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Abstract: The compartmentalization of untranslated mRNA molecules in granules occurring in
many eukaryotic organisms including trypanosomatids involves the formation of complexes between
mRNA molecules and RNA-binding proteins (RBPs). The putative ATP-dependent DEAD/H RNA
helicase (DEVH1) from Leishmania infantum (Kinetoplastida: Trypanosomatidae) is one such proteins.
The objective of this research is finding differentially expressed genes in a stable episomal transfectant
L. infantum promastigote line over-expressing DEVH1 in the stationary phase of growth in axenic
culture to get insight into the biological roles of this RNA helicase in the parasite. Interestingly, genes
related to parasite survival and virulence factors, such as the hydrophilic surface protein/small hy-
drophilic endoplasmic reticulum protein (HASP/SHERP) gene cluster, an amastin, and genes related
to reactive oxygen species detoxification are down-regulated in DEVH1 transfectant promastigotes.

Keywords: DEAD/H RNA helicase; stable episomal transfection; induced over-expression; Leishma-
nia infantum; transcriptome

1. Introduction

Leishmaniasis is a vector-borne parasitic disease with an estimated prevalence of
12 million people worldwide. Visceral leishmaniasis (VL) is fatal if left untreated and is
responsible for at least 50,000 annual deaths. Leishmania infantum (Kinetoplastida: Try-
panosomatidae) is the causative pathogen of zoonotic VL in the Mediterranean basin.
L. infantum–HIV co-infection has been reported in these areas [1,2]. The main reservoirs
of L. infantum are domestic dogs and wild canids, but hares have also been found to be
involved as reservoirs in an active outbreak in central Spain [3–5].

Procyclic promastigotes differentiate into metacyclics in the gut of phlebotomine sand
fly vectors (Diptera: Psychodidae), which inoculate them into the mammalian host’s dermis.
Promastigotes engulfed by phagocytes are able to develop into amastigotes and multiply
within phagolysosomes. Eventually, when a sand fly feeds on blood from the infected
mammal, amastigotes are released into the gut, and promastigote differentiation begins
again, closing the life cycle [6–9].

In trypanosomatids, protein-coding genes are arranged in long polycistronic gene
clusters (PGCs) under the control of a non-canonical promoter constitutively transcribed by
RNA polymerase II. Therefore, the steady-state transcript levels are mostly regulated at the
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post-transcriptional and post-translational levels [10–12]. Numerous RNA-binding proteins
are encoded in the genomes of these parasites. Transcriptome analysis accounts for steady-
state transcript level ratios between the samples compared. However, certain mechanisms
of transcriptional control have been reported in these parasites. Chromosome amplification
and supernumerary chromosomes are mechanisms for transcription control in Leishmania
spp. [13]. Differential gene expression rates are relatively low in these parasites [14], but
gene expression profiling, mostly performed with transcriptomic approaches, has revealed
clues about Leishmania differentiation, such as a succession of transient and permanent
changes in gene expression during the differentiation of promastigotes to amastigotes [15],
the relevance of temperature increase and acidification in this process [16], multiple levels of
gene regulation in the parasite [17], the influence of the microenvironment in differentiation
and differences between cultured and axenic parasites [18–20], genes involved in drug
resistance [21], genes essential for promastigote differentiation [18,22–24], etc.

One of the gene expression regulation mechanisms observed in Trypanosoma spp. and
Leishmania spp. among other organisms is the compartmentalization of untranslated mRNA
molecules in granules together with proteins involved in splicing, transcription, adhesion,
and signaling under stress conditions [25–30]. mRNAs are regulated in these granules in the
cytosol by RNA-binding proteins (RBPs), which form mRNA–protein complexes (mRNPs).
RNA helicases are a type of RBP [31] that unwind RNA and displace other RBPs, obtaining
energy from ATP [32]. Many of these RNA helicases belong to the SFII superfamily and
are classified as DEAD, DEAH, or DEXH according to the sequence of the conserved motif
II [33]. Several RNA helicases associate with mRNA in cytoplasmic granules and participate
in translation initiation, translation repression, and transcript level decrease through storage
or degradation [34]. For example, the DHH1 DEAD-box RNA helicase complexes with
mRNA molecules forming granules [26,27,30,35]. One of the RBPs is a putative ATP-
dependent DEAD/H RNA helicase (DEVH1) encoded by a gene with the LINF_220021200
identifier in TriTrypDB. This DEVH-box RNA helicase binds to mRNA molecules and
accumulates in cytoplasmic granules containing these complexes, especially under stress
conditions, as observed in a stable episomal transfectant L. infantum promastigote line [36].
These granules contain other proteins involved in splicing, transcription, adhesion, and
signaling and are mainly distributed in the cytoplasm periphery [36]. The aim of the present
study is to find perturbations in differential gene expression at the mRNA level induced
in this transfectant L. infantum promastigote line compared to pTEX transfection control
promastigotes. This research may improve understanding of the biological functions of
this RNA helicase in the parasite.

2. Materials and Methods
2.1. Parasite Transfection

The L. infantum isolate JPCM5 (MCAN/ES/98/LLM−877, zymodeme MON−1) was
grown at 26 ◦C in complete medium containing RPMI 1640 supplemented with L-glutamine
and 10% HIFBS. Promastigote samples were harvested at mid-logarithmic phase for trans-
fection. Mid-logarithmic-phase promastigotes were harvested and resuspended at 108

cells/mL in a pre-chilled transfection buffer (21 mM HEPES, 137 mM NaCl, 5 mM KCl, 0.7
mM NaH2PO4, 6 mM glucose, pH 7.4). Then, aliquots of 0.4 mL of the suspension were
poured into 0.2-cm-gap electroporation cuvettes and incubated on ice for 10 min. Mean-
while, aliquots of the pTEX vector [37] and the pTEX-DEVH1 construct [36], previously
obtained with the Wizard Plus Maxiprep Kit (Promega, Madison, WI, USA), were adjusted
to 1 mg/mL and pre-chilled on ice. Subsequently, 20 µg of DNA were added to the cell
suspension, and an electric pulse was applied at 450 V, 500 µF, and 25 Ω with an Electro
Cell Manipulator® ECM 630 Precision PulseTM (BTX®, Harvard Apparatus, Holliston,
MA, USA). Wild-type parasites suspended in transfection buffer were also electroporated.
The cuvettes were immediately placed on ice and chilled for 10 min. Samples were then
transferred to culture flasks containing 4 mL of complete medium and grown at 26 ◦C for
24 h. After 24 h, the selection of stable transfectants was performed under 40 µg/mL G418
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selective pressure. Wild-type parasites electroporated in the absence of exogenous DNA
were used as selection control under the same selective pressure. Once the stable transfec-
tants were obtained, the cultures were scaled up, harvested in stationary phase (day 7) at
2000× g for 10 min, and washed with PBS. These preparations were used for transcriptome
analysis. The experiment was performed with all replicate cultures in passage 16. Three
biological replicates of the experiment were performed. The pTEX and the pTEX-DEVH1
lines were passaged after the transcriptome analysis. The construct was detected by PCR
in passage number 47 (Figure S1).

2.2. RNA Isolation, mRNA Amplification, and Indirect Labeling of cDNA with CYANINES

Total RNA extracts were obtained with TRizol reagent (Life Technologies, Carlsbad,
CA, USA) following the manufacturer’s instructions and purified with an RNeasy Pro-
tect Mini Kit (Qiagen, Hilden, Germany). The quality of the total RNA was assessed by
capillary electrophoresis with an Experion RNA HighSens Analysis Kit (Bio-Rad Laborato-
ries, Hercules, CA, USA) according to the manufacturer’s instructions. Then, mRNA was
amplified with a MessageAmp II aRNA Amplification Kit (Life Technologies, Carlsbad,
CA, USA) as described [28]. The quality of the amplified RNA (aRNA) was assessed by
agarose gel electrophoresis. For this purpose, the electrophoresis cell, tray, and comb were
rinsed with hydrogen peroxide, and the runs were performed at 5 V/cm in a 1.5% agarose
gel prepared with RNase-free water and pre-stained with GelRed Nucleic Acid Gel Stain
(Biotium, Hayward, CA, USA) diluted 1:10,000.

Ten micrograms of aRNA were mixed with six micrograms of random hexamer
primers (Life Technologies, Carlsbad, CA, USA) to begin the procedure of first-strand
aminoallyl-cDNA synthesis. The mixture was denatured at 70 ◦C for 10 min and im-
mediately chilled on ice. Then, samples were incubated at 46 ◦C for 3 h with 230 µM
dTTP; 340 µM aminoallyl-dUTP; 570 µM (each) dATP, dCTP, and dGTP; 10 µM DTT; and
600 U SuperScript Reverse Transcriptase (Life Technologies) in a final reaction volume of
30 µL. Thereafter, RNA was degraded at 70 ◦C for 30 min in 100 mM NaOH/10 mM EDTA,
and the solution was neutralized with 3 µL of 3 M sodium acetate pH 5.2. Aminoallyl-cDNA
was purified with a QiaQuick PCR Purification Kit (Qiagen, Hilden, Germany) following
the manufacturer’s instructions except for wash and elution buffers, which were replaced
with a phosphate wash buffer (5 mM K2HPO4, 80% ethanol, pH 8.0) and a phosphate
elution buffer (4 mM K2HPO4). The purified aminoallyl-cDNA samples were completely
dried in a vacuum centrifuge, resuspended in 10 µL of water and mixed with 5 µL of Cy3
or Cy5 (samples from pTEX and pTEX-DEVH1 parasites, respectively) monofunctional dye
(GE Healthcare, Chalfont Saint Giles, UK) dissolved in DMSO at 12 ng/µL. Next, coupling
was allowed at room temperature for 1 h in the dark. Finally, the labeled cDNA samples
were purified with a QiaQuick PCR Purification Kit (Qiagen, Hilden, Germany) following
the manufacturer’s instructions.

2.3. Microarray Hybridization Analysis

Whole-genome shotgun DNA microarrays of L. infantum (GEO Accession number
GPL6781) were soaked with 0.1% N-lauroylsarcosine in 2XSSC and in 2XSSC, denatured at
95 ◦C for 3 min, fixed in pre-cooled absolute ethanol, and spin-dried in a minicentrifuge
for slides. Afterward, the microarrays were blocked at 42 ◦C with 60 µL of a buffer
containing 2XSSC, 0.3% N-lauroylsarcosine, 60 mM Tris-HCl pH 8.0, 83 ng/mL denatured
herring sperm DNA, and 1% BSA using a Hybri-Slip coverslip (Sigma-Aldrich, Buchs,
Switzerland) in a hybridization chamber submerged in a water bath for 30 min. Next,
labeled cDNA samples were mixed in equimolar amounts of each dye (50 pmol) and
incubated at 40 ◦C with blocked microarrays for 16 h in a blocking solution containing 0.1%
BSA, 25 ng/mL poly(T), and 50% deionized formamide. Then, the slides were washed with
2XSSC containing 0.2% SDS at 40 ◦C, then with 1XSSC and 0.2XSSC at room temperature.

Data acquisition was carried out with a GenePix 4100A instrument (Axon, Foster
City, CA, USA). The raw data of local feature background medians were subtracted using
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GenePix Pro 7.0 software (Axon, Foster City, CA, USA). Normalization was performed
with the LOWESS per pin algorithm and statistical inference with the paired Student’s
t-test by using AlmaZen software (BioAlma, Tres Cantos, Spain). The cutoff values for
differential gene expression were defined as follows: (i) fold change F ≥ 1.8 (Cy5/Cy3 ratio
if Cy5 > Cy3) or F ≤ −1.8 (−Cy3/Cy5 ratio if Cy3 > Cy5), (ii) total relative fluorescence
intensity value >5000 arbitrary fluorescence units, and (iii) p < 0.05. Three biological
replicates of the experiment were performed.

2.4. Identification of Differentially Regulated Genes

The selected clones were isolated, sequenced with the M13-pUC18 universal primers
flanking the polylinker of the original genome library, and assembled following an es-
tablished procedure [38]. In summary, the sequencing reactions of insert ends were set
with the m13-pUC18 oligonucleotide primers and run in an ABI Prism® 3730XL Sequencer
(Applied Biosystems, Foster City, CA, USA). L. infantum JPCM5 chromosomal sequences
and annotations were downloaded from TriTrypDB (www.tritrypdb.org, accessed on 17
July 2019). General Feature Format (GFF) files were generated with a Perl script. Read
alignments were performed with BLASTN. The boundaries of each clone were defined
by pairing forward and reverse sequence reads that fulfilled the following conditions:
(i) e-value < 1 × 10−100; (ii) convergent orientation between both ends and complementary
sequence to different strands of the same chromosome; and (iii) 11 kbp maximum length
between the boundaries of each clone. Clones were associated with genes annotated in
the L. infantum JPCM5 reference genome retrieved from TriTrypDB (www.tritrypdb.org,
accessed on 17 July 2019) [39] using a Perl script that excluded 5% of the ORF end sequence
that overlapped with the boundaries of the clone. Gene ontology (GO) enrichment analysis
was performed with REVIGO [40].

2.5. Validation by Real-Time Quantitative RT-PCR (qRT-PCR)

Unlabeled single-stranded cDNA was synthesized as described in Section 2.2 but using
a mixture stock of 10 mM of each dNTP. Primers and FAM-NFQ MGB probes (50 nm each;
Table S1) were mixed with 1:5 serial dilutions of cDNA samples (10, 2, and 0.4 ng cDNA
per reaction) and with TaqMan Universal Master Mix 2X (Life Technologies, Carlsbad, CA,
USA) in a final reaction volume of 10 µL. The qRT-PCR reactions were run in a 7900HT Fast
Real-Time PCR system using the SDS 4.1. software (Life Technologies, Carlsbad, CA, USA)
according to the manufacturer’s instructions. Thermal cycling was as follows: 95 ◦C for
5 min; 40× (95 ◦C for 30 s; 60 ◦C for 1 min, data acquisition). The reference or endogenous
control gene was the L. infantum gGAPDH. Three experimental replicates and three serial
dilutions of each sample were performed. The relative expression values or fold changes
were obtained from these data. The raw data and all calculation steps can be found in
Supplementary File S1. The standard curve is defined as Ct vs. log m, where m is the
total cDNA amount in 10 µL of reaction volume. The standard curve best fit line equation
was obtained by the least-squares method. The slope of the serial dilution standard curve
was used to calculate the efficiency values (Efficiency = 10(−1/slope)). The quantity values
(Q) defined as efficiency to the power of –Ct were calculated for all genes including the
gGAPDH reference gene. The normalized quantities (Qn) were obtained by dividing Q of
the gene of interest by Q of gGAPDH. Finally, the qRT-PCR fold changes were obtained as
follows:

Fold change =


Qn pTEX−DEVH1

Qn pTEX
i f Qn pTEX−DEVH1 ≥ Qn

− Qn pTEX
Qn pTEX−DEVH1

i f Qn pTEX−DEVH1 < Qn
(1)

3. Results and Discussion
3.1. High-Throughput Differential Gene Expression Profiling of Stable Transfectant L. infantum
Promastigotes Over-Expressing the DEVH1 Helicase Gene

Stable episomal transfectant L. infantum promastigotes over-expressing the DEVH1
helicase gene (pTEX-DEVH1) were grown until they reached stationary phase in axenic

www.tritrypdb.org
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culture. A pTEX transfectant control promastigote line was also generated. The pTEX
and pTEX-DEVH1 proliferation rates were similar, reaching the stationary phase on day 7.
Total RNA was obtained. Labeled cDNA samples were synthesized prior to microarray
hybridization analysis. Three replicates of the experiment were performed. The fold-change
value selected as the cutoff for differential gene expression was 1.8 for up-regulation and
−1.8 for down-regulation. This criterion was based on the shape of the M/A scatter plot
centered in the M = 0 line (Figure 1). The standard deviation (SD) bars contribute to
statistical significance evaluated by the Student’s t-test. Applying these settings, we found
~100 differentially regulated genes in pTEX-DEVH1 promastigotes compared to pTEX
control promastigotes (Figure 1; Table 1). This experiment confirms that the DEVH1 gene is
up-regulated (Table 1).
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Figure 1. Average M/A scatter plot of three-replicate microarray hybridization analyses. pTEX
and pTEX-DEVH1 promastigote expression profiles were compared. M = (log2Ri – log2Gi) and
A = [(log2Ri + log2Gi)/2], where R and G are, respectively, red (Cy5) and green (Cy3) intensity values.
Red spots correspond to selected DNA fragments containing a gene up-regulated at least 1.8 times,
and green spots represent those down-regulated at least 1.8 times. The S.D. bars are shown.

GO enrichment analyses of Biological Process (GOBP) and Molecular Function (GOMF)
terms were performed. The set of genes up-regulated in pTEX-DEVH1 promastigotes is
enriched in GOBP terms related with localization and maintenance of proteins and other
macromolecules in the cell, metabolism, signaling, and mRNA processing (Figure 2a and
Figure S2). The GOMF enrichment analysis indicates that the terms RNA helicase activ-
ity and ATP-dependent activity acting on RNA are over-represented in the set of genes
up-regulated in pTEX-DEVH1 promastigotes, as well as terms related to transport and
intracellular vesicle trafficking (Figure 2a and Figure S2). Significantly over-represented
GOBP terms in the set of genes down-regulated in pTEX-DEVH1 promastigotes include
response to biotic stimulus; response to other organism; evasion of host immune response
via regulation of the host complement system; catabolic processes related with reactive oxy-
gen species (ROS), such as hydrogen peroxide; and nucleotide and amino acid biosynthetic
processes (Figure 3a and Figure S3); among others. These terms are related to GOMF terms,
such as glutathione peroxidase activity, oxidoreductase activity on peroxide acceptors,
other oxidoreductase activities, and ammonia ligase activity (Figure 3a and Figure S3).
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Table 1. Gene expression profiling of stable DEVH1 L. infantum promastigotes. The features described
are F (pTEX-DEVH1/pTEX fold change; up-regulation if F ≥ 1.8; down-regulation if F ≤ −1.8); base-
two logarithmic scale F and S.D. values; p, p-value (adjusted by FDR); gene annotation (id and name)
in L. infantum JPCM5 reference genome (TriTrypDB). Clone identifiers and features can be found in
Table S2.

F log2R ± SD p Id. Gene Annotation (TriTrypDB)

4.70 2.3 ± 0.4 0.003 LINF_220021200 ATP-dependent DEAD/H RNA helicase, putative
3.04 1.6 ± 0.5 0.035 LINF_300022400 Hypothetical protein, conserved
2.46 1.3 ± 0.2 0.011 LINF_260024900 Hypothetical protein, conserved
2.39 1.3 ± 0.4 0.038 LINF_230022400 Dynein heavy chain, putative

2.38 1.2 ± 0.1 0.002 LINF_360020600 N-terminal region of chorein—a TM vesicle-mediated
sorter, putative

2.36 1.2 ± 0.2 0.008 LINF_340018000 Hypothetical protein, conserved

2.34 1.2 ± 0.1 0.004 LINF_140005100

PI3-kinase family—ras-binding domain/Phosphoinositide
3-kinase C2/Phosphoinositide 3-kinase family—accessory

domain (PIK domain)/Phosphatidylinositol 3- and
4-kinase—putative

2.32 1.2 ± 0.1 0.004 LINF_340021000 N-terminal region of chorein—a TM vesicle-mediated
sorter/Protein of unknown function (DUF1162)—putative

2.32 1.2 ± 0.4 0.043 LINF_320041200 Chloride channel protein, putative
2.31 1.2 ± 0.1 0.002 LINF_250008300 Hypothetical protein, conserved
2.29 1.2 ± 0.1 0.003 LINF_310035300 3’−5’ exonuclease, putative
2.24 1.2 ± 0.3 0.049 LINF_270010200 Calpain-like cysteine peptidase, putative
2.21 1.1 ± 0.2 0.004 LINF_040017400 Hypothetical protein, conserved
2.18 1.1 ± 0.3 0.031 LINF_110011000 Hypothetical protein, conserved
2.15 1.1 ± 0.0 0.000 LINF_330008300 Glucose transporter/membrane transporter D2, putative
2.12 1.1 ± 0.3 0.027 LINF_070005500 Alpha-adaptin-like protein
2.11 1.1 ± 0.3 0.019 LINF_330014800 NLI interacting factor-like phosphatase
2.11 1.1 ± 0.4 0.035 LINF_270028900 WD domain-G-beta repeat, putative

2.10 1.1 ± 0.3 0.027 LINF_160013300 N-terminal region of chorein-A TM vesicle-mediated
sorter, putative

2.09 1.1 ± 0.3 0.021 LINF_280011400 ER lumen retaining receptor-like protein

2.06 1.0 ± 0.2 0.010 LINF_360054800 Related to elongation factor−2 kinase efk−1b isoform-like
protein

2.06 1.0 ± 0.0 0.001 LINF_360035100 Transportin2-like protein
2.05 1.0 ± 0.3 0.025 LINF_330029900 Glycerol phosphate mutase, putative
2.01 1.0 ± 0.2 0.020 LINF_310041000 Phosphoglycan beta−1,3-galactosyltransferase 4
2.00 1.0 ± 0.4 0.049 LINF_360034600 Hypothetical protein, conserved
1.96 1.0 ± 0.3 0.037 LINF_350031700 Hypothetical protein, conserved
1.96 1.0 ± 0.3 0.035 LINF_360020400 Zn-finger in Ran binding protein and others, putative
1.95 1.0 ± 0.3 0.028 LINF_150005100 Hypothetical protein, conserved
1.95 1.0 ± 0.3 0.032 LINF_350014800 Casein kinase, putative
1.93 0.9 ± 0.1 0.007 LINF_150015300 Hypothetical protein, conserved
1.93 0.9 ± 0.3 0.039 LINF_270023400 Hypothetical protein, conserved
1.92 0.9 ± 0.3 0.033 LINF_220017900 ChaC-like protein, putative
1.91 0.9 ± 0.2 0.019 LINF_350052900 Hsp70 protein, putative
1.91 0.9 ± 0.3 0.025 LINF_240005600 Hypothetical protein, conserved
1.90 0.9 ± 0.2 0.016 LINF_120012700 Hypothetical protein, conserved
1.90 0.9 ± 0.2 0.013 LINF_350047900 Hypothetical protein, conserved
1.88 0.9 ± 0.4 0.049 LINF_060014200 Hypothetical protein, conserved
1.88 0.9 ± 0.3 0.043 LINF_280018500 DnaJ domain-containing protein, putative
1.87 0.9 ± 0.1 0.020 LINF_140020800 Hypothetical protein, conserved
1.87 0.9 ± 0.2 0.010 LINF_350045000 U5 snRNA-associated splicing factor
1.86 0.9 ± 0.1 0.005 LINF_290031800 Acyltransferase, putative
1.86 0.9 ± 0.1 0.007 LINF_310008600 Amino acid transporter aATP11, putative
1.85 0.9 ± 0.3 0.029 LINF_070005100 Isy1-like splicing family—putative
1.84 0.9 ± 0.3 0.032 LINF_170012400 Acyl-CoA-binding protein
1.84 0.9 ± 0.3 0.039 LINF_100018200 Hypothetical protein, conserved
1.84 0.9 ± 0.3 0.045 LINF_360071900 Hypothetical protein, conserved
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Table 1. Cont.

F log2R ± SD p Id. Gene Annotation (TriTrypDB)

1.84 0.9 ± 0.3 0.045 LINF_270014400 Right-handed beta helix region/Periplasmic
copper-binding protein (NosD), putative

1.84 0.9 ± 0.0 0.000 LINF_340042800 LicD family, putative
1.83 0.9 ± 0.3 0.033 LINF_140013700 Hypothetical protein, conserved
1.83 0.9 ± 0.2 0.017 LINF_170008500 Kinesin motor domain-containing protein, putative
1.81 0.9 ± 0.3 0.036 LINF_230022400 Dynein, heavy chain, putative
1.80 0.8 ± 0.3 0.043 LINF_210006700 Serine/threonine protein kinase, putative
−1.80 −0.8 ± 0.2 0.014 LINF_080011900 Amastin-like protein
−1.80 −0.9 ± 0.3 0.049 LINF_330021300 Glutamine aminotransferase, putative
−1.81 −0.9 ± 0.2 0.025 LINF_310013600 C2 domain protein, putative
−1.82 −0.9 ± 0.2 0.014 LINF_220013600/700 NADH-cytochrome b5 reductase
−1.83 −0.9 ± 0.5 0.044 LINF_060005100 Hypothetical protein, conserved
−1.83 −0.9 ± 0.1 0.007 LINF_190020900 Mitogen-activated protein kinase 4, putative
−1.83 −0.9 ± 0.3 0.029 LINF_120007800 Hypothetical protein, conserved
−1.83 −0.9 ± 0.3 0.028 LINF_120007800 Hypothetical protein, conserved
−1.83 −0.9 ± 0.2 0.019 LINF_270022500 Hypothetical protein, conserved
−1.84 −0.9 ± 0.3 0.042 LINF_290014500 Phytanoyl-CoA dioxygenase (PhyH), putative
−1.85 −0.9 ± 0.3 0.038 LINF_310023200 Hypothetical protein, conserved
−1.87 −0.9 ± 0.1 0.004 LINF_320040300 Hypothetical protein, conserved
−1.88 −0.9 ± 0.0 0.010 LINF_190005300 Histone H2B (H2B)

−1.92 −0.9 ± 0.2 0.016 LINF_230006200
Concanavalin A-like lectin/glucanases

superfamily/Beige/BEACH domain-containing protein,
putative

−1.93 −0.9 ± 0.4 0.033 LINF_350043500 Hypothetical protein, conserved
−1.94 −1.0 ± 0.0 0.049 LINF_200012700 Tubulin/FtsZ family, putative

−1.95 −1.0 ± 0.0 0.012 LINF_260013100 Type II (glutathione peroxidase-like) tryparedoxin
peroxidase

−1.98 −1.0 ± 0.0 0.049 LINF_360061200/300 Vacuolar sorting protein-associated protein-like
protein/Aldehyde dehydrogenase, putative

−2.02 −1.0 ± 0.2 0.014 LINF_170008100 Tetratricopeptide repeat—putative
−2.02 −1.0 ± 0.4 0.049 LINF_180018900 Hypothetical protein, conserved
−2.05 −1.0 ± 0.4 0.039 LINF_170005200 Hypothetical protein, conserved
−2.12 −1.1 ± 0.4 0.049 LINF_360045700 Mitogen-activated protein kinase-like
−2.14 −1.1 ± 0.3 0.031 LINF_330016400 Hypothetical protein, conserved
−2.16 −1.1 ± 0.4 0.040 LINF_310022900 Hypothetical protein, conserved
−2.18 −1.1 ± 0.2 0.015 LINF_360037500 GDP-forming succinyl-CoA ligase b chain, putative
−2.20 −1.1 ± 0.3 0.022 LINF_150012500 Ecotin, putative
−2.28 −1.2 ± 0.0 0.046 LINF_160015600 Protein of unknown function (DUF3184), putative
−2.33 −1.2 ± 0.3 0.014 LINF_270032600 3-oxoacyl-ACP reductase, putative (KAR1)
−2.34 −1.2 ± 0.3 0.018 LINF 320037400 Hypothetical protein, conserved
−2.38 −1.2 ± 0.5 0.048 LINF_350007000 NLI interacting factor-like phosphatase—putative
−2.40 −1.2 ± 0.5 0.048 LINF_090014800 Hypothetical protein, conserved
−2.40 −1.3 ± 0.4 0.026 LINF_130007800 Alpha tubulin
−2.44 −1.2 ± 0.0 0.048 LINF_300039100 60S ribosomal protein L9, putative

−2.52 −1.3 ± 0.0 0.033 LINF_120015800/900 Putative integral membrane protein conserved region
(DUF2404), putative

−2.53 −1.3 ± 0.5 0.046 LINF_360026000 Inosine-guanosine transporter
−2.56 −1.4 ± 0.5 0.036 LINF_290036400 40S ribosomal protein S19-like protein
−2.57 −1.4 ± 0.7 0.039 LINF_050014100 CPSF A subunit region-containing protein, putative
−2.59 −1.4 ± 0.4 0.028 LINF_290017500 Tryparedoxin 1, putative
−2.65 −1.4 ± 0.5 0.049 LINF_280027900 Cullin 2, putative
−2.67 −1.4 ± 0.1 0.010 LINF_230018600 Hydrophilic surface protein A (HASPA1)
−2.69 −1.4 ± 0.3 0.019 LINF_040008500 ADP ribosylation factor, putative
−2.72 −1.4 ± 0.5 0.046 LINF_360026300 Phosphomannomutase, putative
−2.93 −1.5 ± 0.4 0.023 LINF_300028400 Hypothetical protein, conserved
−3.82 −1.9 ± 0.5 0.021 LINF_230018700 Hydrophilic surface protein B (HASPB)

−3.82 −1.9 ± 0.5 0.021 LINF_230018800 Small hydrophilic endoplasmic-reticulum-associated
protein (SHERP)

−3.82 −1.9 ± 0.5 0.021 LINF_230018900 Hydrophilic surface protein A (HASPA2)
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Figure 2. GO enrichment analysis of up-regulated genes in pTEX-DEVH1 promastigotes. Larger
spot sizes reflect more general processes and less specific functions. All GO terms represented in this
figure are significantly enriched in the subset of up-regulated genes in pTEX-DEVH1 promastigotes.
The enrichment analysis is based on the odds ratio calculations. The selected enrichment significance
level is α = 0.05. REVIGO allows for the removal of redundancies by applying the neighbor-joining
hierarchical clustering algorithm [40]. Functional relationships are represented with gray lines. The
thicker the line, the stronger functional relationship. (a) Enrichment in GOBP terms. (b) Enrichment
in GOMF terms.
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Figure 3. GO enrichment analysis of down-regulated genes in pTEX-DEVH1 promastigotes. Larger
spot sizes reflect more general processes and less specific functions. All GO terms represented in this
figure are significantly enriched in the subset of down-regulated genes in pTEX-DEVH1 promastigotes.
The enrichment analysis is based on the odds ratio calculations. The selected enrichment significance
level is α = 0.05. REVIGO allows for the removal of redundancies by applying the neighbor-joining
hierarchical clustering algorithm [40]. Functional relationships are represented with gray lines. The
thicker the line, the stronger functional relationship. (a) Enrichment in GOBP terms. (b) Enrichment
in GOMF terms.
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3.2. Differential Transcript Abundance of Genes Involved in Gene Expression Regulation,
Intracellular Signaling, Metabolism, Transport, and Movement in pTEX-DEVH1
L. infantum Promastigotes

An initial exploration of the differentially expressed genes of pTEX-DEVH1 promastig-
otes and GO enrichment analysis (Figures 2 and 3) suggests an enhancement of processes
occurring in undifferentiated, metabolically active promastigotes. Induced DEVH1 over-
expression triggers the up-regulation of a 3′−5′ exonuclease gene. The protein product
contains an RNase H-like motif (InterPro IPR012337) and a WRN_exo domain (conserved
protein domain family database, CDD) related to DNA replication, recombination, and
repair. DEVH1 promastigotes also up-regulate several genes involved in gene expres-
sion regulation that encode the following protein products: PRP8 homologue U5-snRNA
splicing factor; Isy1-like splicing family, involved in splicing optimization (IPR 009360);
and the efk−1b isoform of an elongation factor 2-related protein. Conversely, the cullin
2 gene is down-regulated. Cullin 2 contains a winged helix repressor DNA-binding motif,
which is related either to transcription repression or helicase activity. Provided that gene
expression regulation is mainly post-transcriptional, translational, and post-translational
in trypanosomatids (reviewed in [12]), involvement of cullin 2 in helicase activity is more
likely in the context of excess DEVH1 in the stable episomal transfectant promastigote
line over-expressing the DEVH1 gene. Protein targeting, modification, and folding may
also be influenced by induced DEVH1 over-expression due to up-regulation of the genes
encoding a prefolding domain-containing protein, an acyltransferase, a heat shock protein
70 (hsp70), a DnaJ domain-containing protein, a transportin 2-like protein, and an ER lumen
targeting protein in pTEX-DEVH1 promastigotes. According to GOBP enrichment analysis
(Figure 2a) and protein characterization in model organisms [41], transportins mediate the
nuclear import of proteins.

pTEX-DEVH1 promastigotes up-regulate genes encoding for the following proteins
involved in transport: glucose transporter GTD2 gene; inosine/guanosine transporter;
N-terminal region of chorein (TM vesicle-mediated sorter); right-handed β-helix region—
periplasmic copper-binding protein (NosD); voltage-gated chloride channel; an amino acid
transporter; and α-adaptin, which is involved in clathrin coating of vesicles.

Genes related with catabolism have also been found to be up-regulated in pTEX-
DEVH1 promastigotes, such as the genes encoding the phosphomannomutase, a glycerol
phosphate mutase, the GDP-forming succinyl-CoA ligase β chain, an acyl-CoA-binding
protein, and the NADH-cytochrome b5 reductase. On the other hand, genes involved in
biosynthesis are down-regulated, including the 3-oxoacyl-ACP reductase (KAR1) and the
inosine/guanosine transporter genes.

The comparative transcriptome analysis of pTEX-DEVH1 vs. pTEX control L. in-
fantum promastigotes has also revealed that over-expression of this helicase triggers the
up-regulation of the genes coding for casein kinase, the phosphatidylinositol 3-kinase 2,
the LINF_210006700 serine/threonine protein kinase, an NLI interacting factor-like phos-
phatase (NLI minimal phosphatase motif, PFAM accession number PF03031), and the
conserved hypothetical protein LINF_140020800 (WD40 repeats; InterPro accession number
IPR001680). Genes related with the flagellum and the microtubule cytoskeleton dynamics,
such as dynein heavy chain and kinesin, are also up-regulated in pTEX-DEVH1 promastig-
otes. Induced DEVH1 over-expression also triggers up-regulation of the ClanCA, family
C2, calpain-like cysteine peptidase gene, which is involved in differentiation, cytoskeleton
remodeling, and intracellular signaling processes. On the contrary, a MAP kinase gene, an
ADP-ribosylation factor gene, and an NLI interacting factor-like phosphatase (NLI minimal
motif) paralog gene are down-regulated.

3.3. pTEX-DEVH1 L. infantum Promastigotes Down-Regulate Genes Involved in
Parasite Survival

Among the down-regulated genes in pTEX-DEVH1 promastigotes, some encode
proteins involved in ROS detoxification, metacyclogenesis, infection, and survival in para-
sitophorous vacuoles of the host phagocyte. Metacyclic promastigotes up-regulate genes
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required for the subsequent life cycle stage and for survival within the mammalian host
phagocyte, in agreement with the pre-adaptation hypothesis. The GOBP enrichment analy-
sis supports that several genes are involved in resistance to redox and biotic stress, including
evasion of the immune response related to the host’s complement system (Figure 3a). This
is additional evidence suggesting that induced DEVH1 gene over-expression achieved in
the stable episomal transfectant promastigote line slows down promastigote differentiation
and metacyclogenesis. The phosphoglycan β−1,3-galactosyl transferase 4 (β−1,3-GalT4)
gene is up-regulated in the pTEX-DEVH1 promastigote line. This gene is involved in
lypophosphoglycan (LPG) biosynthesis, which takes place throughout promastigote differ-
entiation. LPG is a major surface molecule of the parasite. LPG is almost completely absent
in the amastigote surface but is very abundant in promastigotes (reviewed in [42]).

The glutamine aminotransferase (GLS), the tryparedoxin 1 (TryX), and the type II
glutathione peroxidase-like tryparedoxin peroxidase (TrxP) genes are down-regulated in
pTEX-DEVH1 promastigotes. GLS yields glutamic acid for glutathione and trypanothione
biosynthesis. TrxP is involved ROS detoxification, such as lipid-derived hydroperoxides in
trypanosomatids [43].

A concanavalin A-like lectin is down-regulated in pTEX-DEVH1 promastigotes. This
gene bears a GOBP term assignment called “evasion of host immune response via regulation
of host complement system” (Figure 3a). Promastigotes are subject to complement system
clearance [44,45] before a few are able to interact with phagocyte host cells and differentiate
to the amastigote stage inside parasitophorous vacuoles.

An amastin-like protein gene (LINF_080011900) up-regulated in amastigotes [24]
and in amastigote-like forms induced by temperature increase and acidification [16] is
down-regulated in the pTEX-DEVH1 line. Amastin superfamily genes are virulence fac-
tors and are supposed to be stage-regulated, increasing expression levels in amastigotes.
However, the LINF_080011900 amastin gene is also up-regulated in metacyclic promastig-
otes in axenic culture [38], supporting that the expression of this gene is enhanced in
metacyclic promastigotes. This may be explained by the promastigote pre-adaptation
hypothesis [24,46].

The small hydrophilic endoplasmic-reticulum-associated protein (SHERP) and the
hydrophilic surface proteins HASPA1, HASPA2, and HASPB have been described as
antigens and infective promastigote markers [18,47–51]. The encoding genes are organized
in the HASP/SHERP cluster. qRT-PCR analysis using two different calculation methods
has confirmed the down-regulation of HASPA, SHERP, and HASPB (Figure 4). HASPA1
and HASPA2 have almost identical sequences (Figure S4) and are not distinguishable
by qRT-PCR. Clones containing both copies were identified in the shotgun microarray
hybridization analysis (Tables 1 and S2). The 5′ and 3′ HASPB ends are also practically
identical to HASPA1 and HASPA2. Therefore, the TaqMan assay was designed using the
inner region of the HASPB nucleotide sequence.

In Leishmania spp., the quantitative correlation found between transcript and protein
levels has been reported to be low (~25%). However, ~2/3 of all mRNA changes are
expected to occur at the protein level as well from a quantitative point of view [18,52,53],
which means that the up-regulation, down-regulation, or constant expression is confirmed
for both the transcript and the protein for ~67% genes. Among the differentially expressed
genes found between pTEX-DEVH1 and pTEX promastigotes, 10 genes characteristic of
fully differentiated promastigotes or resistance to oxidative damage are down-regulated,
and at least 20 genes that may be related to processes triggered in less differentiated and
more metabolically active promastigotes are up-regulated. About ~2/3 of these changes
are expected to occur at the protein level too. Furthermore, these genes are grouped in
enriched functional categories (Figures 2 and 3).
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Elucidating which mRNA molecules of differentially regulated genes bind to the
DEVH1 helicase and which transcripts change their steady-state levels by the indirect
effect of the DEVH1 helicase is a complex task that may be addressed with the following
starting hypothesis. An excess of the DEVH1 helicase may sequester an excess of certain
mRNA molecules, making the parasite to re-organize the steady-state transcript levels
as a compensation. This may cause a delay in differentiation, as suggested by the down-
regulation of the mentioned parasite survival genes (HASP/SHERP cluster, amastin, and
redox homeostasis genes). Future experiments with the sand fly Phlebotomus perniciosus
may elucidate whether the pTEX-DEVH1 line affects parasite competence inside this vector.

4. Conclusions

The stable episomal pTEX-DEVH1 L. infantum promastigote line down-regulates
several genes present in fully differentiated promastigotes or related to ROS detoxification
(HASPA1/2, HASPB, SHERP, amastin, concanavalin A-like lectin, GLS, TryX, and TrxP) and
up-regulates genes that may be related to processes triggered in less differentiated and more
metabolically active promastigotes (e.g., glucose transporter D2, glycerol phosphate mutase,
acyl transferase, acyl-CoA-binding protein, amino acid transporter aATP11, phosphoglycan
β1→3 galactosyltransferase 4, hsp70, DnaJ domain-containing protein). In summary,
10 genes characteristic of fully differentiated promastigotes including virulence factors or
involved in resistance to oxidative damage are down-regulated under DEVH1-induced
over-expression, and 20 genes related to growth and differentiation are up-regulated.
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Supplementary Materials: The following can be found at https://www.mdpi.com/article/10.339
0/pathogens11070761/s1: Figure S1: PCR check of transfected parasites. Figure S2: GO enrich-
ment analysis of up-regulated genes in pTEX-DEVH1 promastigotes. Figure S3: GO enrichment
analysis of down-regulated genes in pTEX-DEVH1 promastigotes. Figure S4: Sequence alignment
of the HASP/SHERP gene cluster. Table S1: Sequences of primers and FAM-NFQ probes used in
qRT-PCR assays. Table S2: Gene expression profiling of pTEX-DEVH1 L. infantum promastigotes.
Supplementary File S1: qRT-PCR calculations.
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