSP
optimization algorithms [17].
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For the nth training example, let ypred(n, i) be the ith scalar value corresponding
to predicted class probability (∑i ypred(n, i) = 1, ∀n) and y (n, i) be the ith scalar value
corresponding to the actual one-hot-encoded class label. The cross-entropy loss (L) is
calculated as follows:

L = −
Ntrain

∑
n=1

Nclass

∑
i=1

y(n, i) . log ypred(n, i) (2)

where, Ntrain is the total number of training examples and Nclass is the number of classes
(i.e., 3 for three-way and 2 for two-way classification).

The number of non-trainable parameters remains unaltered in both classification types.
The major contributors to the increasing number of trainable parameters, convolution, and
dense layers are minimized in the proposed BNCNN layer. Figure 2 illustrates the overall
process of the BNCNN model.
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A callback is tailored to reduce the learning rate after every epoch if the validation
accuracy stops improving. The callback’s primary goal is to monitor the validation accuracy
and reduce the learning rate by a factor of 0.3 if no improvement is achieved for three
consecutive epochs. After reducing the learning rate, it waits for at least five epochs before
applying the reduction again. Another callback is tailored for early stopping the training
by monitoring training and validation accuracies after each epoch. The callback stores the
model weights if the current training and validation accuracies exceed the earlier epochs.
The second callback avoids model overfitting without worrying about the exact number of
epochs. The proposed BNCNN steps are represented in Algorithm 1.
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Algorithm 1: BNCNN model

INPUT
IMG: Dataset of X-ray images [224 × 224 × 15,153]
LAB: Set of labels {‘COVID-19’, ‘Normal’, ‘Viral Pneumonia’} corresponding to X-ray images [1 ×
15,153]
Nclass: number of classes used for training
OUTPUT
Ypred: a matrix of prediction probability of class labels [Nclass × 683]
ALGORITHM:
If 3-way
Nclass = 3
If 2-way
Nclass = 2
For I = 1 to length (LAB)
If LAB (1, i) == ‘COVID-19’ or LAB(1, i) == ‘Normal’
X(:, :, i), Y(1, i) = IMG(:, :, i), LAB(1, i)
End if
End_for
Else
Nclass = 2
X, Y = IMG, LAB
End_if
X = image_resize(X)/255
Yenc = one-hot_encoder (Y, Nclass)
If model_name == ‘VGG-16’ or model_name == ‘VGG-16’
model = load_pre-trained_weigts(model_name)
model = freeze_feature_extration_layers(model)
Else_if model_name == ‘BNCNN’
model = construct_model()
End_if
Xtrain, Xval , Xtest, Ytrain, Yval , Ytest = cross-validation (X, Yenc, train = 0.8, val = 0.1, test = 0.1)
Xtrain_aug, Ytrain_aug = data_augmentation(Xtrain, Ytrain, rotation = [−20, 20], zoom = [0, 0.2],
shear = [0, 0.2], horizontal_flip = True, vertical_flip = False)
Xval_aug, Yval_aug = data_augmentation(Xtrain, Ytrain, rotation = [−20, 20], zoom = [0, 0.2],
Shear = [0, 0.2], horizontal_flip = True, vertical_flip = False)
model = train (Xtrain_aug, Ytrain_aug, Xval_aug, Yval_aug, custom_callbacks)
Ypred = predict (model, Xtest)
cm = calculate_confusion_matrix(Ypred, Ytest, Nclass)
acc, recall, precision, F1-score = calculate_evaluation_metrics(cm, Nclass)

3. Experiments and Results

This section provides the implementation details of the BNCNN model, followed by
the results of the experiments.

3.1. Experimental Setup

The BNCNN model and other pre-trained models: VGG-16, [18], VGG-19, [18],
Inception-V3, [19] and ResNet-50, [20] are evaluated on the dataset to classify chest X-
ray images into 3-way classification: COVID-19, Normal and Viral Pneumonia and for
two-way classification: COVID-19 and Normal X-ray images.

The BNCNN model is trained for 100 iterations using the Adam optimizer with an
initial learning rate decay of 0.0001 to finish all the epochs and obtain the solutions without
interruption. The cross-entropy loss function minimizes the distance between predicted
and actual probability distributions.

The hyper-parameter settings of the Adam optimizer for the BNCNN model and
other pre-trained models are provided in Table 3. These settings are assigned after we
experimentally find that these are the best settings of parameters for training the models.
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All the models are implemented using Python and are executed using 12 GB NVIDIA Tesla
P100 GPU and Intel Xenon CPU @ 2.00GHz with 13 GB RAM.

Table 3. Hyper-parameter settings of Adam optimizer for different models.

Model Learning Rate Batch Size Epochs

VGG-16 0.0001 16 30
VGG-19 0.0001 16 30

Inception-V3 0.001 8 30
ResNet-50 0.001 8 30
BNCNN 0.0001 16 30

3.2. Evaluation Measures

For model evaluation, accuracy, sensitivity, Positive Predictive Value (PPV), and F1-
score measures are used to assess the performance of the BNCNN and the other models.
The equations for deriving the values of these metrics are provided in (3)–(6).

Accuracy (Acc) =
TP + TN

TP + TN + FN + FP
(3)

Sensitivity (Sen) =
TP

TP + FN
(4)

Positive Predictive Value (PPV) =
TP

TP + FP
(5)

F1− score (F1) = 2
Percision × Recall
Percision + Recall

(6)

True Positive (TP) denotes the cases where the predicted class label is the same as
the class under consideration. True Negative (TN) refers to the cases where classes not
under consideration are predicted as themselves. False Negative (FN) is a misclassified
case where the class under consideration is predicted as any class other than itself. False
Positive (FP) indicates the cases where the model wrongly identifies other classes as the
class under consideration.

4. Results and Discussion

This section discusses the comparative performance of the BNCNN against the other
pre-trained models.

4.1. Results of the Proposed BNCNN Model

The comparative performance results of the BNCNN model and the pre-trained
models for three-way classification are provided in Table 4. Although the VGG-16 model
performs slightly better than the proposed BNCNN model during training, the latter
performs better during the validation and testing phases, as shown in Table 4. The ResNet-
50 achieved the least performance results in training, validation, and testing datasets,
followed by VGG-19 and Inception-V3. This is due to the large number of pre-trained
network parameters causing excessive bias in the feature extraction phase. For three-
way COVID-19 classification, the BNCNN model achieved an accuracy of 96.84% (95%
CI: 91.26–97.45), a sensitivity of 93.06% (95% CI: 89.13–96.54), PPV of 97.40% (95% CI:
94.71–98.80), and F1 of 95.18% (95% CI: 88.45–0.97.13) in the testing phase.
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Table 4. Evaluation based on three-way class classification.

Model
(Trainable/Total Parameters) Dataset Accuracy Sen PPV F1

VGG-16
(165,379/14,880,835)

Training 96.68 96.81 96.88 96.84
Validation 97.33 97.30 97.31 97.30

Testing 96.64 93.01 96.81 94.87

VGG-19
(264,195/20,288,579)

Training 84.19 82.94 84.86 83.89
Validation 89.20 88.92 89.68 89.30

Testing 88.34 85.37 89.12 87.21

Inception-V3
(427,523/54,765,027)

Training 87.33 87.50 87.03 87.26
Validation 91.76 92.24 91.19 91.71

Testing 89.60 89.94 89.46 89.70

ResNet-50
(13,141,507/36,729,987)

Training 87.11 85.07 84.02 84.54
Validation 87.78 86.36 88.37 87.35

Testing 85.70 83.60 86.38 84.97

Proposed BNCNN
(2,786,435/2,787,683)

Training 96.32 96.30 96.52 96.41
Validation 97.49 97.43 97.48 97.45

Testing 96.84 93.06 97.40 95.18

For two-way classification, the performance results of the BNCNN model are com-
paratively higher than the VGG-16, VGG-19, Inception-V3, and ResNet-50, as shown in
Table 5. The BNCNN model achieved 97.28% accuracy (95% CI: 95.25–98.73), 97.28% sen-
sitivity (95% CI: 95.32–98.75), 97.23% PPV (95% CI: 95.19–98.68) and 97.25% F1 (95% CI:
95.33–98.13) in the training phase. In the validation phase, the BNCNN model achieved
98.55% accuracy (95% CI: 97.45–99.26), 98.52% sensitivity (95% CI: 96.84–99.22), 98.53% PPV
(95% CI: 97.03–99.18), and 98.52% F1 (95% CI: 96.95–99.43), while achieving an accuracy,
sensitivity, PPV, and F1 in the testing phase are 99.27% (95% CI: 98.35–99.63), 99.45% (95%
CI: 98.37–99.73), 98.83% (95% CI: 97.64–99.36), and 99.14% (95% CI: 98.24–99.61), respec-
tively. A similar degradation in the performance of the VGG-19 model can be observed in
the three-way classification.

Table 5. Evaluation based on two-way class classification.

Model
(Trainable/Total Parameters) Phase Acc Sen PPV F1

VGG-16
(165,250/14,880,706)

Training 96.61 96.61 96.63 96.62
Validation 98.01 98.01 98.01 98.01

Testing 94.28 94.29 94.29 94.29

VGG-19
(263,682/20,288,066)

Training 89.54 89.43 89.54 89.48
Validation 92.61 92.62 92.61 92.61

Testing 92.56 92.54 92.55 92.54

Inception-V3
(427,394/54,764,898)

Training 87.33 87.50 87.03 87.26
Validation 91.76 92.24 91.19 91.72

Testing 89.60 89.94 89.46 89.70

ResNet-50
(13,141,378/36,729,858)

Training 84.75 84.75 84.88 84.81
Validation 89.20 89.34 89.12 89.23

Testing 89.08 89.18 88.78 88.98

Proposed BNCNN
(2,786,306/2,787,554)

Training 97.28 97.28 97.23 97.25
Validation 98.55 98.52 98.53 98.52

Testing 99.27 99.45 98.83 99.14

A confusion matrix is utilized to determine further the distribution of the predicted
X-ray images in different classes. The confusion matrices for the three-way and two-way
classification of the BNCNN model are shown in Figure 3. The BNCNN model is tested on
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the test dataset, including 384 COVID-19 X-ray images, 981 Normal images, and 153 Viral
Pneumonia images for three-way classification. For two-way classification, 369 COVID-19
images and 1004 normal images are used.
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Figure 3a shows that 360 of 384 COVID-19 images, 979 of 981 normal images, and
131 of 153 Viral Pneumonia images are correctly classified for the three-way classification.
Figure 3b shows 361 out of 369 COVID-19 images, and 1002 out of 1004 Normal images are
classified for two-way classification.

4.2. Convergence Analysis

The convergence analysis is performed to study the stability of the learning patterns by
the BNCNN model over the number of epochs. Figure 4 plots the BNCNN model accuracy
and loss on the training and validation datasets over the training number of epochs.
Figure 4a is for three-way classification, while Figure 4b is for two-way classification. It can
be observed from Figure 4 that the BNCNN model has shown the best fit and convergence
for three-way and two-way classification.

4.3. Comparison with Existing Models

Several ML models have been developed to diagnose COVID-19 automatically from
X-ray images. Ozturk et al. (2020) [21] suggested the DarkCovidNet model for automatic
COVID-19 detection from X-ray images. The model used 17 convolution layers with
different numbers of filters in each layer. The DarkCovidNet model reported high reliability
with an accuracy of 98% for two-way classification (i.e., COVID-19 and Normal) and 87% for
3-way classification (i.e., COVID-19, Normal, and Viral Pneumonia). In another work, Khan
et al. (2020) [22] reported a CoroNet model based on pre-trained Inception architecture
for COVID-19 detection from X-ray images. The CoroNet reported an accuracy of 95% for
three-way classification.

Apostolopoulos and Mpesiana (2020) [23] suggested a novel convolution neural net-
work (CNN) architecture and examined VGG-19 for COVID-19 detection from X-ray im-
ages. The model reported an accuracy of 93.48% for three-way classification. Wang et al.
(2020) [24] reported a COVID-Net model for 3-way classification with an accuracy of 92.4%.
Sethy and Behera (2020) [25] combined TL based on ResNet-50 and the support vector
machine to diagnose COVID-19 from X-ray images. Their combined model achieved 95.38%
accuracy for three-way class classification.

Horry et al. (2020) [26] used a pre-trained VGG-19 model for COVID-19 detection
using a dataset comprising 115 COVID-19, 60361 Normal, and 322 Pneumonia X-ray
images. The results showed that the pre-trained model attained 81% accuracy for 3-way
classification. In another work, Rahimzadeh and Attar (2020) [27] detected COVID-19 from
X-ray images using several deep neural networks and reported an accuracy of 91.4% for
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3-way classification. Song et al. (2021) [28] developed a computer-aided method to classify
images into COVID-19, bacterial Pneumonia, and Normal cases from a dataset collected
from two provinces in China. Experimental results showed that the reported model could
accurately identify COVID-19 cases with an accuracy of 86%.
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Hussain et al. (2021) [29] suggested a CoroDet model for COVID-19 detection from X-
ray images. The results confirmed that the CoroDet model could effectively identify COVID-
19 cases with an accuracy of 94.2% for three-way and 99.1% for two-way classification.
Chen (2021) [30] employed a CNN model to detect COVID-19 cases from X-ray images,
and the results showed an accuracy of 85% for 3-way classification. Vinod et al. (2021) [31]
suggested DeepCovix-net to effectively diagnose COVID-19 from X-ray and CT medical
images and reported an accuracy of 96.8% for 3-way class classification. Anter et al.
(2021) [32] proposed a model for COVID-19 diagnosis from X-ray images called AFCM-
LSMA. Their suggested model achieved an accuracy of 96% for two-way classification.
Basha et al. (2021) [33] reported a neurotrophic model for COVID-19 diagnosis from chest
X-ray images with an accuracy of 98.7% for two-way classification.

Table 6 depicts the accuracy of the achievements of the existing models. Most studies
in Table 6 used different datasets to validate their proposed model’s efficiency. The dataset
used in this work is collected from existing studies and is publicly available [34]. It is
not fair to compare the performance of the BNCNN with the other models since the
size and chrematistics of the datasets are different, but the performance of these models
is still comparable. However, Table 6 depicts the achievements of 13 existing models
against the proposed BNCNN model in terms of accuracy for three-way and two-way class
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classification. As per the results in Table 6, the proposed BNCNN model provides higher
accuracy for three-way and two-way classification than the existing models.

Table 6. Accuracy comparison between the existing models and the proposed BNCNN model.

Model 3-Way Classification 2-Way Classification

Ozturk et al. (2020) [21] 87 98
Khan et al. (2020) [22] 95 N/A

Apostolopoulos and Mpesiana (2020) [23] 93.48 N/A
Wang et al. (2020) [24] 92.4 N/A

Sethy and Behera (2020) [25] 95.38 N/A
Horry et al. (2020) [26] 86 N/A

Rahimzadeh and Attar (2020) [27] 94.2 99.1
Song et al. (2021) [28] 81 N/A

Hussain et al. (2021) [29] 91.4 N/A
Chen (2021) [30] 85 N/A

Vinod et al. (2021) [31] 96.8 N/A
Anter et al. (2021) [32] N/A 96
Basha et al. (2021) [33] N/A 98.7

Proposed BNCNN model 96.84 99.27

4.4. Statistical Analysis

To further evaluate and show the significance of the results of the BNCNN, Fried-
man’s test is performed [35]. We partially trained models to analyze learning speed based
on testing accuracy. Testing accuracy performance for the BNCNN and the other pre-
trained models, corresponding to the respective model’s test accuracy, are evaluated after
100 epochs.

Friedman’s test is performed with the null hypotheses where the testing accuracy
samples for BNCNN and other pre-trained models originated from the same distribution,
i.e., all models under comparison have equal testing accuracy. The alternate hypothesis
assumes at least one of the models predicts different testing accuracy than other COVID-19
detection models with a significance level (p < 0.05). The samples for testing accuracy
are taken from partially trained models at every ten epochs. It should be noted that
higher rankings indicate improved performance. The average ranks of all the models
for three-way and two-way classification are shown in Figure 5. The p-value calculated
using Friedman’s test for three-way classification is 0.0146 and for two-way classification
is p = 0.0053, which is less than the value of p. The test indicates that testing accuracy is
different for comparative models. From Figure 5, BNCNN is ranked first for both three-way
and two-way classification.

Holm’s posthoc test is used to confirm the differences in the behavior of the BNCNN
(controlled model) and the other comparative models, as provided in Table 7. It uses
BNCNN as the controlled model because of the highest rank in Friedman’s test. The results
in Table 7 show a significant difference between the BNCNN and other pre-trained models.
This proves the efficiency of the BNCNN as an alternative model for COVID-19 detection.

Table 7. Holm’s test for comparing BNCNN with other pre-trained models based on the
testing accuracy.

3-Way Classification 2-Way Classification

Competing
Model p-Value Corrected

p-Value
Null

Hypothesis
Competing

Model p-Value Corrected
p-Value

Null
Hypothesis

VGG-16 0.0956 0.5735 Reject VGG-16 0.0597 0.2731 Reject
VGG-19 0.1165 0.5825 Reject VGG-19 0.0049 0.0489 Reject

Inception-V3 0.0011 0.0105 Reject Inception-V3 0.0232 0.1852 Reject
ResNet-50 0.0044 0.0397 Reject ResNet-50 0.0186 0.1677 Reject
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In addition, the ability of the BNCNN and other models are assessed by comparing
them in terms of Area under the Receiver Operating Curve (AUC). We used the DeLong
test to assess differences between the AUC of the models (p≤ 0.05 is considered statistically
significant) [36]. Figure 6 shows the discriminative ability of all the used models.
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The proposed BNCNN model showed better discriminative ability with an equal
AUC of 0.92 (95% CI: 0.87–0.95) and 0.94 (95% CI: 0.89–0.96) for three-way and two-
way classification, respectively. Discriminative analysis of other models compared to the
proposed BNCNN is shown in Table 8. No competing model has a statistically similar
AUC to the proposed BNCNN model. It can be observed that all models have smaller
AUCs than the BNCNN model, indicating the better discriminative ability of the developed
BNCNN model.

Table 8. Sensitivity analysis for different models using the DeLong test.

Competing
Model AUC 95% CI p-Value

3-way
classification

VGG-16 0.89 [0.85–0.92] 0.0412
VGG-19 0.87 [0.82–0.93] 0.0431

Inception-V3 0.84 [0.78–0.89] 0.0216
ResNet-50 0.85 [0.79–0.90] 0.0312

2-way
classification

VGG-16 0.90 [0.84–0.95] 0.0274
VGG-19 0.87 [0.81–0.93] 0.0296

Inception-V3 0.85 [0.80–0.89] 0.0012
ResNet-50 0.88 [0.82–0.92] 0.0132

5. Discussion

This work aimed to introduce a novel model for COVID-19 detection from X-ray med-
ical images as an intelligent platform, which can provide updates on the patient’s health
conditions and then guide further treatment. The proposed BNCNN model performance
and efficacy are investigated using several evaluation measurements and compared to
VGG-16, VGG-19, Inception-V3, and ResNet-50 pre-trained models. It is observed from
the performance measures comparison that the suggested model shows superior results
compared to the tested pre-trained models. In addition, the statistical tests of significance
proved the superiority of the proposed model compared to other pre-trained models, which
reflects the reliability of the developed BNCNN model. This is because the batch normal-
ization layers in the proposed BNCNN model extracted features much better, while the
max pooling and dropout layers reduced the computational complexity in their structure.

The main limitation associated with our study is the dataset, which is restricted only to
publically available chest X-ray images. X-ray images are not recommended as the first line-
imaging test for diagnosing COVID-19 due to the low positive detection rate at the early
stages, which may be related to the insensitivity of X-ray images to the density of Ground
Glass Opacity (GGO) [37]. Conversely, CT showed significant advantages in monitoring
disease progression and served as an effective clinical diagnostic tool for early screening
and diagnosis of COVID-19 [38]. CT has proved to be a good choice for early detection,
severity assessment, and timely therapeutic effects evaluation for COVID-19, with or
without laboratory confirmation [39]. X-ray and CT are medical imaging techniques widely
used to assess and diagnose COVID-19 pneumonia patients. However, CT shows greater
sensitivity for early pneumonic change, disease progression, and alternative diagnosis than
X-ray [40]. ML can analyze irregular symptoms and other ‘red flags ‘of the infected cases
at the early stage by using advanced algorithms [41]. These methods show a promising
way for optimizing healthcare and improving the results of diagnostic and therapeutic
procedures. Therefore, the extension of the proposed BNCNN model can be improved by
using a large CT dataset to build an intelligent, accurate, and cost-effective platform for
COVID-19.

6. Conclusions and Future Work

The COVID-19 disease is becoming increasingly significant as infected cases rapidly
increase. Many researchers have devoted their efforts to developing ML models for COVID-
19 detection that would benefit radiologists and health experts. This paper proposed
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an improved model named BNCNN to detect COVID-19 from chest X-ray images. The
BNCNN uses VGG-inspired repetitive block structure, and each block comprises a convo-
lution, followed by batch normalization, and max-pooling layers to improve the model’s
generalization and feature map reduction. For confirming the reliability of the proposed
BNCNN and other pre-trained models: VGG-16, VGG-19, Inception-V3, and ResNet-50
pre-trained models, a dataset is employed from ‘Kaggle’. The results show the superiority
of the proposed BNCNN model over the pre-trained models, which significantly outper-
forms other comparative pre-trained models. Hence, the proposed BNCNN can be used to
recognize the COVID-19 virus accurately. In the future, the performance of the proposed
BNCNN model on CT imaging needs to be investigated.
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