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Abstract: This study, conducted in a nature reserve in southern Portugal, investigated the frequency
and diversity of tick-borne piroplasms in six species of adult ixodid ticks removed from 71 fallow
deer (Dama dama) and 12 red deer (Cervus elaphus), collected over the period 2012–2019. The majority
of 520 ticks were Ixodes ricinus (78.5%), followed by Rhipicephalus sanguineus sensu lato, Hyalomma
lusitanicum, Haemaphysalis punctata, Dermacentor marginatus, and Ixodes hexagonus. The R. sanguineus
ticks collected from the deer were clearly exophilic, in contrast to the endophilic species usually
associated with dogs. Four tick-borne piroplasms, including Theileria spp., and the zoonotic species,
Babesia divergens and Babesia microti, were detected. B. divergens 18S rDNA, identical to that of the
bovine reference strain U16370 and to certain strains from red deer, was detected in I. ricinus ticks
removed from fallow deer. The sporadic detection of infections in ticks removed from the same
individual hosts suggests that the piroplasms were present in the ticks rather than the hosts. Theileria
sp. OT3 was found in I. ricinus and, along with T. capreoli, was also detected in some of the other tick
species. The natural vector and pathogenic significance of this piroplasm are unknown.

Keywords: Babesia; host blood analysis; fallow deer; ixodid ticks; piroplasm; red deer; Theileria

1. Introduction

The most common tick-borne diseases (TBDs) of humans in Europe (Lyme borreliosis
and tick-borne encephalitis) are notifiable to the European Centre for Disease Prevention
and Control (ECDC). However, diseases caused by less common tick-borne pathogens
(TBPs), such as Babesia, Theileria, and Rickettsia species, although representing potential
health risks for humans, domestic animals, or wildlife, are not included in current surveil-
lance schemes. In the absence of relevant surveillance schemes, molecular analysis of ticks
collected in areas where humans and animals are exposed to tick bites can detect endemic
TBPs; identify new ones; and, alongside reported human cases and serosurveys, contribute
to epidemiological information.

The climate, flora, and fauna of Tapada Nacional de Mafra, where the present study
was carried out, constitute a potential environment for ixodid ticks and TBPs. From 2012
to 2019, several species of adult ticks were collected from parasitized fallow (Dama dama)
and red deer (Cervus elaphus) during the spring and autumn seasons, when most tick
host-seeking activity occurs. The tick species involved can transmit and maintain several
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viral, bacterial, and protozoan pathogens of public health and veterinary importance [1–6].
In this study, we focused on the detection of piroplasm protozoans of the Babesia and
Theileria genera. These parasites infect erythrocytes (and also lymphocytes in the case of
Theileria spp.) of a variety of vertebrate hosts, but particularly cervids, which are prominent
components of the Tapada Nature Reserve fauna.

Of particular interest were the zoonotic species Babesia divergens and B. venatorum,
which belong to the Babesia sensu stricto (s.s.) group (Clade X [7]), and are transmitted
by Ixodes ricinus, the castor bean tick, the most widespread ixodid species in Europe [8].
While roe deer (Capreolus capreolus) are considered the natural hosts of B. venatorum [9,10],
cattle are the main reservoirs of B. divergens and frequently suffer clinical disease (redwater
fever) as a consequence of infection [11]. B. divergens-like DNA sequences have also been
reported in red deer, roe deer, reindeer (Rangifer tarandus), and fallow deer [9,12–18], but
there is some uncertainty about the precise identity of these parasites and, so far, there is
no evidence that Babesia isolates from deer are infectious for either humans or cattle [12,19].

Babesia microti, which is also potentially zoonotic, particularly in the USA [20], is dis-
tinct from the Babesia s.s. group and consists of a species complex divided into five distinct
clades, infecting a wide range of vertebrates with the notable exception of ungulates [21].
Those in clade 1, also referred to as B. microti sensu stricto (s.s.), cause most of the human
babesiosis cases worldwide, and those in clade 3 include the B. microti Munich strain,
which has an ambiguous zoonotic status [21]. In Europe, both B. microti s.s. strains and the
B. microti Munich strain have been detected in I. ricinus and in several mammal species,
particularly rodents. On the other hand, few cases of human babesiosis have been reported
in Europe so far [22], which appears to be at odds with the frequent occurrence of the
parasites in small mammals.

Theileria species are known to be transmitted by ixodid ticks of the genera Amblyomma,
Haemaphysalis, Hyalomma, and Rhipicephalus [23], and the recent detection of DNA of
Theileria spp., such as Theileria OT3 in I. ricinus, suggests that this tick species might also
be a Theileria vector [4,24]. Theileria spp. are not considered zoonotic [25], but some have a
major impact on the livestock industry, especially in tropical and sub-tropical countries [26],
while others can infect wild animals including red deer [27,28].

This study, focused on a sample of 520 adult ticks collected from fallow and red deer in
Tapada Nature Reserve, was conducted to determine the diversity and relative abundance
of the tick fauna, and their possible roles in the maintenance and transmission of Babesia
and Theileria parasites by the detection and amplification of the 18S rRNA and cytochrome
c oxidase subunit I (COI) genes.

2. Results
2.1. Ticks Removed from Deer

During the period 2012–2019, a total of 520 adult ticks were collected from May to
September in Tapada Nacional de Mafra, Portugal (Figure 1).

Of this total, 350 engorged female (67.3%) and 114 male ticks (21.9%) were removed
from 71 fallow deer, and 27 engorged female (5.19%) and 29 (5.58%) male ticks from 12 red
deer. Most of the identified ticks removed from fallow deer were I. ricinus (n = 377, 81.2%,
p < 0.05), followed by Rhipicephalus sanguineus sensu lato (s.l.) (n = 42, 9.0%), Hyalomma
lusitanicum (n = 22, 4.7%), Haemaphysalis punctata (n = 15, 3.2%), Dermacentor marginatus
(n = 6, 1.3%), and Ixodes hexagonus (n = 2, 0.4%). Ticks removed from red deer were iden-
tified as I. ricinus (n = 31, 55.4%), again the most abundant tick (p < 0.05), followed by R.
sanguineus s.l., (n = 23, 41.1%) and D. marginatus (n = 2, 3.6%) (Table 1).
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Figure 1. The locations of Tapada Nacional de Mafra and examples of sample sites. (a) The location
of Tapada Nacional de Mafra in Europe. (b) Pictures show different areas of Tapada Nacional de
Mafra inhabited by fallow and red deer.

Table 1. Species of ticks removed from fallow deer (Dama dama) and red deer (Cervus elaphus) in the
Tapada Nature Reserve, Portugal.

Hosts Ticks Species Common Name
Relative
Abundance in
Portugal [29]

Zoonotic
Pathogens *
Transmitted

Tested
(n) Female Male

Fallow
deer

Ixodes ricinus Castor bean tick Common
Babesia, Borrelia,
Rickettsia,
Anaplasma, TBEV

377 291 86

Rhipicephalus
sanguineus s.l. Brown dog tick Common Rickettsia 42 24 18

Hyalomma
lusitanicum None Locally

common in south None 22 15 7

Haemaphysalis
punctata Red sheep tick Sporadic

distribution None 15 13 2

Dermacentor
marginatus Ornate sheep tick Locally

common Rickettsia 6 5 1

Ixodes hexagonus Hedgehog tick Common None 2 2 -

Red
deer

I. ricinus As above As above As above 31 19 12

R. sanguineus s.l. As above As above As above 23 7 16

D. marginatus As above As above As above 2 1 1

Total 520 377 143

s.l.—sensu lato; TBEV—tick-borne encephalitis virus. * Most of these tick species have been implicated as carriers
of the agent of Q-fever, Coxiella burnetii, but their role as vectors of this pathogen is unclear.

2.2. Piroplasm Infection and Coinfection

Out of the 520 ticks tested, only 75 specimens of I. ricinus, R. sanguineus s.l., and H.
lusitanicum were found to be infected with piroplasms. B. divergens, T. capreoli, and Theileria
sp. OT3 were detected by real-time polymerase chain reaction (PCR) and sequencing of
part of the 18S rRNA gene (408–430 bp) [30,31], with Theileria sp. OT3 being the most
abundant (p < 0.05). In addition, two different B. microti 18S rDNA fragments of 157 and
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155 bp were detected by using a highly sensitive real-time PCR designed for the diagnosis
of B. microti human babesiosis [32].

In particular, of the 377 I. ricinus samples removed from fallow deer, 8 (2.1%) were
positive for B. divergens and 25 (6.6%) for B. microti. The B. microti 18S rDNA fragment of
157 bp was amplified in 7 ticks, while the fragment of 155 bp was amplified in another 18
ticks. I. ricinus was also infected with T. capreoli (n = 10, 2.7%) and Theileria sp. OT3 (n = 31,
8.3%) (Table 2).

Table 2. Babesia spp. and Theileria spp. DNA detected in ticks collected from fallow deer and red deer.

Host Tick species Tested
(n)

qPCR Result (n[%])

1 pathogen 2 pathogens 3 pathogens

Babesia
microti
+

Babesia Babesia Babesia Babesia Theileria Theileria
Divergens Divergens microti microti capreoli capreoli
+ + + + + +

Babesia
divergens

Babesia
microti

Theileria
sp. OT3

Theileria
capreoli

Babesia
microti

Theileria
sp. OT3

Theileria
sp. OT3

Theileria
capreoli

Theileria
sp. OT3

Theileria
sp. OT3

Fallow
deer

I. ricinus 377 5 (1.3) 14 (3.7) 22 (5.8) 6 (1.6) 2 (0.5) 1 (0.3) 6 (1.6) 2 (0.5) 1 (0.3) 1 (0.3)
R. sanguineus s.l. 42 - 3 (7.1) 2 (4.8) - - - 1 (2.4) - - -
H. lusitanicum 22 - 2 (9.1) - - - - - - - -

Red
deer

I. ricinus 31 - - - 5 (16.1) - - - - - -
R. sanguineus s.l. 23 - - 1 (4.3) 1 (4.3) - - - - - -

Co-infections involving B. microti with the following species were as follows:
B. divergens (n = 2), T. capreoli (n = 2), Theileria sp. OT3 (n = 6), and T. capreoli /Theileria sp.

OT3 (n = 1). Coinfections with B. divergens/Theileria sp.OT3 (n = 1) and T. capreoli/Theileria
sp. OT3 (n = 1) were also detected (Table 2).

Of the 31 I. ricinus samples collected from red deer, 5 (16.1%) tested positive for
T. capreoli (Table 2). Of the 42 R. sanguineus s.l. ticks collected from fallow deer, 3 (7.1%)
were positive for B. microti (155 bp fragment) and 2 (4.8%) for Theileria sp. OT3. One
B. microti/Theileria sp. OT3 coinfection was also detected. Of the 23 R. sanguineus s.l. ticks
collected from red deer, 4.3% were positive for T. capreoli (n = 1) and Theileria sp. OT3
(n = 1), respectively.

Finally, of the 22 H. lusitanicum samples removed from fallow deer, 2 (9.1%) were
found to be infected with B. microti (155 bp fragment). We did not detect co-infections in
ticks collected from red deer or infected H. lusitanicum (Table 2).

Of note, in most cases (63%), only one of several ticks removed from the same deer
tested positive for any one of the piroplasms (Supplementary Tables S1 and S2).

2.2.1. Babesia Spp. Typing

An almost entire sequence (1492 bp) of the B. divergens 18S rRNA gene was obtained
from four of the eight infected I. ricinus ticks that were removed from fallow deer. No
nucleotide variations were detected among these sequences, which were 100% identical to
several entire human and bovine isolates including the bovine isolate GenBank: U16370,
widely used as a reference [33] (Figure 2). The presence of B. capreoli, a very closely related
species to B. divergens commonly associated with deer [12], was ruled out by both the
18S rDNA analysis [19] and also by amplification of part (234 bp) of the COI gene, which
confirmed the identity of the piroplasms as B. divergens.
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Figure 2. The relative length, positions, and heterologies of 18S rDNA gene sequences of Babesia
divergens obtained in this work, together with others from cattle, human, and red deer compared
to the reference sequence U16370. Of the 13 B. divergens isolates used to compare regions of the
18S rRNA gene, the sequences obtained in this work (QL442191) were 100% identical to that of the
reference bovine isolate (U16370) and to those of several others from cattle and red deer, and also to
one human isolate. However, most other published red deer sequences differed from QL442191 and
the bovine B. divergens reference strain by up to 7 nucleotides in various positions. The numbers and
letters refer to positions and nucleotide bases that are different from the reference sequence. Identity
scores are made according to Clustal Omega.

The B. microti 157 bp fragment was 100% identical to the B. microti 18S rRNA gene of
seven different sequences in GenBank, five of which had been identified as the B. microti
Munich strain. The 155 bp fragment was 100% identical to the B. microti 18S rDNA from
a number of human and Ixodes tick isolates of B. microti (n = 47), including the B. microti
isolate Jena EF413181 responsible for the autochthonous human B. microti infection that
occurred in Germany [34] (Supplementary Figure S1). To provide phylogenetic analysis of
the two B. microti isolates, PCR reactions for amplifying larger fragments of the 18S rRNA
gene and also part of the COI gene were performed [35], but did not yield any products.
The limitation in obtaining large fragments of the gene could be associated with a low
number of parasites present in ticks and an inverse correlation between the efficiency of
the amplification and the size of the fragment.

2.2.2. Theileria Spp. Typing

To obtain more sequence information about the Theileria isolates, we amplified and
sequenced almost the entire 18S rRNA gene. The 18S rDNA sequence (1230 bp length)
obtained from 1 I. ricinus of 16 ixodid ticks infected with T. capreoli was 100% identical
to 3 T. capreoli 18S rDNA isolates in the databank, including one associated with the first
theileriosis case detected in Spain in a red deer imported from Northern Europe (GenBank:
AY421708.1) [36].

The 18S rDNA sequences obtained from 4 I. ricinus ticks out of 33 infected with
Theileria sp. OT3 (1218 bp) were 100% identical to each other and to two Theileri sp. 18S
rDNA records in GenBank, while one of them was associated with the first report on
the occurrence of Theileria sp. OT3 in sheep in China (KF470868) [37]. These nucleotide
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sequences from Tapada and China differed by one or two nucleotides (99.92–99.84%) from
Theileria sp. OT3 18S rDNA sequences from sheep, chamois, red deer, and roe deer from
Spain [28].

3. Discussion

Six different tick species were collected from fallow and red deer in Tapada, Portugal.
These tick species occur across the Iberian Peninsula [15,29,38–41] and five of them, I.
ricinus, R. sanguineus, H. lusitanicum, H. punctata, and D. marginatus, have been previously
associated with fallow and red deer in Portugal [29]. The finding of the hedgehog tick,
I. hexagonus, on fallow deer is unusual, though it has been reported previously on roe
deer [42].

Some of the tick species collected (e.g., R. sanguineus s.l., D. marginatus, and H. lusitan-
icum) are regarded as adapted to drier habitats than occur in the reserve. It was, therefore,
surprising to find them in the wet habitat and fauna of Tapada where they coexist with I.
ricinus, which, as the most common species in Atlantic climatic regions [38], was the most
abundant, as expected.

B. divergens was detected in 2.1% of I. ricinus specimens, which is similar to infection
rates for adult ticks elsewhere in Europe [43]. The pathogen’s identity was determined
by detection of the almost complete 18S rRNA gene, which was identical to the bovine
isolate U16370 and differed slightly from the closely related cervine species, B. capreoli, [19].
Specific amplification of part of the B. divergens cytochrome c oxidase subunit I (COI) gene
unequivocally supported the 18S rRNA gene differentiation of these B. divergens sequences
from B. capreoli. The apparent absence of B. capreoli is perhaps surprising considering
that it is regarded as a cervid Babesia species. However, it should be noted that roe deer,
possibly its primary host, are not present in this habitat, which also explains the absence of
Babesia venatorum.

It is curious that the B. divergens sequences were only detected in ticks removed from
fallow deer, considering that the only previous reports of complete identity of B. divergens
in deer with U16370 have been in occasional samples from red rather than fallow deer
(e.g., [16] and GenBank accession numbers MH697659, KX018019, MT151377, MN563158,
and GQ304524). This apparent association of B. divergens-infected ticks with fallow deer
is difficult to interpret, considering that red deer were also present in the habitat, but
did not yield B. divergens-infected ticks, though it should be noted that the number of
I. ricinus obtained from fallow deer was far higher than from red deer (371 versus 31).
B. divergens-like parasites have rarely been reported from fallow deer, as reports either
provide no sequence data [15,44] or only partial sequences [GenBank Accession Numbers
KY242395, KY242396] which show low homology with the bovine reference strain U16370.
It, therefore, appears probable that the detected pathogen was present in the ticks rather
than in the fallow deer on which they were feeding. Since there are no cattle near the
study site, red deer remain the most plausible source of these B. divergens sequences, which
showed 100% identity to two long 18S rDNA sequences of 1639 bp and 1648 bp deposited
in GenBank (GQ304524, GQ304525) obtained from red deer spleen. It is notable that the
infected ticks were collected from deer that were mostly a source of uninfected ticks, again
suggesting that the infections were present in the ticks rather than the deer, having been
acquired by the previous tick generation and persisted in the collected ticks.

It is important to point out that there is, in fact, still no unequivocal evidence that B.
divergens-like piroplasms from deer can cause human babesiosis or, indeed, even infect
cattle, and it is interesting that, in a recent study, B. divergens was not detected in cattle
that were in close proximity to infected deer [45]. The 18S rRNA gene is probably not the
optimal choice for discrimination of B. divergens genotypes, although sequences of this
gene are the most widely available [22]. Cross transmission studies are required to further
explore the host specificity of B. divergens from deer, including the use of gerbils (Meriones
unguiculatus) as proxies for humans [46]. So far, transmission experiments have not resulted
in established infections, except in deer that had been splenectomized [11].
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The other Babesia species identified in this study was B. microti, DNA fragments of
which were detected in I. ricinus, R. sanguineus s.l., and H. lusitanicum adult ticks. While
I. ricinus is a recognized vector of B. microti [47], R. sanguineus s.l. does not transmit
the parasite [48]. So far, the uncommon H. lusitanicum–B. microti association, although
previously detected in Spain, has not been supported by vector competence evidence
either [15]. Based on the 18S rRNA gene fragments obtained in this study, two different
B. microti strains may infect I. ricinus ticks in Tapada. One strain is evidently related
to clade 1, to which zoonotic North American genotypes belong, and the second to the
Munich strain, which belongs to clade 3 [21]. This latter genotype was once thought to be
transmitted only by I. trianguliceps, which does not bite humans, but it has been detected
in the anthropophilic I. ricinus [49–51] and has been associated with asymptomatic and
moderate human babesiosis in Europe [52,53]. It seems, therefore, that zoonotic forms of B.
microti might occur in Tapada, and to investigate this further, we are currently validating
methods, such as the MinION long-read sequencing technology, to generate full-length
nucleotide sequences of different molecular markers.

The detection in I. ricinus of DNA of Theileria sp OT3 and T. capreoli, associated with
sheep and red deer, respectively, in China and Spain, supports previous suggestions that
this tick species is a vector of certain Theileria spp. [14,24,54–56]. No sheep are observed in
the immediate vicinity of Tapada and it is probable that deer are the reservoir hosts for the
Theileria species detected in this study.

The co-existence of different piroplasms within the same tick in Tapada added an
additional layer of complexity to the analysis of the tick–host relationships and pathogen
transmission. Coinfections could be due to blood feeding on different vertebrate hosts or
through co-feeding [3,57], although the latter is less likely to consider the small number of
deer that carried several infected ticks at the same time. However, this hypothesis demands
a more comprehensive evaluation and robust co-infection models [3,58].

4. Conclusions

This study shows the presence of Babesia and Theileria DNA in ticks from Tapada and
suggests certain associations between infected ticks and susceptible hosts. The finding of B.
divergens DNA identical to sequences from cattle supports observations made previously
for a small proportion of sequences from red deer, and has possible implications for the
role of these hosts in bovine and human babesiosis. However, at present, there are no
transmission or epidemiological studies which suggest that the B. divergens strains detected
in deer are infective for humans or cattle. Another interesting outcome of the study is the
possible association of Theileria spp. with I. ricinus, which has not been firmly established
as a vector of these piroplasms. The detection of B. microti in the ticks is not surprising,
since this species complex is very widespread in Europe as a parasite of small mammals,
but the fragments of B. microti DNA obtained were too small to draw any firm conclusions
about the presence of zoonotic strains of this parasite in the reserve. Future studies should
focus on alternatives to the 18S rRNA gene for pathogen identification, and should be
combined with innovative sensitive and specific blood meal analysis methods, such as the
use of retrotransposons in qPCR assays [59] in both fed and unfed ticks, to obtain a more
complete picture of tick-borne pathogen epidemiology in complex habitats such as Tapada
Nature Reserve.

5. Materials and Methods
5.1. Tick Samples

A total of 520 adult ticks were manually removed from 71 fallow deer (D. dama) and
12 red deer (C. elaphus) from May to September, during the period of 2012 to 2019 in Tapada
Nacional de Mafra (38◦57′10′ ′ N, 9◦17′47.68′ ′ W), district of Lisbon, west coast of Portugal.
This nature reserve of 819 hectares is about 7 km from Mafra, Portugal. Mixed forests of
eucalyptus (Eucalyptus globulus); cork oak (Quercus suber); maritime pine (Pinus pinaster);
stone pine (Pinus pinea); and other less common tree species, bushes, and shrubs constitute
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the main vegetation. Within this habitat, fallow and red deer coexist with medium-sized
mammals such as foxes and wild boar, as well as small mammals including shrews, mice,
and several species of bats [60]. There are no livestock in the reserve which can be visited
by the public on weekends.

The ticks in this study were collected from the deer as part of management of the
reserve. Deer immobilization and tick collection were authorized by Tapada Nacional de
Mafra-Cooperativa de Interesse Público de Responsabilidade Limitada (CIPRL), following
the European Council Directive 97/62/EC of 27.10.1997 on the conservation of natural
habitats and of wild fauna and flora, and conducted by qualified veterinarians from
the non-profit nature conservation organization BeWild. The collected ticks were then
kindly donated to the study by BeWild. Tissue and/or blood samples from these animals
for pathogen analysis were not available. Ticks were received in polypropylene tubes
containing 70% ethanol. They were then separated by sex and identified to species level
following morphological and taxonomic keys [61]. All ticks were individually stored at
4 ◦C until molecular analysis.

5.2. Genomic DNA Extraction

Ticks were individually rinsed in sterile phosphate buffered saline (PBS) solution,
before being disrupted and homogenized with pestles. Genomic DNA was extracted
from each homogenized tick using the commercial kit Speedtools® tissue DNA extraction
(Biotools, Madrid, Spain) according to the manufacturer’s instructions with slight mod-
ifications. RNA was removed by RNase digestion (Roche Diagnostic GmbH, Germany).
Quantification and purity of the DNA samples were determined by spectrophotometry
with a NanoDrop ND-1000 spectrophotometer (Nucliber, Madrid, Spain). DNA samples
were eluted in 100 µL of sterile water and stored at −20 ◦C for further analysis.

5.3. Detection of Piroplasms

Molecular methods for detecting the presence of piroplasms were based on amplifica-
tion of part of the 18S rRNA gene. All ticks were tested using (i) the piroplasm real-time
PCR and primers PIRO-A and PIRO-B [30,31] and (ii) a B. microti real-time PCR using the
specific set of primers Bab2/Bab3 [32]. To unequivocally distinguish between B. divergens
and B. capreoli, amplification of part of the COI gene was carried out following a previously
described protocol [13]. A conventional PCR was optimized to amplify large fragments
of the 18S rRNA gene using samples that were previously found positive for B. diver-
gens and Theileria species. A nested PCR was also performed to amplify large fragments
of the 18S rRNA gene using positive B. microti samples [35]. The set of primers were:
18SRNABABF1/18SRNABABR1 for B. divergens, BABGF2/18SRNABABR1 for Theileria
spp., and Piro0F2/Piro6R2 and Piro1F2/Piro5R2 for B. microti. Table 3 shows all primers
and expected sizes of the amplified products.

Each reaction was performed in a final volume of 50 µL containing 200–400 ng of DNA,
2X PrimeStar GXL Buffer (Takara Bio, Shiga, Japan), 800 µM of dNTPs mixture (Takara Bio),
1.25 U of PrimerStar GXL DNA polymerase (Takara Bio), 1 µL (20 mg/mL) of BSA DNAse
Free (Roche, Basel Switzerland), and 0.3 µM of each primer.

DNA from B. divergens Bd Rouen 1987 and B. microti Gray (ATCC® 30221™) were
used as positive controls and water as negative control. To minimize contamination, false-
positive samples, DNA extraction, PCR master-mix preparation, sample addition, and PCR
reactions were performed in different biosafety cabinets in separate laboratories.

5.4. DNA Sequencing and Analysis

All positives qPCR and PCR products were separated on 1% and 2% agarose gels
(Conda, Spain) stained with Pronasafe nucleic acid staining solution (10 mg/mL) (Conda,
Spain) and visualized under UV illumination. The DNA bands were cut out of agarose gels
under UV exposure, and purified using the mi-Gel Extraction Kit (Metabion international
AG, Steinkirchen Germany). Both strands of DNA fragments were sequenced using an ABI
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PRISM 3730XL DNA Analyzer (Applied Biosystems, San Francisco, CA, USA). Primers and
internal walking primers were used for sequencing B. divergens, T. capreoli, and Theileria
sp. OT3 18S rRNA and cyt b genes. The subsequent electropherograms of the nucleotide
sequences were manually inspected, corrected, and edited using ChromasPro program
(McCarthy, Queensland, Australia) and LaserGene 12.1 program (DNAStar, Madison, WI,
USA). All nucleotide sequences were compared to those deposited in the NCBI GenBank
database using the BLAST algorithm (http://www.ncbi.nlm.nih.gov/BLAST, 27 November
2012). Nucleotide sequences longer than 200 bp were deposited in the NCBI GenBank
under the following accession numbers: OL442188, OL442187, and OL442191.

Table 3. Targets, oligonucleotide primers, size of amplicons, and melting temperature of the primers
used for the PCR detection of piroplasms in ticks removed from fallow deer and red deer.

Target
Gene *

Primer
Name

Nucleotide
Sequence (5′-3′) Product Size (bp) Tm (◦C) Reference

18S PIROA AATACCCAATCCTGACACAGGG 408–430 62 [30,31]
rRNA PIROB TTAAATACGAATGCCCCCAAC

Bab2 GTTATAGTTTATTTGATGTTCGTTT 155–157 54 [32]
Bab3 AAGCCATGCGATTCGCTAAT

COI Bdiv-F165 AGTGGAACTGGGTGGACATTGTAC 234 60 [13]
Bdiv-R398 TACCGGCAATGACAAAAGTAG
BcapF165 AGTGGAACAGGATGGACGCTATAT 443 60 [13]
Bcap-R607 GTCTGATTACCGAACACTTCC

18S 18SRNABABF1 GCATGTCTAAGTACAAACTTTTTAC 1610 60 This study
rRNA 18SRNABABR1 AAGGTTCACAAGACTTCCCTAGGC

BABGF2 GTCTTGTAATTGGAATGATGG 1192 55 This study
18SRNABABR1 AAGGTTCACAAGACTTCCCTAGGC
Piro0F2 GCCAGTAGTCATATGCTTGTCTTA 1702 60 [35]
Piro6R2 CTCCTTCCTTTAAGTGATAAGGTTCAC
Piro1F2 CCATGCATGTCTTAGTATAAGCTTTTA 1670 60 [35]
Piro5R2 CCTTTAAGTGATAAGGTTCACAAAACTT

COI Cox1F133 GGAGAGCTAGGTAGTAGTGGAGATAGG 1023 56 [35]
Cox1R1130 GTGGAAGTGAGCTACCACATACGCTG

18S rRNA- 18S ribosomal RNA, COI- cytochrome c oxidase subunit I, Tm- melting temperature.

5.5. Statistical Analysis

Statistical analyses were performed using the ABI-Prism 9 software. The level of
significance was set at p < 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens11020222/s1, Figure S1: Babesia microti detection by PCR and DNA sequencing.
Table S1: Tick species removed from fallow deer, showing distribution of piroplasm-infected ticks.
Table S2: Tick species removed from red deer, showing distribution of piroplasm-infected ticks.
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42. Opalińska, P.; Wierzbicka, A.; Asman, M.; Rączka, G.; Dyderski, M.K.; Nowak-Chmura, M. Fivefold higher abundance of ticks
(Acari: Ixodida) on the European roe deer (Capreolus capreolus L.) forest than field ecotypes. Sci. Rep. 2021, 11, 10649. [CrossRef]

43. Radzijevskaja, J.; Paulauskas, A.; Rosef, O. Prevalence of Anaplasma phagocytophilum and Babesia divergens in Ixodes ricinus ticks
from Lithuania and Norway. Int. J. Med. Microbiol. 2008, 298, 218–221. [CrossRef]

44. Silaghi, C.; Fröhlich, J.; Reindl, H.; Hamel, D.; Rehbein, S. Anaplasma phagocytophilum and Babesia species of sympatric roe deer
(Capreolus capreolus), fallow deer (Dama dama), sika deer (Cervus nippon) and red deer (Cervus elaphus) in Germany. Pathogens 2020,
9, 968. [CrossRef] [PubMed]
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