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Abstract: Bovine leukemia virus (BLV) causes enzootic bovine leukosis, the most common neoplastic
disease in cattle. Previous work estimates that 78% of US beef operations and 38% of US beef cattle
are seropositive for BLV. Infection by BLV in a herd is an economic concern for producers as evidence
suggests that it causes an increase in cost and a subsequent decrease in profit to producers. Studies
investigating BLV in dairy cattle have noted disease resistance or susceptibility, measured by a
proviral load (PVL) associated with specific alleles of the bovine leukocyte antigen (BoLA) DRB3
gene. This study aims to investigate the associations between BoLA DRB3 alleles and BLV PVL in
beef cattle. Samples were collected from 157 Midwest beef cows. BoLA DRB3 alleles were identified
and compared with BLV PVL. One BoLA DRB3 allele, *026:01, was found to be associated with high
PVL in relation to the average of the sampled population. In contrast, two alleles, *033:01 and *002:01,
were found to be associated with low PVL. This study provides evidence of a relationship between
BoLA DRB3 alleles and BLV PVL in US beef cows.

Keywords: beef cattle; BLV; BoLA DRB3; bovine leukemia virus; disease progression; disease resistance

1. Introduction

Bovine leukemia virus (BLV) is a delta retrovirus and the etiological agent causing
enzootic bovine leukosis in cattle. Approximately 89% of dairy and 78% of beef operations
in the US have at least one BLV-infected animal in the herd [1,2]. Additionally, 38% of
US beef cattle and 29% of Midwest beef cattle were found to be seropositive for BLV [2,3].
The transmission of BLV may occur with the reuse of hypodermic needles, direct contact,
dehorning tools, examination sleeves, or by blood-sucking insects [4–6]. Neighboring
animals within an infected herd pose a significant risk of BLV transmission [7]. One
infected animal can lead to multiple infected animals within the herd.

There is a range of clinical signs of BLV infection. Between 60 and 70% of infected
animals remain aleukemic, having normal lymphocyte counts [8]. Approximately 30%
of infected animals progress to persistent lymphocytosis, characterized by an increased
risk of infection by opportunistic pathogens [9]. A small percentage (2–5%) of infected
animals develop lymphoma, leading to the condemnation at slaughter of both dairy and
beef animals [10,11]. Malignant lymphoma accounts for 22% of the cause for condemnation
at slaughter for beef and dairy cattle in the Great Lakes region of the US and 13.5% for beef
cattle in the US and is a direct profit loss to producers [10,11]. A quantitative polymerase
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chain reaction (qPCR) assay can be used to determine the concentration of the BLV provirus
in a blood sample, associating the proviral load (PVL) with the stage of disease, where
animals with a greater PVL are indicative of a more severe infection and a potentially
increased risk of transmission of the provirus infectious agent to their herdmates [12,13].

Host genetics may play a role in BLV disease progression. The major histocompatibility
complex (MHC) is composed of genes involved in antigen presentation to T cells [14]. In
cattle, the MHC gene region is termed the bovine leukocyte antigen (BoLA). In cattle,
the MHC Class II BoLA-DRB3 gene locus is highly polymorphic, with an identified 384
alleles [15]. Multiple studies have linked variations in the BoLA-DRB3 gene locus to levels
of PVL in dairy cattle [16,17]. The role of BoLA-DRB3 alleles in BLV disease progression in
beef cattle is largely unknown. The current study aims to identify the potential associations
between BoLA-DRB3 alleles and BLV disease progression in a population of beef cows from
the Midwest region of the US.

2. Results and Discussion

After enrolling cows with a known BLV antibody presence, a qPCR test revealed that
PVLs in the sampled beef population ranged from 0.00 to 2.54 BLV copies/Bos β-actin
copies, with a mean equal to 0.52 and a median of 0.24 (Supplementary Figure S1). The
animals with undetectable PVL were included in the analysis because a PVL of zero with a
positive BLV ELISA result may indicate disease resilience by -BoLA-DRB3 alleles.

Lymphocyte counts (LC) were observed as an average per allele, though no trend was
identified. This is likely due to the limited dataset. Previous publications have identified
a correlation between BLV PVL and LC in addition to the observed association between
BLV PVL and DRB3 alleles [16–18]. Therefore, it is likely that there may be an association
between DRB3 allele and LC. Future research may aim to identify the potential association
between DRB3 allele and LC.

Alleles *009:02, *010:01, *011:01 have been associated with resistance to BLV disease
progression in infected dairy cows. In contrast, alleles *012:01 and *015:01 have been
associated with susceptibility to BLV disease progression, potentially leading to persistent
lymphocytosis or lymphoma [16,17]. Four out of these five alleles were also identified in
the sampled beef population (Table 1).

Table 1. Estimated allele frequencies and association between BoLA-DRB3 alleles and bovine leukemia
virus (BLV) proviral load (PVL) in beef cattle.

Allele Total Count 1 # of Animals 2 Allele Frequency Estimated Allelic
Effect 3 p–Value 4 Lymphocyte Count

(#/µL) 5

*010:01 1 1 0.003 0.53 0.60 3934 ± 0
*001:01 5 5 0.016 1.52 0.68 6957.80 ± 2369.64
*011:01 1 1 0.003 0.93 0.95 6823 ± 0
*015:01 3 2 0.010 1.20 0.86 6033 ± 782
*016:01 4 3 0.013 0.95 0.96 4789.50 ± 625.97
*018:01 99 74 0.315 1.90 0.21 8494.57 ± 379.70
*002:01 92 66 0.293 0.33 0.04 ** 5628.72 ± 258.81
*026:01 66 46 0.210 2.55 0.08 * 8394.68 ± 434.96
*032:01 6 6 0.019 1.31 0.79 8193.17 ± 1651.94
*033:01 10 9 0.032 0.08 0.01 ** 6531 ± 1236.41
*037:01 1 1 0.003 0.64 0.71 6602 ± 0
*048:02 4 2 0.013 1.54 0.65 5832.50 ± 405.59
*006:01 2 1 0.006 1.72 0.61 14475 ± 0
*007:01 7 4 0.022 1.40 0.68 5670.71 ± 336.23
*008:01 7 5 0.002 1.66 0.56 7296.43 ± 995.11
*009:01 3 2 0.010 1.01 0.99 7044 ± 1618
*009:02 2 1 0.006 1.76 0.60 9641 ± 0

1 Number of times the allele was identified in the US Midwest beef cow population. 2 Number (#) of animals
harboring each allele. 3 Estimated allelic effects are shown as deviations from the average PVL in the population. A
value of 1 indicates that the allelic effect at the respective allele is equal to the population average PVL. 4 ** p ≤ 0.05,
* 0.05 ≤ p ≤ 0.10. 5 Lymphocyte count is shown with standard error.

Similarly to what has been identified in dairy cattle, allele *002:01 was associated
with low PVL in the sampled population of Midwest beef cows [16,18]. The animals with
allele *002:01 were found to have approximately one-third of the PVL in comparison to
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the average of the sampled population (Table 1). Additionally, the animals with allele
*033:01 were found to have a PVL of less than one-tenth of the sampled population average
(Table 1). To date, no publications have associated allele *033:01 with BLV PVL in beef or
dairy cattle.

Allele *026:01 has been reported at a frequency of between 1 and 3% in populations
of Baggara, Kenana, and Butana cattle [19]. However, in the current study, allele *026:01
was present at a higher frequency (20.36%), and animals with the allele were found to
have a BLV PVL approximately 3 times greater than the average of the sampled population
(Table 1). Allele *026:01 may potentially associate with a greater susceptibility for BLV
disease progression in beef cattle. A lower population frequency of *026:01 may indicate a
decreased likelihood for disease progression in BLV-infected beef herds.

In the present study, 18 of the known 384 BoLA-DRB3 alleles were identified (Table 1).
Of the 18 alleles, 9 were noted in Simmental cattle from Columbia, but publications re-
garding BoLA-DRB3 allele frequencies within US Angus and Simmental cattle are nonexis-
tent [20]. The relationship between BLV PVL and BoLA-DRB3 alleles can be observed in
Figure 1, where the estimated allelic effect is the deviation from the average PVL at the
allele from the average PVL of the sampled population (0.52 BLV copies/Bos β-actin copies).
The publications observing BoLA-DRB3 alleles in dairy cattle have found a similar number
of alleles in populations approximately doubled in size [16]. The greater allelic diversity
observed in beef cows may be a result of the differences in effective population size between
the beef and dairy industries [21,22]. The allelic diversity in the study population could
be increased further with a larger population of animals from various regions outside the
Midwest US. Additionally, the sampled population is limited to Angus and Simmental
breeds. Greater diversity in beef breeds may also increase allelic diversity.
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Upon evaluating the effect of BoLA-DRB3 genotypes on PVL in the study population, 3
out of 33 genotypes were significant (Supplementary Table S2). BoLA-DRB3 *026:01/*026:01
was associated with a PVL of 0.74 times, or nearly three-quarters, that of the population
average. Genotypes BoLA-DRB3 *026:01/*002:01 and BoLA-DRB3 *018:01/*018:01 were
associated with PVLs of 0.67 and 0.63 times that of the population average. The study
population size is a limitation. The effect of BoLA-DRB3 genotypes on PVL should be
evaluated with a larger, more diverse population sample.

3. Materials and Methods
3.1. Samples

All animals were approved for use by the Institutional Animal Care and Use Commit-
tee. Blood samples were collected from Angus, Simmental, and Angus x Simmental crossed
beef cows aged 24–168 months (n = 157) from 9 Michigan and Iowa beef cow–calf opera-
tions (Supplementary Table S1) [2]. Immediately following blood sample collection, LC
was assessed as previously described [23]. Cows with a known presence of BLV antibodies,
tested by enzyme-linked immunosorbent assay (ELISA) were selected. Whole blood was
collected by coccygeal venipuncture from each selected cow and stored at −80 ◦C until
DNA extraction.

3.2. Animals PVL Quantification

DNA extraction was performed using the DNeasy Blood and Tissue Kit (Qiagen,
Hilden, Germany). DNA quantity and quality was determined using the NanoDrop
One/Onec (ThermoFisher Scientific, Austin, TX, USA). The methods to determine PVL
followed Pavliscak et al., 2020 [24], and PVL was reported as a ratio of BLV polymerase
gene copies to Beta Actin gene copies.

3.3. BoLA-DRB3 Allele Determination

The BoLA-DRB3 exon 2 was amplified from each DNA sample. Following Lohr et al.,
2022 [16], two master mixes were prepared with separate tagged primers specific to exon 2
of the BoLA-DRB3 gene (Table 2). Separate tagged primers allowed for multiplex sequenc-
ing by combining the following in a master mix: 25 µL 2X DreamTaq PCR Master Mix
(ThermoFisher Scientific, Austin, TX, USA); 0.5 µL DRB3.1F or DRB3.4F forward primer;
0.5 µL DRB3.R reverse primer; 20.5 µL water; and 3.5 µL DNA for each reaction. All reac-
tions were performed using Applied Biosystems 2720 thermal cycler 96 well (ThermoFisher
Scientific, Austin, TX, USA) with the following conditions: 95 ◦C for 2 min, 34X (95 ◦C for
30 s, 68 ◦C for 30 s, 72 ◦C for 30 s), then 72 ◦C for 10 min. Amplicon size was confirmed by
running a 1.5% agarose gel at 110 V for 50 min.

Table 2. BoLA-DRB3 exon 2 primers.

Primer Direction Sequence 1 Length (bp) 2 Tm 3

DRB3.1F Forward
ACACTGACGACATGGTTCTACA

TCGTGGAGCG ATC-
CTCTCTCGCAGCACATTTCC

55 70.5

DRB3.4F Forward
ACACTGACGACATGGTTCTACA

TGCCTGGTGG
ATCCTCTCTCGCAGCACATTTCC

55 70.8

DRB3.R Reverse
TACGGTAGCAGAGACTTGGTCT

TCGCCGCTGCACAGT-
GAAACTCTC

46 70

1 Bold text of primer sequence highlights the unique barcode allowing two animals to be sequenced within a well.
2 Number of base pairs included in the primer. 3 Temperature at which the primer is optimal for PCR.

Following confirmation of amplicon size for each sample, the DNA was sequenced by
Illumina MiSeq. The BoLA-DRB3 allele determination followed that of Lohr et al., 2022 [16],
except for the heterozygous genotypes, which required at least 29% of the reads to align to
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the called reference allele. The homozygous genotypes required at least 72% of the reads to
align to the called reference allele.

3.4. Statistical Analysis

Statistical analysis was performed using SAS 9.4 (SAS Institute Inc 2013, Cary, NC,
USA). The proviral load was log transformed to stabilize the variance and minimize the
skewness of the residuals. The statistical model used to analyze the data was:
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β is the regression coefficient on cow age xi, expressed as the deviation from the mean cow

age
−
x; bolaj1 and bolaj2 are the random effects of the 2 alleles j1 and j2 at the BoLA-DRB3

gene locus; ei is the environmental effect (or measurement error) related to the observation
on the ith cow. The allelic effects at the BoLA-DRB3 gene locus having allelic variance
component σ2

bola were modeled as normally, independently, and identically distributed
random additive effects within each cow. The combined variance due to the BoLA-DRB3
gene locus was 2σ2

bola. The statistical model is similar to that shown in Saama et al.,
2004 [25], which had the random effect of the BoLA DRB3.2 locus. Treating allelic effects
as random is useful when there are some alleles with low frequencies relative to the other
alleles in the population [26].

The effect of the genotype on PVL was analyzed using proc glimmix in SAS 9.4 (SAS
Institute Inc 2013, Cary, NC, USA) with the genotype as the fixed effect in the model. The
data met the normal distribution assumption. The genotypes with 9 or more observations
were used in this analysis. The post hoc mean comparison was performed using Tukey’s
adjustment with a significance level of 0.05.

4. Conclusions

Novel associations were found between the BoLA-DRB3 alleles and BLV PVL in the
sampled population of US Midwest beef cows. Further research is needed to include a
larger, more diverse population. Additionally, obtaining one time point for measurement
of PVL does not provide a measure of the disease’s endemic steady state or disease pro-
gression. Therefore, it may be valuable to longitudinally measure PVL in a BLV-infected
beef cow population and determine the BoLA-DRB3 alleles to achieve a measure of dis-
ease progression. With more evidence, the beef industry may consider selecting cattle for
breeding that have resistance to BLV disease progression and that are less infectious to their
herdmates as measured by PVL.
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//www.mdpi.com/article/10.3390/pathogens11101093/s1, Table S1. Summary Data on Study Ani-
mals; Figure S1. Proviral Loads of Study Population based upon Alleles and Genotypes; Table S2.
Genotypes and Respective Frequencies within Study Population.
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