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Abstract: The coronavirus transforms the cytoplasm of susceptible cells to support virus replication.
It also activates autophagy-like processes, the role of which is not well understood. Here, we studied
SARS-CoV-2-infected Vero E6 cells using transmission electron microscopy and autophagy PCR array.
After 6–24 h post-infection (hpi), the cytoplasm of infected cells only contained double-membrane
vesicles, phagophores, and phagosomes engulfing virus particles and cytoplasmic debris, including
damaged mitochondria. The phagosomes interacted with the viral nucleoprotein complex, virus
particles, mitochondria, and lipid droplets. The phagosomes transformed into egress vacuoles, which
broke through the plasmalemma and discharged the virus particles. The Vero E6 cells exhibited
pronounced virus replication at 6 hpi, which stabilized at 18–24 hpi at a high level. The autophagy
PCR array tests revealed a significant upregulation of 10 and downregulation of 8 autophagic gene
markers out of 84. Altogether, these results underline the importance of autophagy-like processes for
SARS-CoV-2 maturation and egress, and point to deviations from a canonical autophagy response.

Keywords: SARS-CoV-2; autophagy; mitophagy; virus maturation; virus egress; gene regulation

1. Introduction

Several cellular mechanisms involved in coronavirus infection, including that caused
by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been described
down to the molecular level [1–3]. The entry of the virus begins as the viral spike protein
binds to the receptor angiotensin I, converting enzyme 2 (ACE2) via its receptor binding
domains, and it is primed by cellular proteases to initiate the membranes’ fusion [4,5].
Recent studies suggest that coronaviruses replicate in the cytoplasm by hijacking cellular
RNA and protein synthesis systems [6,7]. Coronaviruses target the two major organelles
involved in cellular proteosynthesis, endoplasmic reticulum (ER) and Golgi apparatus
(GA), causing the disintegration of the ER network and fragmentation of the GA [8,9].
Despite the intensive research, the maturation and egress of the virus are less understood
due to the complexity of the process and ambiguous findings. The formation of coronavirus
particles begins when a sufficient amount of viral RNA and protein components have been
synthesized. The virus ribonucleoprotein complex (vRNP) starts to cluster at the surface
of specific double-membrane vesicles (DMVs) of the endoplasmic reticulum and Golgi
intermediate compartment (ERGIC). By budding through the vesicle membrane to the
interior of the vesicles [2], the virus particles gain their membrane and associated proteins
and prepare for maturation. This process is paralleled by the formation of diverse vesicles
and complex membrane bodies originating from ERGIC, which contain viruses at different
stages of maturation [10,11]. Lysosomes, organelles directly involved in the autophagic
pathway, also play a role in coronavirus trafficking and exocytosis of mature virions [12,13].
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Finally, the virus-containing vesicles transform, fuse with the plasmalemma, and release
mature viruses in the extracellular space [11].

The morphologic and molecular evidence revealed activation of the autophagic pro-
cess by various RNA viruses as well as coronaviruses to promote their replication [14–16].
Autophagy, as a constitutive pathway activated in cells during starvation or infection, in-
volves the generation of double-membrane vesicles called autophagosomes. It is important
to note that mitochondria are degraded by autophagy (mitophagy) too. Mitophagy can
also be triggered by viruses binding to mitochondrial receptors to evade innate immunity
by promoting sequestration into a phagophore [17,18]. According to the canonical process,
autophagosomes form from phagophores (appearing in the electron microscope as flattened
membrane vesicles) by growing the membrane and engulfing a part of the cytoplasmic
volume with remnants of damaged organelles, protein aggregates, and pathogens [19].
Once fully enclosed, a phagophore fuses with an acidic lysosome providing proteases,
which digest the autophagosomal content before its release to the extracellular space [19].
Formation of autophagy-specific phagophores requires the activation of the phosphatidyli-
nositol 3-kinase complex containing protein PIK3C3, BECN1, and other autophagy-related
proteins (Atg) (Atg38, Atg14, BECN1/Atg6). Phagophore growth and maturation occur
via the action of the ubiquitin conjugation system (ULK complex) regulated by the mam-
malian target of rapamycin (mTOR) and the activity of several other Atg8-family proteins
such as LC3 and GABARAP [15,20]. Activation and a positive role of autophagy were
demonstrated in the case of various coronaviruses including SARS-CoV, although activa-
tion of the full pathway was not required for virus replication [21]. In addition, there is
strong experimental evidence that SARS-CoV replication is independent of a functional
ubiquitin–proteasome system (UPS) [22] and that autophagy pathways may not be directly
implicated in the replication of the virus, unlike for other coronaviruses [23]. Moreover,
as recent findings show, autophagy may also be negatively regulated by the MERS coro-
navirus to promote its replication [24]. Therefore, questions about whether and how the
cellular autophagosomal process is involved in SARS-CoV-2 replication, assembly, and
egress warrants further investigation.

In this study, we analyzed the transformation of the cytoplasm of Vero E6 cells infected
by the SARS-CoV-2 isolate. We focused on autophagy-like processes activated by virus
replication by using transmission electron microscopy and PCR array tests for autophagy-
related genes. We found morphological support for the activation of the autophagy but
deviated from the canonical processes, which was supported by the partial regulation of
autophagy-related genes.

2. Materials and Methods
2.1. Cell Cultures and Infection with SARS-CoV-2

Vero E6 cells (Vero C1008, ATCC CRL 1586) were purchased from ATCC, Manassas,
USA, and cultured in a T-25 cell culture flask (Greiner Bio-One, Frickenhausen, Germany)
as adherent monolayer until ~80% confluence in DMEM culture medium (Dulbecco’s Mod-
ified Eagle’s Medium), supplemented with 5% fetal bovine serum, antibiotics penicillin-
streptomycin (Gibco ThermoFisher Scientific, Waltham, MA, USA), and the antimycotic
amphotericin B (MilliporeSigma, Darmstadt, Germany) at 37 ◦C and 5% CO2 saturation.
This cell line was chosen as it supports high levels of SARS-CoV-2 replication and propaga-
tion [25]. Cells were infected with SARS-CoV-2, strain Slovakia/SK-BMC5/2020. The strain
was isolated from a COVID-19 patient from Slovakia in March 2020, and the complete
sequence was deposited on GISAID.org under the accession number ID EPI_ISL_417879.
The isolate was deposited in the European Virus Archive GLOBAL and is available at https:
//www.european-virus-archive.com/virus/sars-cov-2-strain-slovakiask-bmc52020 (ac-
cessed on 6 March 2020). Three hundred µl of the virus suspension (titer 3 × 107/mL) was
added to the cells and incubated for 1 h at 37 ◦C and 5% CO2 saturation. The virus was
removed from cell cultures by washing with sterile buffer solution pH 7.2. Infected cells
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were further incubated in a fresh culture medium for 6, 18, and 24 h. Non-infected cells
were prepared and processed in parallel as a negative control.

2.2. SARS-CoV-2 Replication In Vitro and TCID50 Assay

The replication dynamic of SARS-CoV-2 in Vero E6 cells infected at specific time points
post-infection (hpi) as specified above was measured using quantitative PCR (qPCR). Total
RNA from the infected and control cells was isolated using Trizol Reagent (ThermoFisher
Scientific, Waltham, MA, USA). One µg of total RNA was reversely transcribed to cDNA
using the LunaScript RT Supermix kit, employing oligo dT/random hexamer protocol
(NEB, Ipswich, MA, USA). One µL of cDNA was used in SYBR Green-labelled PCR reaction
of which parameters were as follows: initial denaturation at 95 ◦C for 10 min, followed by
40 cycles at 95 ◦C for 10 s, and 58 ◦C for 1 min. The final step in the amplification cycle
was a melt curve analysis at 65 ◦C for 30 s, increased by 0.5 ◦C per cycle to 95 ◦C, to ensure
the specificity of the amplicons. The amplification was performed in an AriaMx real-time
thermal cycler (Agilent Technologies, Santa Clara, CA, USA) using Maxima SYBR Green
ROX master mix (Thermo Fisher Scientific, Waltham, MA, USA). Viral load in the cells was
based on a transcript level of the E gene, detected with the following primers F: 5′-ACA
GGT ACG TTA ATA GTT AAT AGC GT-3′; R: 5′-ATA TTG CAG CAG TAC GCA CAC
A-3′ [26]. It was normalized with a house-keeping gene, β-actin, using following primers F:
5’-TCC TCC CTG GAG AAG AGC TA-3′; R: 5′-ACA TCT GCT GGA AGG TGG AC-3′.

TCID50 assay was performed to estimate the sensitivity of the studied cell line to the
virus extract (24 hpi) and visualize its cytopathic effect. A serially diluted virus medium
from 10−1 to 10−10 was added to subconfluent cells growing in 96-well plates in quadru-
plicates and incubated for 4 days at 37 ◦C and 5% CO2. Following a 4-day incubation, the
cell culture medium containing detached cells was removed, and the remaining attached
viable cells were fixed with 4% formaldehyde for 20 min at room temperature (RT). After
fixation, cells were stained with crystal violet for visualization.

2.3. Transmission Electron Microscopy

Upon 6, 18, or 24 h post-infection, the culture medium with SARS-CoV-2 was dis-
carded, and the cells were washed with sterile buffer solution pH 7.2 and enzymatically
detached from the culture flask using TrypLE Express reagent (Gibco ThermoFisher Scien-
tific, Waltham, MA, USA). Detached cells were pelleted at 200 g for 10 min, re-suspended
and washed in sterile buffer solution pH 7.2, and centrifuged at 200 g for 10 min. Cell
pellets were fixed in 2% glutaraldehyde in cacodylate buffer (150 mM Na-cacodylate,
2.0 mM CaCl2 at pH 7.3). After a brief prewash with the fixative buffer, the pellets were
prefixed in a fresh aliquot of the fixative for 2 h at 4 ◦C in centrifuge tubes. The hardened
pellets were transferred to glass vials containing a fresh fixative and incubated again for
2 h at 4 ◦C. Upon fixation, the pellets were continuously washed with cacodylate buffer
for 10 min, post-fixed for 45 min in 1% osmium tetroxide (OsO4) in cacodylate buffer,
contrasted overnight in the saturated aqueous solution of uranyl acetate at RT, dehydrated
in graded ethanol series and propylene oxide, embedded into Durcupan (Fluka, AG, Buchs,
Switzerland), and polymerized at 60 ◦C for 3 days. Ultrathin sections (58–60 nm) were
cut by Power-Tome MT-XL (RMC/Sorvall, Tuscon, AZ, USA) ultramicrotome, placed on
formvar-coated copper grids, and contrasted with lead citrate. Ultrathin sections were
examined with JEM 1200 electron microscope (Jeol, Tokyo, Japan) at 80 kV. Selected cell
images were recorded by the Gatan Dual Vision 300 W CCD camera (Gatan Inc., Pleasan-
ton, CA, USA) at a magnification of 30,000–200,000×. Due to comparable morphological
observations in cells inspected at all post-infection time points, we present herein only cell
images taken at 24 hpi.

2.4. RT2 Profiler Autophagy PCR Array in SARS-CoV-2-Infected Cells

An autophagy PCR array was carried out in Vero E6 cells sampled at 24 hpi to
correlate with the microscopic observations. Upon RNA isolation as described above, the
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RNA concentration and quality were assessed using the NanoDrop spectrophotometer
(NanoDrop Technologies LLC, Wilmington, DE, USA) and RNA LabChip BioAnalyzer
(Agilent Technologies, Santa Clara, CA, USA), respectively. To ensure reliable results
in subsequent PCR arrays, only RNA samples with a RIN number above 7 were used.
Five µg of total RNA was reversely transcribed to cDNA using the RT2 First Strand kit
(Qiagen, Hilden, Germany), employing the genomic DNA elimination buffer and the
oligo dT/random hexamer protocol. The RT2 Profiler Autophagy PCR array (Qiagen,
Hilden, Germany) was used for the expression of the multiple autophagy-related genes
potentially activated in response to SARS-CoV-2 infection. One array in 96-well format per
sample (control and experimental) was used according to the manufacturer’s manual. Raw
expression data (Cq values) were converted into the fold-change/regulation values in the
data analysis web-based tool available at SABiosciences.com.

3. Results and Discussion
3.1. Morphology of Infected Cells

The transformation of Vero E6 cells infected with SARS-CoV-2 was studied using
transmission electron microscopy to characterize cellular details during virus maturation
up to the egress. The major effect of the post-infection time was in the relative number of
normal, infected, and dead cells in the culture dish rather than in the morphology of the
infected cells. This indicates that once the cell was infected, it underwent the morphological
transformation relatively fast. As the exact time of infection of individual cells was not
known, we focused here on general changes. The overall features that characterized infected
cells (Figure 1) included large regions of electron-dense cytoplasm containing numerous
vesicles and membrane bodies, modified and split mitochondria, lipid droplets, numerous
ribosomes, emerging phagophore, phagosome-like structures, and numerous virus-like
particles. Endoplasmic reticulum and Golgi apparatus membranes, with morphology as in
naïve cells, were rare.
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with membrane envelopes and de novo formation of the virus particles. This process was 
described as the budding of the vRNP complex to the lumen of the vesicle through the 
membrane with an already built-in spike protein complex [30,31]. However, as we will 
show below, the virus budding could be more complex, as was the fate of the virus parti-
cles in the cell from the assemblage, through maturation, up to egress. 

Figure 1. Subcellular structures of the cell lines infected with SARS-CoV-2. (A) Typical electron
microscopy image of control Vero E6 cell showing cytoplasm with organelles near the nucleus.
(B) Typical EM image of cytoplasm near the nucleus of SARS-CoV-2-infected Vero E6 cell 24 h post-
infection. White asterisks—mitochondria, n—nucleus, short arrow—vesicle with attached virus
particles, arrowheads—virus particles.

The higher electron density of cytosol in the infected Vero E6 cells (Figures 1B and 2)
resulted to a large extent from the increased amount of freely distributed ribosomes and the
intense production of virus constituents. The endoplasmic reticulum was transformed into
a system of proliferated membranes of various shapes and sizes. A similar transformation
comprised Golgi membranes that, together with proliferating ER, gave rise to copious
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membrane bodies (Figure 2), as described previously [27]. Of special importance are
double-membrane vesicles (DMVs), which were shown to be an essential part of the ER–
Golgi intermediate compartment (ERGIC), the site of coronavirus replication [2]. The
presence of numerous single and double-membrane vesicles and the appearance of virus-
like particles is the universal signature of cells infected by coronaviruses [28,29]. The same
is valid for the replication complex of SARS-CoV-2 in the Vero E6 cells. The replication
complex is known to provide a structural substrate for assembling virus nucleocapsids
with membrane envelopes and de novo formation of the virus particles. This process was
described as the budding of the vRNP complex to the lumen of the vesicle through the
membrane with an already built-in spike protein complex [30,31]. However, as we will
show below, the virus budding could be more complex, as was the fate of the virus particles
in the cell from the assemblage, through maturation, up to egress.
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Figure 2. Replication of SARS-CoV-2 in Vero E6 cells. The cytoplasmic area shows various membrane
vesicles (known as ERGIC) with virus particles (arrowheads), double-membrane vesicles with fibrous
material (black asterisks), small mitochondria (white asterisks), mitochondrial fission (arrow), and
the dense cytosol with freely distributed ribosomes and RNPs (dotted circle).

3.2. Mitochondria, Fission, and Mitophagy

The mitochondrial population in Vero E6 cells was highly heterogeneous, and in
infected cells, it was often partially damaged. Small mitochondria resulted from the
ongoing process of mitochondrial fission (Figure 2). A large surface-to-volume ratio in
small mitochondria might increase the efficiency of energy production. On the other hand,
numerous damaged mitochondria point to the loss of energy supply. The damage involved
the disintegration of the mitochondrial membranes, both the outer and inner ones. The
small and damaged mitochondria were often surrounded by the membrane, resembling the
autophagy-like structures typical for mitophagy (Figure 3). In conjunction with excessive
mitochondrial splitting, mitophagy indicates mitochondrial stress due to increased levels of
reactive oxygen species and the activation of the cellular immune reaction [32]. The infected
cells displayed well-developed phagosomes containing some cell debris, virus-like particles,
and even a phagosome engulfing a remnant of a mitochondrion. A notable feature was the
incomplete enclosure of the phagosomes, which allows the exchange of material with the
cytosol. According to canonical autophagy, the double membrane-enclosed phagosomes
are expected to merge with acidic lysosomes to digest their content. Interestingly, we have
not observed such fusion in infected cells; instead, we could see a different development of
open phagosomes (Figure 4).
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virus particles (Figure 5B). Interestingly, these vesicles did not fully close to the form of a 
typical autophagosome. At low magnification, these vesicles looked as if they were en-
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revealed vesicle segments which were not lined with the membrane. Moreover, the vesicle 
content was visually clear; that is, its electron density was much lower than that of the 

Figure 3. Mitophagy-like structures and degradation of mitochondria in SARS-CoV-2-infected Vero
E6 cells. The mitophagosome encapsulates a degrading mitochondrion. Note that the mitophagosome
membrane is not fully closed (open arrow); white asterisks—degrading mitochondria; n—nucleus.
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Figure 4. A complex autophagosome in SARS-CoV-2-infected Vero E6 cell. Apposition of mito-
chondria and a large autophagosome containing an open mitophagosome (open arrow). Open
arrowheads—cell debris; solid arrowheads—virus-like particles; white asterisks—mitochondria.

3.3. Phagophore, Phagosomes, and Autophagy

The cytosol of infected cells contained double-membrane structures of various forms.
Phagophores appeared as strongly flattened vesicles with partially or fully zipped membranes
that showed a tendency to engulf cytoplasmic material (Figure 5A). Other phagophore-like
double-membrane vesicles were often visually empty or contained one or a few virus
particles (Figure 5B). Interestingly, these vesicles did not fully close to the form of a typical
autophagosome. At low magnification, these vesicles looked as if they were enclosed by
the membrane; however, a closer inspection at a higher magnification always revealed
vesicle segments which were not lined with the membrane. Moreover, the vesicle content
was visually clear; that is, its electron density was much lower than that of the surrounding
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cytosol. This can be explained by the local activity of cytolytic enzymes, but it is not clear
how was their activity was limited only to the inner subspace of the vesicle. As the border
between the clear lumen and the surrounding cytosol was visually well-defined, we will
refer to these vesicles as phagosomes, despite the partial absence of the limiting membrane.
Cellular material or viruses were well retained within the phagosome (Figure 5B).
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Figure 5. Phagophores in SARS-CoV-2-infected Vero E6 cells. (A) Cytoplasm with various
phagophores; multivesicular body (mb), double-membrane vesicles (long arrows), and flattened
zipped ER membranes (white arrow). (B) Phagosome-like vesicles (short arrows) with virus particles.
Note that the membranes of these vesicles do not fully close, and the virus particles are mostly bound
to the concave surface.

The phagosomes containing virus particles were often in contact with neighbor or-
ganelles. This feature is a common attribute for which the endoplasmic reticulum is
considered the major source of phagophores [27,33–36]. We observed the formation of
phagophores also near the surface of mitochondria and at sites of mitochondrial fission
(Figure 6A,B). Such phagosomes contained virus particles, and thus, their membrane
could participate in virus maturation. Interestingly, the phagosomes eventually contained
both the virus particles and the cell debris and thus resembled classical autophagosomes
(Figure 6B). Except for virus particles, these observations agree with previous studies re-
porting mitochondrial division occurring concurrently with autophagosome formation [33],
phagophore formation from the outer mitochondrial membrane [34], or the generation of
phagophores/autophagosomes “de novo” from mitochondrial membranes [35,36]. In those
studies, the outer mitochondrial membrane was considered another source of autophagoso-
mal lipids. Our observations of viral particles close to degrading mitochondria (Figure 6B)
suggest the participation of mitochondrial membrane in the virus maturation process.

3.4. Lipid Droplets

It was shown that viruses may target lipid droplets to replicate and/or for nutritional
and anti-immunity purposes [37]. Lipid droplets are of importance also to phagophore for-
mation [35,38]. We observed the interaction of lipid droplets with phagosomes (Figure 7A,B).
Interestingly, the interaction occurred almost exclusively at the open border of the phago-
some and with the lipid droplet without the limiting membrane. Phagosomes interact-
ing with lipid droplets contained virus particles and often also some cytoplasmic debris
(Figure 7B). Notably, similar interaction was present between lipid droplets and damaged
mitochondria (Figure 7C). Both organelles had lost, at least locally, their limiting membrane,
which allowed their content to interact directly. The reason and results of such interactions
for virus proliferation remain to be clarified. The recent research suggests the involvement
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of host lipids in the replication of several positive-strand RNA viruses, which manipulate
lipid metabolism in the cell to ensure the availability of specific types of lipids [39]. Apposi-
tion of the lipid droplets to the site of the newly formed virus underlines the role of lipid
droplets in the maturation of SARS-CoV-2 [40].
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3.5. Virus Assembly, Maturation, and Egress

The synthesized virus particles typically anchor to the inner concave surface of
a phagosome lumen (Figures 6A,B and 7B) or membrane remnants in a phagosome
(Figures 7B and 8B). According to the budding theory [41], the SARS-CoV virus is com-
pletely assembled by the budding of the cluster of vRNP complexes, synthesized in the
cytoplasm, through the membrane of specialized vesicles, which are a part of the ERGIC
system producing virus proteins, including membrane-associated proteins. Thus, the
freshly budded virus particle is almost completely assembled. Before egress, however, the
virus particles have to be transported toward the cell surface, in which phagosomes fulfill
an indispensable role, as we showed here. The membrane of a phagosome is considered as
another cell substrate hijacked by the virus replication machinery for the morphogenesis
and maturation of the virus [15,16]. However, the canonical role of phagosomes is in the
process of autophagy, used by cells universally to collect and destroy foreign and damaged
material in the cytoplasm to keep cells alive. Our observations are not so unequivocal.
The virus-like particles inside the phagosomes are of variable morphology. Many particles
look like a completely assembled virus including the spikes, but many miss a part of the
membrane envelope and display various structural deficiencies (Figures 6 and 8). These
observations do not have a simple explanation and do need further research. Nevertheless,
the variable morphology indicates that the incomplete virus particles could result from
erroneous budding, or more likely, from the damage of the virus by the activity of lytic
enzymes in phagosomes, as would be expected for incomplete autophagy. The failed bud-
ding is also indicated by the presence of virus particles at the membrane-free border of the
phagosome and even in the nearby dense cytosol (Figure 8A). The incomplete autophagy
is indicated by the open structure of phagosomes, the deficiency of lysosomes, and the
formation of egress vacuoles bearing the matured virus particles out of the cell. However,
the presence of phagosomes itself means that the cell autophagy response was activated,
although not completed down to virus elimination.
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Figure 7. Interaction of phagosomes with lipid droplets in SARS-CoV-2-infected Vero E6 cells.
(A) Phagosome with virus particles (arrowheads) in close contact with lipid droplets (ld); open
arrow—open membrane. (B) The lipid droplets (ld) in contact with a phagosome (white ar-
row), which contains a small phagosome (short arrow) encapsulating virus particles (arrowheads).
(C) Apposition of mitochondrion and lipid droplet (ld). The long arrow points to the site of mito-
chondrial membrane degradation.

The open structure of phagosomes, observed in this study, allows the interaction of
their content with the cytosol, which might influence the virus engulfed in the phagosomes.
The virus-like particles occurring at the cytosolic and luminal sides of the membrane-free
border indicate that the virus might acquire its membrane also by other than the budding
mechanism (Figure 8B). Hypothetically, the virus precursors could enter the phagosome at
the open region, adhere to the concave side of the phagosome, and harbor its membrane
(Figure 8A,C). Alternatively, the virus precursor that entered a phagosome could make
use of an encapsulated membrane fragment. Missing pieces of the phagosome membrane
envelope could result from its transfer to virus precursors (Figure 8D). Unfortunately, the
resolution of transmission electron microscopy on chemically fixed samples did not allow
us to identify spike protein on the phagosome membrane and to be more specific about the
ongoing processes. A reverse process, that is, the virus losing its coat in the phagosome
should be also considered.
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Figure 8. Virus particles in phagosome vesicles in SARS-CoV-2-infected Vero E6 cells. (A) Virus
particles of different morphology in the phagosome and nearby cytosol (arrowheads). (B) A group of
budding virus particles in the lumen of a phagosome. Inset—a detail of the stalk between budding
virus particles. (C) Virus particles adhering to remnants of phagosome membrane. Inset—a detail
of the stalks between the virus particle and the phagosome membrane. (D) Virus particles in the
lumen of the phagosome in direct contact with the lipid droplets. Arrowheads—virus particles; short
arrow—phagosome membrane; white arrowheads—spikes; white arrow—nucleocapsids; ps—lumen
of phagosomes; mf—a membrane fragment; white asterisk—mitochondrion; ld—lipid droplet.

We have not observed the fusion of phagosomes with lysosomes and the formation of
canonical autophagosomes. This is in line with recent studies reporting on mechanisms that
the viruses have developed for the inhibition of the fusion and the autophagic machinery to
support their replication [15,20,21]. Instead, we have observed the formation of the egress
vacuoles bearing virus particles, typically attached to their concave surface, close to the
cell surface.

In the final step, the egress vacuoles reached the plasmalemma. The fusion of egress
vacuoles with plasmalemma, such as described for transport vesicles and plasmalemma,
was not observed in this study. Instead, we observed local disruption or cracking of plas-
malemma and the formation of plasmalemmal lamellae of about 100 nm across, separating
the egress vacuoles from the extracellular space (Figure 9A). These lamellae were mostly
free of the lipid membrane and locally separated the egress vacuoles from the extracellular
space at their membrane-free perimeter. In many places, the lamellae were broken, and
thus, the lumen of the egress vacuoles was directly connected to the extracellular space.



Pathogens 2022, 11, 1535 11 of 17

Nevertheless, the formation of such channels was not followed by the massive outflow
of the virus. Alternatively, the egress vacuoles inverted, that is, evaginated or bulged
their content and formed membrane-coated sprouts with virus particles anchored to them
(Figure 9B,C). The membranes seen at the outer surface of the cell originated mostly from
the membrane of egress vacuoles, which explains the presence of cell cytosol in the sprouts.
These rearrangements indicate a physical force, possibly osmotic, acting outward from the
cell. The attachment of virus particles to the membranes seemed rather stable, and some
enzyme activity or time would be needed to free the virus to the extracellular environment.
For now, it could be only speculated about the molecular mechanisms behind these events.
Calcium ions, entering the cytosol from extracellular space through the membrane-free bor-
ders and causing contraction and collapse of the cytoskeletal scaffold, and/or the osmotic
pressure building up in the egress vacuoles might play a role in these processes.
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Figure 9. Egress of virus particles from SARS-CoV-2-infected Vero E6 cells. (A) Accumulation of
the egress vacuoles under the cell surface. Note the virus particles anchored at the concave side of
the vacuoles. (B) Outer surface of a cell with evaginated egress vacuoles. The virus particles are
still anchored to the membrane, but now they are at the convex side of the evaginations. The cell
segment at the bottom of the image shows a part of an uninfected cell. (C) Virus particles adhering to
the evaginated cell membrane and clustered like grapes while exposed to the extracellular milieu.
(D) The cell after the virus egress. Ec—extracellular space; long arrow—the surface membrane; open
arrow—the membrane–free surface area; s—the surface lamellae; v—the egress vacuoles; n-nucleus;
Vv—vacuoles; white asterisks—mitochondria.
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After the virus egress, the Vero E6 cells were broken down to a critical state. Many
cells lost most of their organelles (Figure 9D). Some cells remained with some intracellular
structures present during virus replication, that is, DMVs, small mitochondria, and various
vesicles. According to the overall picture of the infected cells, it would be reasonable to
expect that after the virus egress, the cells are not viable and cannot resume their energetics
and membranous organelles. However, exact evidence should be found in future studies.

3.6. SARS-CoV-2 Replication Dynamics and Autophagic Gene Expression

To ascertain the replication dynamics of SARS-CoV-2, we tested the Vero E6 cell lines
for virus production at 6, 18, and 24 hpi (Figure 10A). The viral load was substantial already
at 6 hpi (>90 K copies), reached the peak at 18 hpi (>1.2 M copies), and remained high at
24 hpi (>450 K copies). These data agree with previous estimates [5] and our TCID50 assay
data (Figure 10B).
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Figure 10. SARS-CoV-2 replication dynamics and infectivity in Vero E6 cells. (A) The columns show
the mean of the viral E gene expression relative to the β-actin gene, n = 3. Error bars represent the
standard error of the mean. hpi—hours post-infection. (B) TCID50 assay of cytopathic effect (CPE) of
SARS-CoV-2 at 24 hpi. The plate shows cytopathic effects of the virus at dilutions -1 to -10 times and
the control (NC) without the virus. The lower the violet signal intensity, the lower number of viable
cells attached to the dish.

The transcript level of major genes of the autophagic pathway was quantified using
cell host-specific qPCR arrays and compared with microscopic observations. Although
the autophagic process is controlled by both the transcriptional and post-transcriptional
mechanism [42], the qPCR arrays provide a simple and fast insight to compare changes in
the activation of autophagy genes.

In virus-infected Vero E6 cells, out of 84 autophagic gene markers, 18 genes were signifi-
cantly (p≤ 0.05) fold regulated (Figure 11 and Table S1). Ten gene markers were upregulated
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(11.9%), whereas eight genes were downregulated (9.5%) (Figure 11 and Table S1). Among
the upregulated genes, the highest expression levels exhibited the genes TNF, TLR9, IGF1,
ESR1, CXCR4, and NFKB1 encoding the molecules primarily involved in the regulation of
the immune responses or transcriptional machinery triggered by infecting viruses [43–49]
(Figure 11 and Table S1).
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Figure 11. Autophagic gene array in Vero E6 cells 24 hpi with SARS-CoV-2. Dots in the volcano
plot represent the mean of the fold-change (virus-infected vs. non-infected cells, n = 3) in the gene
expression levels normalized using a panel of the internal housekeeping genes (red dots—upregulated
genes, green dots—downregulated genes). The grey area indicates the cut-off level of p ≤ 0.05.

Among the upregulated genes involved in autophagosome formation were UVRAG,
ATG3, and ATG16L1. A component of the autophagy pathway, the UVRAG (UV radiation
resistance-associated protein) gene, was significantly upregulated 4.7-fold in the virus-
infected cells (Figure 11 and Table S1). The UVRAG represents a target for the virus to en-
hance its replication, as previously reported for the hepatitis C virus, which stimulated the
maturation of autophagosomes [50]. The slightly yet significantly upregulated autophagy-
related genes, ATG3 and ATG16L1, participate in lipidation and membrane association of
LC3 which is crucial for the formation of autophagic vesicles, such as phagophores during
coronavirus infection [15]. This is in line with our study describing the accumulation of
phagophores in virus-infected Vero E6 cells, underscoring a role in virus replication.

As the number of genes significantly upregulated by SARS-CoV-2 was rather limited
in this study, we considered it worth mentioning a few genes with borderline statistical
significance to further correlations with our ultrastructure data. The upregulation of the
unc51-like kinase (ULK2) at the 6.1-fold higher level (p = 0.061) in infected relative to
uninfected cells suggests the proviral role of autophagy. This data can be correlated with
electron microscopic images showing the formation of phagophores induced by the viral
infection. The ULK2 is known to be activated upon induction of autophagy and to form a
complex with ATG13 recruited to the membrane at the site of phagophore nucleation [19].
In addition, up to a 6.1-fold increase in the gene expression indicates that SARS-CoV-2
induces this step to augment the maturation of autophagosomes, probably to enhance viral
replication, which is obvious from the electron microscopic observations. The ATG4A,
upregulated by 2.1-fold (p = 0.057), is a cysteine protease interacting with proteins of the
ATG8 family to mediate the insertion of the complex into the autophagosomal membranes,



Pathogens 2022, 11, 1535 14 of 17

a step necessary for autophagy [51] and likely for the virus to boost the production of
replication loci.

Among the downregulated genes, the highest level of downregulation (−5.5-fold)
was detected for SNCA, alpha-synuclein (Figure 11 and Table S1). The protein is primarily
found in neural tissue, which participates in synaptic vesicle exocytosis, modulates ER
stress signaling, and suppresses the replication and growth of flavivirus [52]. The second
most downregulated gene (−4.5-fold) was an ULK1-like kinase, which is activated at the
autophagosome formation site and reportedly targeted by the papain-like protease of
SARS-CoV-2 to suppress host autophagy [53]. The WD repeat domain phosphoinositide-
interacting protein 1 (WIPI1, downregulated by −3.5-fold), as well as ATG10 and PIK3CB
(both downregulated by−1.7-fold), are usually also found at the autophagosome formation
site and incorporated into the autophagosomal membrane [19]. For increased autophagy,
a significant −3.26-fold downregulation of the gene encoding death-associated protein
1 (DAP1) in virus-infected cells was particularly relevant. DAP1 is known to negatively
regulate the autophagic process as its knockdown accelerates autophagosome accumulation
and enhances autophagic activity in general [54]. Therefore, the downregulation of these
genes may postpone the autophagosomal maturation process by the SARS-CoV-2 virus to
utilize phagosomes for its replication.

The pro-apoptotic gene BCL-2, involved in mitochondrial turnover and autophagy,
was downregulated by −3.3-fold at a borderline p-value (0.052). This might avert the ad-
vance of apoptosis as according to the previous studies, the BCL-2 was also downregulated
by the viable and the inactivated coronaviruses, which indicates that BCL-2 is not required
for virus replication [55].

4. Conclusions

The observations presented in this study show a high degree of similarity of the effect
of SARS-CoV-2 on cell pathology with other viruses of the Coronaviridae family. Specifically,
the formation of the virus replication complexes by transforming Golgi and endoplasmic
reticulum membrane systems to assemble the nucleocapsids synthesized in the cytosol with
the membrane envelope and its proteins. Moreover, as we showed, the transformation of
Vero E6 cells by the SARS-CoV-2 also involves mitochondria that undergo extensive fission
and membrane damage under the virus action. These modified mitochondria interact
closely with phagophores and phagosomes during the period of virus maturation, with the
evident assistance of lipid droplets. The activation of autophagy-like processes by virus
infection was also obvious, however, at odds with the canonical autophagy. The autophagy
process was modified to the extent that instead of protecting the cell from the pathogen,
it formed a substrate for virus maturation and egress. As the autophagy-associated gene
expression analysis revealed, some genes of the autophagy pathway were substantially
upregulated and some were downregulated, but the majority of genes were regulated only
weakly. The outcome of these virus-orchestrated processes in the susceptible cells was a
massive release of virus particles to the extracellular space, leaving the cell remains in a
state not compatible with life.
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