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Abstract: Despite its low morbidity, listeriosis has a high mortality rate due to the severity of its
clinical manifestations. The source of human listeriosis is often unclear. In this study, we investigate
the ability of machine learning to predict the food source from which clinical Listeria monocytogenes
isolates originated. Four machine learning classification algorithms were trained on core genome
multilocus sequence typing data of 1212 L. monocytogenes isolates from various food sources. The
average accuracies of random forest, support vector machine radial kernel, stochastic gradient
boosting, and logit boost were found to be 0.72, 0.61, 0.7, and 0.73, respectively. Logit boost showed
the best performance and was used in model testing on 154 L. monocytogenes clinical isolates. The
model attributed 17.5 % of human clinical cases to dairy, 32.5% to fruits, 14.3% to leafy greens, 9.7%
to meat, 4.6% to poultry, and 18.8% to vegetables. The final model also provided us with genetic
features that were predictive of specific sources. Thus, this combination of genomic data and machine
learning-based models can greatly enhance our ability to track L. monocytogenes from different food
sources.

Keywords: Listeria monocytogenes; food source attribution; whole-genome sequencing; machine
learning; predictive modeling

1. Introduction

Foodborne illnesses affect approximately 48 million people in the United States every
year, resulting in an estimated 128,000 hospitalizations and 3000 deaths [1]. About a fifth
(approximately 9.4 million) of these can be attributed to known pathogens [2,3]. In most
outbreak investigations, disease etiology is linked to individual foods, which enables public
health authorities, regulatory agencies, and the food industry to identify potential points
of contamination. Foodborne outbreak data can also be used to identify emerging food
safety concerns and evaluate the effectiveness of foodborne illness prevention programs [4].
Foods of animal origin, fruits, and vegetables are usually implicated in most foodborne out-
breaks [2,5,6]. Common pathogenic bacteria responsible for foodborne outbreaks include
Listeria monocytogenes, Campylobacter, Salmonella, and Shiga toxin-producing Escherichia coli,
among others [3,7].

L. monocytogenes causes serious illness only in a small percentage of healthy people.
According to the United States Centers for Disease Control and Prevention (CDC), about
1600 people get listeriosis annually, and about 260 succumb to it [8]. Even though the
number of listeriosis cases is lower than that of other foodborne illnesses, the disease burden
of this pathogen is higher because of the serious nature of the disease when vulnerable
groups are affected [8,9]. Listeriosis is ranked third among the causes of foodborne illness-
associated deaths in the United States, causing nearly 19% of these deaths [10]. People
who are at risk for listeriosis include pregnant women, the elderly, people with weakened
immune systems, and newborns [10].
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Food animals, particularly ruminants, can get infected with L. monocytogenes, making
them potential zoonotic reservoirs of this pathogen [11,12]. Human infections are rarely
related to exposure to infected animals or fomites from agricultural environments. However,
animal-derived food products eaten raw or undercooked and refrigerated ready-to-eat
(RTE) foods stored for long periods are known to cause listeriosis in humans [13,14].

Fresh produce is another food group that is gradually becoming a major route of human
exposure to L. monocytogenes [15,16]. Unlike other foodborne pathogens, L. monocytogenes
can thrive under alternative (i.e., non-ideal) conditions, such as low moisture, high salt
concentration, and refrigeration temperature environments [17]. Since 2010, over 85
multistate outbreaks with confirmed etiology have been attributed to fresh produce in
the United States [8]. Cross-contamination within the supply chain, improper storage tem-
peratures during distribution, and improper food preparation practices are some of the
frequently implicated contributors to these events.

Food source attribution is the process of estimating the most common food categories
responsible for illnesses caused by specific pathogens [18,19]. Source attribution enables
the identification of the relative contributions of different food sources to the occurrence of
foodborne illnesses [20,21]. To achieve this, several sources of data are required including
epidemiological, laboratory-, and outbreak-related data [22,23]. Unraveling the sources of
foodborne illness is vital to identifying strategies to improve food safety along the entire
food production and supply chain [19,24].

Multilocus sequence typing (MLST) [25,26] has been the preferred method for pop-
ulation genetic analyses, with the results usually corroborating epidemiological find-
ings [26,27]. This molecular technique has been used to monitor changes in food microbial
reservoirs, particularly those changes that arise as a result of interventions targeting the
food chain and public health [26,28–30]. According to a prior study [26], core genome
MLST (cgMLST) and allelic variations can be used to differentiate isolates and link them to
food sources in source attribution studies. To decrease the prevalence of foodborne diseases
and minimize microbial contamination in food, effective monitoring of the distribution
and occurrence of foodborne pathogens is essential. It is worth noting that foodborne
pathogens are resilient; this means that they can adapt genetically and phenotypically to
the extreme conditions found in host and non-host systems, which allows them to survive
and proliferate under these conditions [3,31,32]. These changes could be particularly infor-
mative towards identifying the basis of pathogen adaptation to, and survival and virulence
in, host systems, as well as their response to safe food handling practices in the industry
and by consumers. Therefore, a careful analysis of these changes could, in the long run,
help develop methods and practices to reduce the risk of foodborne outbreaks.

In recent years, there has been a growing interest in analyzing genome sequencing
data using artificial intelligence (AI), particularly machine learning (ML) [33]. Mechanistic
model-based methods are aimed at formulating simplified mathematical models to explain
various phenomena by carefully examining, analyzing, and identifying patterns in relevant
data [34]. On the other hand, ML focuses on ‘learning’ from relevant patterns in data, and
using this information to make predictions [35,36]. Basically, by exploring and identifying
patterns in data, ML can be used in the classification, regression, or clustering of data to
draw meaningful inferences from the same. Genome sequencing information, coupled
with machine learning, has been used to predict the risk of listeriosis in humans [37], the
host specificity of S. enterica and E. coli [38], and host disease severity based on S. enterica
gene presence/absence [36,39], and in the source attribution of S. Typhimurium [26]. With
the increase in usage of genome sequencing for exploratory and integrated surveillance
activities, generating massive amounts of data, as well as standardization of data collection
activities (providing us with useful metadata and other useful information), machine
learning and big data analytical tools become the need of the hour to provide a better
understanding and improvement of current knowledge in foodborne disease epidemiology.

This study aimed at developing a ML-based model for source attribution of human
listeriosis by analyzing L. monocytogenes core genomes. The model was based on cgMLST
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profiles from clinical L. monocytogenes isolates and isolates from dairy, fruits, leafy greens,
meat, poultry, seafood, and vegetables.

2. Results
2.1. Predictive Model

We developed a supervised machine learning model to predict the possible source of
human listeriosis cases based on allelic variations in L. monocytogenes isolates from foods.
Of the 1748 L. monocytogenes core genes, 1012 genes were removed due to zero or near-zero
variance (see Section 4.3.1), leaving 736 genes that were used in the model.

The performance of random forest, logit boost, stochastic gradient boosting, and
support vector machine radial kernel models were compared using the average accuracies
obtained from 10 iterations applying 10-fold cross-validation. All four models performed
well with accuracies between 0.614 and 0.732, and Kappa values between 0.530 and 0.657
(Table 1).

Table 1. Models performance from 10 iterations of random forest, support vector machine radial
kernel, stochastic gradient boosting, and logit boost models.

Models Accuracy 95% CI Kappa

Logit boost 0.732 a 0.665–0.760 0.654
Random forest 0.722 a 0.667–0.776 0.657
Stochastic gradient boosting 0.701 a 0.645–0.745 0.633
Support vector machine 0.614 b 0.569–0.671 0.530

Values under the Accuracy column with different superscripts are significantly different (p < 0.05).

The performance of logit boost (0.732), random forest (0.722), and stochastic gradient
boosting (0.701) did not differ significantly from one another. However, these three models
performed significantly better than support vector machine. Receiver operating characteris-
tic (ROC) curves were generated for the different models. The areas under the curve (AUC)
for logit boost, random forest, gradient boosting machine, and support vector machine
were 0.865, 0.805, 0.822, and 0.820, respectively. Logit boost had the highest accuracy and
AUC among the models considered and was selected for further analysis.This selection
was also substantiated by the Kappa value for the logit boost model (0.654), suggesting a
‘substantial’ agreement between the observed and predicted classes [40] or a ‘fair to good’
agreement based on Fleiss’s criteria [41].

Confusion matrix statistics of all train-test models are presented in Supplementary
Table S1. Logit boost, the best performing model, had a specificity > 0.90 for all food sources,
and sensitivity > 0.7 for most food sources, except leafy greens (0.548), meat (0.484), and
poultry (0.447). The low sensitivity observed in leafy greens, meat, and poultry could be
due to the smaller sample size in these categories as compared to the other categories. In
the future, with the availability of an increased number of samples, especially in the less
dominant classes, it may be possible to increase the sensitivity of the model for these classes.
Other methods to potentially further improve the sensitivity of classifiers may include the
use of resampling techniques and cost-sensitive learning approaches in future studies.

2.2. Source Attribution of Human Listeriosis Cases

We trained a new model using logit boost on the complete feature-reduced data set
(Supplementary Table S2). This model predicted the probable food sources of each of the
154 clinical L. monocytogenes isolates. The model predicted that 32.5% of the clinical isolates
originated from fruits, 18.8% from vegetables, and 17.5%, 14.3%, 9.7%, 4.6%, and 2.6% from
dairy, leafy greens, meat, poultry, and seafood, respectively (Figure 1).
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Figure 1. Predicted sources of clinical L. monocytogenes isolates.

2.3. Important Predictor Genes

Twenty of the most important genes were analyzed in isolates from different sources of
food using logit boost, and their functional classes were determined based on an extensive
literature survey. These genes allow us to identify microbial genetic patterns associated
with each food source. According to Table 2, genes associated with survival, adaptation,
and stress response were mainly found to be important in isolates from fresh produce, meat,
and poultry. Additionally, two-component transcriptional regulators and virulence genes
were found in isolates from fresh produce. However, some significant predictors/genes
remained undefined in isolates from all food sources.

Table 2. Twenty putative genes sorted by maximum importance across the food sources.

Loci Gene Protein Name Dairy Fruits Leafy
Greens Meat Poultry Seafood Vegetables

lmo2702 recR Recombination protein
RecR 0.6653 0.5945 0.6925 0.8315 0.7212 0.6219 0.6653

lmo2401 lmo2401 Hypothetical protein 0.7017 0.663 0.6997 0.8231 0.7664 0.663 0.7017

lmo2615 rpsE 30S ribosomal protein
S5 0.6873 0.5786 0.708 0.8199 0.7465 0.6081 0.6873

lmo2577 lmo2577 Hypothetical protein 0.7066 0.6611 0.6809 0.808 0.7851 0.6611 0.7066
lmo1501 lmo1501 Hypothetical protein 0.6925 0.6014 0.6839 0.8022 0.716 0.6374 0.6925
lmo1933 folE GTP cyclohydrolase 1 0.577 0.6111 0.599 0.8012 0.7435 0.627 0.6111

lmo2215 lmo2215
Similar to ABC
transporter
(ATP-binding protein)

0.692 0.6473 0.6633 0.7988 0.72 0.6473 0.692

lmo0821 lmo0821 Hypothetical protein 0.6641 0.6641 0.7076 0.7979 0.7461 0.6641 0.657
lmo1715 lmo1715 Methyltransferase 0.674 0.6314 0.6612 0.7963 0.7371 0.6314 0.674

lmo2515 degU NarL family, response
regulator DegU 0.6923 0.6482 0.6759 0.7952 0.7781 0.6482 0.6923

lmo0625 lmo0625 Putative
lipase/acylhydrolase 0.6548 0.6242 0.6813 0.7945 0.743 0.6242 0.6548

lmo0544 srlA PTS sorbitol
transporter subunit IIC 0.7125 0.6483 0.7073 0.7928 0.7713 0.6483 0.7125

lmo2728 mlrA
Transcriptional
regulator, MerR family
protein

0.62 0.6322 0.6294 0.7909 0.6994 0.6041 0.6322
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Table 2. Cont.

Loci Gene Protein Name Dairy Fruits Leafy
Greens Meat Poultry Seafood Vegetables

lmo2348 lmo2348 Amino acid ABC
transporter permease 0.6776 0.6673 0.681 0.7901 0.7512 0.6673 0.6776

lmo2422 cesR Two-component
response regulator 0.6988 0.6498 0.6574 0.7883 0.7307 0.6498 0.6988

lmo0623 lmo0623 Hypothetical protein 0.6382 0.6382 0.6382 0.7877 0.7026 0.6382 0.6307
lmo0635 lmo0635 Hypothetical protein 0.6715 0.6715 0.7008 0.7872 0.744 0.6715 0.656
lmo2658 lmo2658 Hypothetical protein 0.5621 0.5409 0.5969 0.7859 0.6298 0.5644 0.5621
lmo0611 azoR1 Azoreductase 0.626 0.6511 0.7853 0.7737 0.626 0.626 0.6511
lmo1425 lmo1425 Hypothetical protein 0.7079 0.651 0.6755 0.7852 0.7607 0.651 0.7079

Note: The numbers represent importance based on the accuracies of source prediction by each feature (genes).
These values are the area under the receiver operating characteristic curve (AUC-ROC) determined from source-
specific sensitivities and specificities (Supplementary Tables S1 and S2).

3. Discussion
3.1. Source Attribution Model

A major prerequisite for improving public health is preventing the emergence and
spread of foodborne diseases. Source attribution models help link sporadic human cases
of a specific foodborne illness to its food source. With the increasing usage of genome
sequencing technologies, it is possible to identify genetic patterns indicative of the food
source of pathogens. Recently, machine learning models have been used to identify molec-
ular markers from foodborne pathogens linked with different hosts/phenotypes, which
could be used to trace the source of human infections [26,36,37,39]. In the current study, we
investigated the potential of machine learning to predict the food source origins of bacterial
strains isolated from human cases of listeriosis using machine learning analyses of cgMLST
data. Our machine learning model was able to recognize patterns in the complex dataset
and use this information to predict the source of human listeriosis isolates. These patterns
were based on variations in the genetic composition of L. monocytogenes isolated from
different food sources. Furthermore, we identified allele variations that can be considered
as being important predictors for this traceback process.

Due to the rapid adoption of genome sequencing technologies such as whole-genome
sequencing (WGS) in food microbiology and public safety, new source attribution modeling
approaches incorporating molecular information have been emerging. These methods
generate comprehensive genomic data, providing critical insight into the transmission
patterns of several major foodborne diseases, including listeriosis [42,43]. Here, we de-
veloped a machine learning-based source attribution model using the core genomes of
1212 L. monocytogenes isolates from different food sources. In our study, we have employed
a high cutoff for the cgMLST allele calls. As a result, missing values in the cgMLST profiles
can range from very low to very high, as seen in a prior study conducted by Kshirsagar
and colleagues (2012). Another potential reason for missing data could be that some of
the isolates may not possess the loci altogether. However, for successful modeling using
machine learning techniques, complete data is essential, since missing values impact the
overall effectiveness of the model(s). This issue can be overcome by imputing missing val-
ues [44]. In this study, missing allelic values in the food and clinical isolates were imputed.
The total number of allele calls imputed in the isolates ranged from <1–78%, based on data
completeness, which is consistent with that seen in a previous study [45]. As a result, our
model performance was considerably improved, as seen in the model statistics. As shown
in Table 1, logit boost was the best performing model (accuracy = 0.732, 95% confidence
interval (CI) 0.665–0.760; Kappa = 0.654). A recent study [46] used a similar method to
trace the source of salmonellosis, using random forest to determine the possible source of
zoonotic outbreaks [46].

After testing a number of ML approaches, logit boost was used in source attribution in
this study. Our model predicted that most of the listeriosis cases may have originated from
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produce (fruits 32.5%; vegetables 18.8%; leafy greens 14.3%), 9.7% from meat, 4.6% from
poultry, and 2.6% from seafood. Several studies have reported listeriosis outbreaks linked to
the consumption of meats, dairy products, fresh produce, and seafood contaminated with
L. monocytogenes [6,8,15,16,46–53]. Contamination of food sources may occur at any point
in the production chain due to many factors [16,54]. The primary source of contamination
or cross-contamination has been identified as originating from the farm environment,
machinery, and staff [55–57]. This, however, is contingent on food handlers’ level of
hygienic practice. To avoid cross-contamination or recontamination during production
and along the supply chain, food handlers must maintain personal hygiene and properly
sanitize touch surfaces and production lines [58]. Finally, optimal cooking temperatures for
specific food products should be considered during preparations [57], and temperatures in
storage refrigerators should be properly monitored to prevent pathogens from growing,
especially as L. monocytogenes stress response mechanisms allow it to survive non-thermal
hurdle interventions [59–61].

3.2. Important Top Twenty Predictor Genes

Identifying the origin, also known as attribution, of microbial isolates is important
within the realm of infectious diseases, specifically those caused due to direct or indirect
contact with food or food sources. Prior efforts in this direction have focused on comparing
the genotype, and its associated markers, of the isolate of interest with those seen in
source populations [62–67]. Thus, it stands to reason that the increase in usage of genome
sequencing methods in various aspects of food and outbreak surveillance should provide
researchers with a wealth of features to analyze for source attribution purposes. However,
the addition of such a large number of features can overwhelm current models due to the
sheer scale of data and the amount of computation time added [62–67].

Prior studies have shown how such issues can be addressed by analyzing these com-
plex data sets with ensemble machine learning classification [26,68]. In addition to accurate
predictions, machine learning models can identify features that have the best prediction
potential. Using our logit boost model, we identified 20 of the 736 L. monocytogenes genes
that were the most important predictors for the attribution of listeriosis to different food
sources. Our results (Table 2) showed that most of these genes were associated with
L. monocytogenes’ survival and stress response.

L. monocytogenes can adapt to, and survive, a wide range of stress conditions, including
extremes of pH, temperature, and salt concentrations, which makes it problematic for food
producers who rely on pathogen response to these stresses for food preservation. Stress
tolerance in L. monocytogenes can be partially explained by the presence of the general
stress response genes; transcription of these genes during host contamination provides
homeostatic and protective functions to cope with the stress [11,69]. The recR gene, which
encodes recombination protein and is involved in DNA repair, transcriptional genes degU,
cesR, and mlrA, which encode putative response regulators that control many virulence
factors, transporters lmo2215 and srlA, and many genes coding for hypothetical proteins
(lmo2401, lmo2577, lmo2348, lmo0623, lmo0635, lmo2658, and lmo1425) were identified as
being important in association with the food sources studied. The putative DegU response
regulator is a pleiotropic regulator involved in microbial motility at low temperatures [70].
This indicates the relevance of DegU in the current model, as most of the food sources
studied are refrigerated or frozen to extend their shelf life—DegU may enable the survival
of L. monocytogenes at low temperatures, contributing to its persistence in these foods,
subsequently leading to listeriosis in humans who consume the contaminated food.

Furthermore, the presence of the response regulator CesR and the histidine protein
kinase CesK, which is encoded by the gene downstream from cesR, indicates L. monocyto-
genes’ ability to tolerate ethanol and antibiotics of the beta-lactam family (which act on the
microbial cell wall) [71]. These genes may also enhance the persistence of L. monocytogenes
in different food sources. Eight out of the twenty most important genes were hypothetical
genes, which is in line with the findings of prior studies [36,39]. Thus, future studies in-



Pathogens 2022, 11, 691 7 of 12

volving the characterization of each gene to understand its importance in L. monocytogenes
adaptation and stress response along the food supply chain are warranted.

In the current study, we explored the use of machine learning in source attribu-
tion based on L. monocytogenes WGS data. Without a doubt, pathogens with food safety
implications are not fully understood biologically, such as the relationship between spe-
cific infections and their sources. Our study shows that incorporating machine learning,
surveillance, and monitoring infrastructures such as the National Antimicrobial Resistance
Monitoring System and GenomeTrakr (which have been generating and uploading copious
amounts of foodborne pathogen genomes) will allow researchers to draw a meaningful
conclusion from genome-informed datasets. Machine learning is presumably positioned
to address many of the current challenges in the food safety industry. By using machine
learning, it may be possible to uncover patterns in WGS data that are not easily gleaned
from traditional methods. Thus, it may be possible to solve difficult problems in food
source attribution using genomic data.

In conclusion, supervised machine learning was effective in attributing food sources
to listeriosis clinical cases based on WGS data. Inferring genetic information from pathogen
genotypes often proves crucial for biological inference. Source attribution of L. monocytogenes
infections allows food industry professionals, data managers, epidemiologists, microbiol-
ogists, and bioinformaticians to tailor their practices to prevent the spread of foodborne
pathogens. It also enables healthcare professionals to more efficiently use resources to
contain the survival and proliferation of pathogens at the source. As genomic data becomes
more widely available, WGS serves as a cost-effective method for public health surveillance.
With the availability of hundreds of thousands of genomes of foodborne pathogens and
evolutionary relationships rapidly being determined, sequencing information can be used
for prediction purposes when combined with useful isolate metadata, particularly in the
food safety domain. One limitation of this study was that, while an ideal validation scenario
would involve validating the model on a new data set (such as an unused subsample of
data during model training), all of our data were used for model development due to the
limited number of samples. However, in the future, the model can be validated on new
data as it becomes available.

4. Materials and Methods
4.1. Data Description

L. Monocytogenes isolates included in this study (n = 1366) were sampled from the
National Centers for Biotechnology Information’s (NCBI) Pathogen Detection database and
included 154 isolates from human listeriosis patients and 1212 isolates from food sources,
including dairy (197), fruits (302), leafy greens (115), meat (119), poultry (119), seafood
(145), and vegetables (215) (Supplementary Table S3). The included L. monocytogenes
isolates were extracted from food and clinical sources as part of integrated surveillance and
were previously sequenced (using different platforms such as Illumina HiSeq, NextSeq,
or MiSeq). A simple random sampling of 10 to 60% of all available isolates from each
source was performed, based on the availability of relevant metadata (such as location,
isolation source, source type, and Interagency Food Safety Analytics Collaboration (IFSAC)
category), which served as isolate inclusion criteria. The clinical isolates selected were
also sampled from publicly available sequences, and as such were not epidemiologically
associated with specific outbreaks.

4.2. Bioinformatics Analysis

Input for the source attribution model was generated from all sequences within the
data set by running cgMLST. The Enterobase scheme was used to obtain cgMLST [72,73]
in BioNumerics v.7.6 (Applied Maths, Sint Martens Latem, Belgium). L. monocytogenes
has 1748 core genes, with each loci having several allele variations [72,73]. The cgMLST
allele calls were accepted when the strains had a core genome coverage of more than 95%
(1661) of the 1748 core genome alleles, and detection of mixed sequence alleles of less than
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50 alleles. In some cases, BioNumerics may fail to call an allele as a result of stop codons,
indels, and other factors in the genome sequence, resulting in missing values in the cgMLST
profile. In such cases, we used the missForest package in R (version 4.1.2) to impute the
missing values. In the missForest package, missing values are imputed using random forest
trained on the observed data to predict the missing values [55].

4.3. Source Attribution Modeling

Machine learning algorithms were used to predict the food source of a given strain
isolated from human listeriosis cases based on allelic variations found in the core genes
of L. monocytogenes isolated from food sources (dairy, fruits, green leafy vegetables, meat,
poultry, and seafood). In this study, we used supervised machine learning classification
models. Here, our models learned patterns in the allelic variations of the L. monocytogenes
isolates from food sources. Modeling was carried out in R (v. 4.1.2, R Core Team, 2021;
Vienna, Austria) using the caret package [74,75].

4.3.1. Feature Reduction

The core genome of L. monocytogenes consists of 1748 loci [72,73]. Feature reduction
was performed using the nearZeroVar (near zero variance) function in the caret package
in R to remove some features (genes). NearZeroVar identifies features that have a single
unique value or have very few unique values relative to the number of samples, or when the
frequency ratio (frequency of most frequent value divided by the frequency of second most
frequent value) is large [74]. This is because retaining these redundant features that provide
no useful details to distinguish between the food sources may only increase computation
time and model complexity.

4.3.2. Machine Learning

Our feature-reduced cgMLST data was randomly split into a training set (70%) and a
testing set (30%). Four machine learning algorithms–random forest, logit boost, stochas-
tic gradient boosting, and support vector machine radial kernel–have been successfully
applied in studies analyzing WGS data [36,37,39,76] and were therefore used in training
our data. We used 10-fold cross-validation, which randomly partitions the training data
set into 10 equal folds—nine folds used for model training and one fold to estimate model
performance—to obtain the model with the best performance. This procedure was repeated
until 10 models had been trained, each using unique training and testing folds. The default
hyperparameter grid (in the R package caret) was employed to search for optimal tuning
parameters for all four algorithms. The final tuning parameters utilized for the models,
based on the best-fit Kappa values, were: LB (31 nIter), RF (38 mtry), GBM (150 n.trees,
3 interaction depth, 0.1 shrinkage, and 10 n.minobsinnode), and SVMR (0.002580397 sigma
and 1 C).

The developed models were evaluated against the testing set and the performance of
the models was assessed based on the Kappa value, model accuracy, and other confusion
matrix statistics. The accuracy was calculated from the models’ ability to correctly classify
the testing data set. The Kappa value is a statistic that compares the model accuracy
(observed accuracy) with the expected accuracy [77]. It shows the agreement between
predicted and actual classes and is especially important in highly unbalanced data where
the accuracy can be misleading. We performed 10 iterations of model training and testing
and selected the algorithm that achieved the highest average accuracy as the best algorithm
for further analysis.

A final model was developed by training the best-performing algorithm on the com-
plete feature-reduced cgMLST data. This was run to allow the algorithm to learn as much as
possible from the variability in the complete data set. This approach has been successfully
implemented by [26] and has been identified as the best approach for a predictive model.
The best performing model was then used to predict the probable food sources of each of
the 154 clinical L. monocytogenes isolates.
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