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Abstract: In contrast to the long-lasting taxonomic classification of Plenodomus lingam and P. biglobosus
as one species, formerly termed Leptosphaeria maculans, both species form separate monophyletic
groups, comprising sub-classes, differing considerably with epidemiology towards Brassicaceae
plants. Considering the great differences between P. lingam and P. biglobosus, we hypothesized their
metabolic capacities vary to a great extent. The experiment was done using the FF microplates
(Biolog Inc., Hayward, CA, USA) containing 95 carbon sources and tetrazolium dye. The fungi
P. lingam and P. biglobosus subclade ‘brassicae’ (3 isolates per group) were cultured on PDA medium
for 6 weeks at 20 ◦C and then fungal spores were used as inoculum of microplates. The test was
carried out in triplicate. We have demonstrated that substrate richness, calculated as the number of
utilized substrates (measured at λ490 nm), and the number of substrates allowing effective growth
of the isolates (λ750 nm), showed significant differences among tested species. The most efficient
isolate of P. lingam utilized 36 carbon sources, whereas P. biglobosus utilized 60 substrates. Among
them, 25–29 carbon sources for P. lingam and 34–48 substrates for P. biglobosus were efficiently used,
allowing their growth. Cluster analysis based on Senath criteria divided P. biglobosus into two groups
and P. lingam isolates formed one group (33% similarity). We deduce the similarities between the
tested species help them coexist on the same host plant and the differences greatly contribute to their
different lifestyles, with P. biglobosus being less specialized and P. lingam coevolving more strictly
with the host plant.

Keywords: carbon source; fungal growth and development; metabolic ability; substrate utilization

1. Introduction

Two fungal species belonging to the genus Plenodomus (formerly Leptosphaeria) coexist
in Brassicaceae plants, share similar life patterns and cause the disease called stem canker
or blackleg [1–3]. For many years the isolates were classified as one species Leptosphaeria
maculans (Desm.) Ces et de Not., but numerous researchers postulated their separation.
Already in 1927, based on morphological characteristics and growth rate observed on agar
media, Cunningham [4] described two forms of L. maculans. Some isolates were growing
slowly, and the aerial mycelium was sparse, whereas the sporulation of the other isolates
was less abundant, but the mycelium grew fast and the brownish pigment was excreted
extracellularly. The finding did not lead to the description of the new species and it was
forgotten until the widespread cultivation of oilseed rape (Brassica napus L.).

After brassica crop plants became more common, the symptoms of the stem canker
started to appear more often, and L. maculans—the causal agent of the disease started to be
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studied widely again. A half-century after the pioneer studies of Cunningham [4], plant
pathologists returned to the description of differences among the isolates of Leptosphaeria
from infected oilseed rape plants [5]. Different terms were used to name isolates depending
on the methodology of experimentation and the tools used for the studies. Growth rate
and culture morphology were some of the methods implied to differentiate isolates. The
slow-growing isolates that formed numerous pycnidia were referred to as ‘A-type’, whereas
fast-growing isolates with abundant aerial mycelium but less pycnidia were termed ‘B-
type’ [6]. Glasshouse inoculation experiments led to the conclusion that both groups of
the isolates A and B have a different level of pathogenicity, with some being aggressive
(type A) and the other nonaggressive (NA, corresponding to type B-type mycelium growth)
when inoculated on the oilseed rape plants [5,7]. In parallel, other researchers used the
terms highly virulent (HV) and weakly virulent (WV) [8].

To better understand the cause of higher aggressivity of some isolates, further stud-
ies were conducted to understand why a fast growth of the mycelium was not cor-
related with higher aggressivity. Based on biochemical studies, it was soon proven
that the aggressive/virulent, slow-growing, abundantly sporulating isolates produced
sirodesmins—nonspecific phytotoxic secondary metabolites [9]. That led to the introduc-
tion of new terms, such as Tox+ and Tox− [10], or Tox+ and Tox0 [11,12], referring to the
production of sirodesmin PL, the main and most biologically active phytotoxin of L. macu-
lans. Soon, the complex of several sirodesmins was described in L. maculans [13], whereas
L. biglobosa and the isolates obtained from wasabi (called P. wasabiae, at that time) produced
phomaligin A and other yellow pigments. Sippel and Hall [14] found polymorphisms
between the enzymes produced by two sub-groups of L. maculans and proved that weakly
and highly virulent strains produce two forms of glucose phosphate isomerase. Soon after,
Kachlicki et al. [15] demonstrated that isolates unable to produce sirodesmins, produce
benzoic acid that possesses phytotoxic activities. The authors concluded that Tox+ and
Tox− terms are inappropriate. Following this path, names Siro+ and Siro0 were proposed
as more relevant [16].

There had been some confusion related to the number of subsequent terms used for
the isolates within one species. Moreover, some researchers referred to L. maculans by
giving the species name only, which led to further questions about which sub-group or
selection of the isolates was characterized in a particular study. It was only in 2001, 74 years
after the first descriptions by Cunningham [4], that L. maculans was divided to two species
based on differences between the morphology of fruiting bodies of the generative stage,
called pseudothecia [17]. Since then, the scientific community quickly switched to the use
of L. maculans, when referring to the more aggressive, virulent, slow-growing, abundantly
sporulating and sirodesmin producing fungal strains. In contrast, the term L. biglobosa was
commonly used for less-aggressive, less virulent, fast-growing, less abundantly sporulating
strains. Recent re-disposition of Phoma-like anamorphs in Pleosporales proposed by de
Gruyter et al. [18] led to further change in fungus taxonomy; L. maculans has been re-named
as Plenodomus lingam, whereas L. biglobosa has been termed P. biglobosus.

Both species are further divided into sub-clades, based on colony morphology, sup-
ported by concatenated phylogenetic analyses of ITS rDNA, β-tubulin, and actin se-
quences [19,20]. The species P. lingam is divided to ‘brassicae’ and ‘lepidii’ sub-clades,
whereas P. biglobosus is divided into seven sub-clades, including ‘americensis’, ‘australen-
sis’, ‘brassicae’, ‘canadensis’, ‘erysimii’, ‘occiaustralensis’, and ‘thlaspi’ [19,21,22]. The
species and sub-clade occurrence and frequency greatly depend on the region and host
plant [23–26]. For example, wasabi plants are mainly infected by P. wasabiae [27], currently
called P. biglobosus, with two sub-clades, ‘brassicae’ and ‘canadensis’, both found recently
in Europe [28].

The division of Plenodomus biglobosus from P. lingam, originally based just on morpho-
logical traits, has a great phytopathological meaning. Although the species share a similar
life cycle, they greatly differ in virulence to Brassica crops, with greater yield loss attributed
to P. lingam/L. maculans [6]. The disease symptoms appear on plants of oilseed rape even at
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the seedling stage, but mostly on the first few leaves, depending on the time of ‘ascospore
showers’ [29]. This, in turn, greatly depends on the cultural practices of the farmers [30] but
primarily on weather conditions [31]. The large dataset of spore counts from air samples,
studied in relation to the weather parameters over 17 years in the central-west part of
Poland, has shown that increased average air temperature and rainfall shifted the detection
of the first spores by 22 days and the day of the maximum spores by 50 days, which resulted
in much earlier occurrence of disease symptoms and their higher impact on yield [32].

Considerable yield losses due to stem canker occur worldwide every year [11,31,33,34].
Usually, the annual yield loss reported in oilseed rape is 10%, but it may reach 50% [31], or
even all plants may get infected in particular years or regions. In some areas of intensive
oilseed rape cultivation in the world, such as the one located in China, the main losses
are caused by P. biglobosus sub-clade ‘brassicae’ [25] and recently also by the sub-clade
‘canadensis’ [26], and not by P. lingam [35]. Scenarios describing the fast expansion of the
stem canker into oilseed rape growing areas in North and Central China along the Yangtze
River showed the great potential threat to the stability of oilseed rape production if the
crop was attacked by P. lingam in the absence of resistant cultivars [36]. New breeding
programs have been launched in search of traits with the potential to mitigate outbreaks of
stem canker. Based on genome-wide association studies, the sources of resistance against
P. lingam have been identified in Chinese and Canadian spring and winter oilseed rape
cultivars [37,38].

Nowadays, the diversification of the species is not only based on morphological traits
but it is supported by genetic characteristics, starting from the size and sequence of the
ITS region [39], minisatellites [40], and (in P. lingam) also the presence of several avirulence
genes [41,42]. In P. lingam the race composition of fungus populations greatly depends on
the specific resistance genes present in oilseed rape [43]. In contrast, by now no resistance to
P. biglobosus has been found. Plant infection by P. biglobosus leads to premature ripening and
decreased plant yield [34,44]. On the other hand, it is presumed that the fungus occupies
the same niche as P. lingam and, being less virulent, it contributes to stem canker control.
The studies on P. lingam and P. biglobosus became a model for the investigations of genetic
relationships between the pathogen and the host plant [39].

Both Plenodomus species are hemibiotrophic, which means they first develop in live
plant organs and then subsequently colonize the senescing plants [45,46]. The colonization
of identical plant tissues at the same time would require similar metabolic capacities.
Aware of great differences of genotypic and phenotypic characteristics between P. lingam
and P. biglobosus, we hypothesized their metabolic capacities also vary. The aim of this
study was to check this hypothesis by comparing the metabolic capacities of P. lingam and
P. biglobosus sub-clade ‘brassicae’.

2. Results

The metabolic capacities of Plenodomus isolates were tested using the FF microplates
(Biolog) including 95 carbon sources. The values of substrate richness (R) calculated as the
number of utilized substrates (A490 nm) and the number of substrates allowing effective
growth of fungal isolates (A750 nm), demonstrated significant differences among tested
species of Plenodomus. The pathogens were able to utilize from 36 (P. lingam—PL1) to 60
(P. biglobosus—PB1) of the tested carbon sources. Among them, from 25 to 29 carbon sources
for P. lingam and from 34 to 48 substrates for P. biglobosus were efficiently used, allowing
the growth of the fungi.

The average R values of utilized substrates for P. lingam and P. biglobosus were 40 and
57, respectively, as well as allowing for effective fungal growth were 28 and 41, respectively.
The tested strains were not able to utilize and grow on all 95 carbon sources. The rates in the
average well color development (AWCD) and average well-density development (AWDD)
indices values were used to identify the differences in the response of tested fungal isolates
on various consumption of carbon sources and growth response, respectively. The results
indicated that both AWCD and AWDD values were significantly higher for all tested strains
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of P. biglobosus than P. lingam. This tendency was observed through most of the incubation
period (Figure 1).
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Figure 1. The comparison of metabolic aptitudes and growth intensity of P. lingam and P. biglobosus
on the basis of metabolic diversity indices calculated for absorbance reads at wavelengths 490
nm (A490 nm) and 750 nm (A750 nm). (A) Average well color development (AWCD, A490 nm),
(B) metabolic diversity (substrate richness) (R, A490 nm), (C) average well density development
(AWDD, A750 nm), (D) fungal growth intensity (substrate richness) (R, A750 nm), vertical bars
denote 0.95 confidence intervals, different letters indicate significant differences (p < 0.05), (n = 9).
The calculations were based on the utilization of 95 carbon sources belonging to amines and amides,
amino acids, carbohydrates, carboxylic acids, polymers, and several other miscellaneous compounds.
Different letters (a,b) indicate significant differences (p < 0.05), (n = 9).

The carbon assimilation profiles and growth intensity profiles of tested pathogens
were obtained by analyses of substrate guilds and are summarized in Figure 2.
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Figure 2. Changes in AWCD and AWDD values calculated on the basis of the tested fungal isolates’
response to Filamentous Fungi (FF) Biolog® substrates during 240 h of incubation. Explanations:
A490 nm—absorbance reads at wavelength 490 nm, A750 nm—absorbance reads at wavelength
750 nm, (A) average well color development (AWCD, A490 nm), (B) average well density develop-
ment (AWDD, A750 nm).

Higher differences were observed for substrate utilization connected with fungal
respiration and mitochondrial activity than that noted for growth response. Qualitative
analysis of the proportions between the particular guilds of utilized substrates indicated
that P. biglobosus was capable of metabolizing a defined group of compounds in almost
equal proportions by all tested isolates (PB1, PB2, PB3), while substrate utilization and
growth intensity responses of P. lingam varied little between tested isolates (PL1, PL2, PL3).
P. biglobosus strains exhibited significantly higher metabolic preferences than P. lingam for
amino acids, carboxylic acids, and miscellaneous categories of C-substrates (Figure 3).

Plenodomus lingam preferentially utilized various carbon sources and polymers, while
amides/amines were degraded at a very low level by all tested isolates belonging to both
species of Plenodomus. Significant differences in growth responses of the two tested fungal
pathogen species on various carbon sources guilds were observed only for amino acids,
carboxylic acids, and polymers (Figure 4). Generally, amino acids and carboxylic acids
were used the most by P. biglobosus, while polymers were preferred by P. lingam.

To reveal the differences in metabolic capacity and growth intensity of tested strains
during incubation time, the average color development and density development in the
wells of FF Biolog plates were calculated for each day of incubation through 10 days
(240 h). The results showed significant diversity in fungal metabolism and growth intensity
between the compared species of Plenodomus. It should be noted that during 240 h of
fungal incubation, the highest catabolic activity of P. biglobosus was observed after 144 h
of incubation, whereas the use of the substrates by P. lingam was the highest after 240 h of
incubation. Moreover, all tested strains of P. lingam exhibited significantly lower metabolic
potential and growth than P. biglobosus. Both fungal species were better characterized by
metabolic capacity (carbon source utilization) than growth rate (Figure 2).
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Figure 3. The share of FF Biolog® substrate group response of P. lingam and P. biglobosus, calculated
on the basis of consumption (A490 nm) of substrates belonging to different groups (y-axis labels),
A490 nm—absorbance reads at wavelength 490 nm (A) Amines/amides, (B) Aminoacids, (C) Carbo-
hydrates, (D) Carboxylic Acids, (E) Polymers, (F) Miscellanous. Vertical bars denote 0.95 confidence
intervals, different letters (a,b) indicate significant differences (p < 0.05), (n = 9).
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Figure 4. The share of FF Biolog® substrate group response of P. lingam and P. biglobosus, calculated
on the basis of growth potential (A750 nm) on substrates belonging to different groups (y-axis
labels), A750 nm—absorbance reads at wavelength 750 nm. (A) Amines/amides, (B) Aminoacids,
(C) Carbohydrates, (D) Carboxylic Acids, (E) Polymers, (F) Miscellanous. Vertical bars denote
0.95 confidence intervals, different letters (a,b) indicate significant differences (p < 0.05), (n = 9).
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The results of metabolic potential obtained in this study allowed the grouping of the
tested strains into two major clusters (Figure 5).
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Figure 5. Cluster analysis-based dendrogram showing similarity of the FF MicroPlate C-sources
utilization profiles (A) and growth intensity (B) of the analyzed Plenodomus strains according to
Sneath criteria (33 and 66%). Utilization was calculated based on absorbance values at 490 nm
(A) and 750 nm (B), n = 3.

Strains classified as P. biglobosus constituted group A with higher metabolic capacity.
The cluster denoted with B comprised strains belonging to P. lingam displaying weaker
abilities to metabolize the carbon sources compared to L. biglobosa. The strains of P. lingam
showing good growth on tested carbon sources clustered together, while L. biglobosa created
two sub-clusters. This clustering was connected with the results of the metabolic profile of
all tested substrates and growth intensity profile on various carbon sources. The patterns
of carbon source utilization are presented in Figure 6.

Species-specific and strain-specific differences were observed for both P. lingam and
P. biglobosus. It was found that all of the tested strains were extensively capable of metabo-
lizing the carbon substrates at a relatively high level, especially carbohydrates (D-sorbitol,
D-trehalose, turanose, D-mannose, stachyose), organic acids (L-malic acid, succinic acid),
amino acids (L-alanine, L-alanyl-glycine) and one polymer (glycogen). Furthermore, it
was found that substrates were utilized by P. biglobosus and not utilized or utilized at very
low level by P. lingam, including L-proline, fumaric acid, L-asparagine, 2-keto-D-gluconic
acid, L-serine, L-glutamic acid, succinamic acid, α-keto glutaric acid, glycyl L-glutamic acid,
D-xylose and sucrose. N-acetyl -D-mannosamine was not utilized by all tested strains, while
glucuronamide, β-cyclodextrin, putrescine, L-fucose, S-saccharic acid, D-tagatose, quinic
acid, 2-amino ethanol, L-proglutamic acid, sebcic acid were utilized only by P. biglobosus and
not used by P. lingam. Similarly, as metabolic capacity, the growth intensity of P. biglobosus
was higher for almost all tested substrates compared to P. lingam (Figures 6 and S1–S3). The
highest growth intensity of P. biglobosus was observed on the following carbon sources: α-
methyl-D_galactoside, xylitol, M-inositole, maltose, D-melibiose, gentiobiose, L-rhamnose,
palationse, N-acetyl-D-galactosamine, D-galacturonic acid, quinic acid, glycerol, maltitol,
i-erythritol, β-methyl-D-glucoside, β-methyl-D-galactoside, D-galactose, D-melezitose, and
sedoheptulosan.
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Figure 6. Metabolic differences based on particular carbon source utilization between P. lingam
(PL1, PL2, PL3) and P. biglobosus (PB1, PB2, PB3), expressed as the values of substrate consumption
(A 490 nm) (A), A490 nm—absorbance reads at wavelength 490 nm, and growth intensity (A 750 nm)
(B), A750 nm—absorbance reads at wavelength 750 nm. The color codes correspond with the level of
utilization of/growth on carbon sources, n = 3.

In general, all tested substrates groups such as: polyols, pentoses, glucosidases,
oligosaccharides, polysaccharides, hexoses, sugar acids, L-amino acids, aliphatic organic,
TCA-cycle intermediates, peptides, biogene, and heterocyclic amines, hexosamines, and other
substrates were metabolized at a higher level by P. biglobosus than P. lingam (Figures S1–S3).

Additionally, the ratio between mitochondrial respiration (OD490 nm) and fungal
growth (OD750 nm) calculated for the different groups of substrates showed the diverse
metabolic efficiency of the fungal isolates (Figure 7).
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expressed as the ratio values of substrates consumption (A 490 nm) and growth potentials (A 750 nm).
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indicating stressful metabolic situations with higher obtained values according to the figure legend,
n = 9 (right side), n = 3 (left side).

Substrates belonging to amino acids and carboxylic acids were the most stressful for
both tested species showing lower metabolic efficiency on these organic sources. However,
carbohydrates were more stressful for P. lingam than for P. biglobosus fungal strains. What
is more, a stressful metabolic situation, indicated by the ratio of both AWCD to AWDD
(Figure 8) was met using especially arbutin, L-glutamin acid and L-threonine by P. lingam
and glucose-1-phosphate, salicin, bromosuccinic acid,
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Figure 8. The ratio between values of substrate use (A 490 nm) and biomass production (A 750 nm)
defining theoretical metabolic efficiency of different species of Plenodomus fungi on different carbon
sources, A490 nm indicates absorbance reads at wavelength 490 nm, A750 nm indicates absorbance
reads at wavelength 750 nm, n = 9. Color codes are explained in Figure 7.

3. Discussion

The results of this study confirmed the working hypothesis about the differences
in metabolic capacities between P. lingam and P. biglobosus sub-clade ‘brassicae’. Despite
considerable variation in metabolic activities of individual isolates, both species formed
two separate groups with distinct metabolic potential. According to the Sneath criteria,
the FF MicroPlate C-sources utilization profiles, as well as the growth intensity of the
analyzed strains, was distinct for P. lingam and P. biglobosus. The utilization calculated
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based on absorbance value at 490 nm divided the isolates of P. biglobosus into two clusters
(with 66% similarity of the substrate utilization profiles) and one cluster for P. lingam (33%
similarity). Moreover, the increase of fungal biomass calculated based on absorbance
value at 750 nm showed identical results with the more stringent similarity (33%). This
means that despite having identical host plants and life cycles [47], the species P. lingam
and P. biglobosus maintain separate metabolic capacities. The differences partially explain
why P. lingam and P. biglobosus manifest different ways of inhabiting oilseed rape plants,
resulting in contrasting effects on plant health and yield. Based on our experiment, the
species P. biglobosus uses numerous and variable sources of carbon and under natural
conditions, it grows very quickly [34,44], whereas P. lingam is restricted to a narrower
range of C-containing nutrients, which is the most likely reason for its slower growth. The
response of both studied species to carbohydrates shows no statistical differences, but they
tend to be in favor of P. biglobosus species. Moreover, P. biglobosus grows significantly better
on carboxylic acids and amino acids.

Warm and humid weather increases the reproduction potential of P. biglobosus [48]
and leads to fast colonization of oilseed rape stems [49], leading to severe stem canker
symptoms [50]. High metabolic capacities help P. biglobosus species achieve quite spectacu-
lar success in inoculum production, reaching millions of pycnidiospores, that are able to
colonize adjacent plants [51,52]. Moreover, the fungus increases its reproduction capacities
by up to a few thousand of ascospores per cubic meter of the air [31,53], which incredibly
increases the ecological success of this species.

To a great extent spore germination and mycelial growth [54] and hence, also the stem
canker disease is controlled by plant resistance and fungicide application [55], especially
when the latter are well-timed by the decision support systems [29,56]. However, naturally
created mechanisms such as fast growth, abundant reproduction, and higher levels of
resistance to commonly used fungicides are in favor of the survival of P. biglobosus. It was
usually found as the first species on oilseed rape [1,33,37,46], and in some countries, out of
the two species, only P. biglobosus has been reported on oilseed rape by now [57].

In contrast, P. lingam grows slowly, but we have demonstrated that it utilizes substrates
more efficiently than P. biglobosus. Moreover, the number of substrates causing substrate
stress is much lower as compared to P. biglobosus. Considering the ability to produce toxins
contributing to the pathogenesis, this species achieved the ecological success in a different
way than P. biglobosus.

Field populations of P. lingam display a high evolutionary potential and can overcome
major resistance genes within a few years [58]. The most dramatic example was the break of
resistance introduced to the Australian cultivar Surpass from B. rapa subsp. sylvestris, which
was broken within one year [59]. Many other examples show the population of P. lingam
may shift rapidly in response to the common use of oilseed rape cultivars carrying single
resistance (Rlm) genes [60,61]. These genes exert strong selection pressure on corresponding
avirulence effector genes of P. lingam [42].

The evolution of the pathogen toward virulence [62] resulted in a vast search for stable
quantitative resistance (QR) loci to stem canker [63]. It was proved that QR resistance
increases the durability of qualitative resistance of oilseed rape to P. lingam [64,65]. Recently,
numerous significant quantitative trait loci (QTL) for QR were detected on several chromo-
somes belonging to A or C genomes, of which eight were repeatedly detected across diverse
environments of oilseed rape cultivation, located in Australia, France, and the United King-
dom [66]. Association mapping confirmed the high number of genomic regions involved
in oilseed rape QR to stem canker [67]. These stable QTLs can be used for enhancing QR
in elite germplasm via marker-assisted or genomic selection strategies [66]. Additionally,
comparative mapping pinpointed several R genes coding for nucleotide-binding leucine-
rich repeat (LRR) receptors, which helps to combine QR and specific resistance to P. lingam,
conferred by R genes. Similar to the other plant diseases, the control of P. lingam relying on
resistant varieties is challenging and must be based on QR resistance as well as efficient
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working and diversified Rlm genes of various origins and their careful and well-planned
deployment [58].

Great progress in resistance breeding over the last three decades has helped to control
stem canker. The breakdown of resistance to stem canker reported in Australia has been
averted in commercial cultivars of oilseed rape [68]. However, durable resistance based on
several QTLs may bring questions about the fitness cost [69]. Decreased yield frequently
encountered in resistant cultivars is not acceptable to farmers. The recent introduction of
pro-ecological programs, such as the European Green Deal, with a toxic-free environment
and zero pollution of water, air, and soil, will promote the further pursuit to utilize disease-
resistant cultivars of crop plants. There is a hope the use of super parasites and natural
products will reduce the pressure exerted on P. lingam and it will reduce its further spread
and virulence towards Brassicaceae plants. An increased investigation of P. biglobosus
influence on P. lingam is needed. Its results may help to exploit natural competition
between these species in occupying oilseed rape plants. This, in turn, requires detailed
studies of plant tissues composition to compare metabolic capacities of P. lingam and
P. biglobosus with the availability of substrates in various plant organs, stages of plant
development, and differences between the commercially used cultivars of oilseed rape.
Ideally, the investigations should compare the results of metabolic capacities of all sub-
clades within P. lingam and P. biglobosus, with a high number of isolates representing each
of these taxonomic groups.

4. Materials and Methods
4.1. Fungal Strains

The studies were done using fungal strains from the collection of the Department of
Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of
Sciences. The fungi were isolated from the leaves of oilseed rape plants, single-spored
and classified as Plenodomus lingam (formerly Leptosphaeria maculans) and P. biglobosus
subclade ‘brassicae’ (formerly L. biglobosa subclade ‘brassicae’) based on their morphology
and molecular characteristics, as described before [53,70]. There were three isolates of
P. lingam (PL1, PL2, and PL3) and three isolates of P. biglobosus subclade ‘brassicae’ (PB1,
PB2, and PB3) studied.

4.2. Filamentous Fungi (FF) Plates Assay

The metabolic capacity and profile of six Plenodomus isolates, including three isolates
of P. lingam and three isolates of P. biglobosus subclade ‘brassicae’, was measured using
filamentous fungi (FF) microplates (Biolog, Inc., Hayward, CA, USA) containing 95 differ-
ent carbon sources and tetrazolium dye. The fungi were cultured on potato dextrose agar
(PDA) for 6 weeks at 20 ◦C and then fungal spores were used as inoculum of microplates.
The inoculation procedure was performed according to manufacturer protocol with modifi-
cations described by Frąc [71] and Oszust et al. [72] in triplicate using three separate plates
for each fungal isolate. In brief, after homogenization of fungal spores in distilled sterile
water with Pulsifier apparatus, the obtained fungal suspension in inoculating fluid (FF-IF,
Biolog) containing Phytagel, Tween 40 and water was adjusted to 75% of transmittance
using turbidimeter (Biolog, Inc., Hayward, CA, USA).

Then, 100 µL of the above-mentioned fungal spores suspension were added into
each well of FF microplates and the plates were incubated at 27 ◦C in darkness within
240 h. The measurements of absorbance at wavelength 490 nm (substrate utilization) and
750 nm (fungal growth) were performed every 24-h using a microplate reader (Biolog Inc.,
Hayward, CA, USA).

4.3. Metabolic Capacity, Fungal Growth and Group of Substrates Use

Based on measurement at 490 nm and 750 nm, average well color development
(AWCD) and average well density development (AWDD) indices were calculated, respec-
tively [71,73]. The substrate richness indices presenting the number of different substrates
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utilized by the strain (490 nm) or used by fungi to grow (750 nm) were calculated as all
positive readings with the threshold ≥0.25. The response of each tested fungal strain to in-
dividual 95 carbon substrates was assessed as a level of consumption of different substrates
and growth intensity on substrates. The percentage of the use of six main groups of car-
bon sources (amines and amides, amino acids, carbohydrates, carboxylic acids, polymers,
miscellaneous), as well as the fungal abilities to grow on them, were calculated to present
the response of tested fungal pathogens to substrates. Moreover, the level of metabolic
capacity and fungal growth intensity on those groups of carbon sources were calculated.
To analyze deeper the carbon sources guild utilization, fifteen groups of substrates were
evaluated according to Atanasova and Druzhinina [74], based on their chemical structure
and properties. The following guilds of substrates were tested: heptoses, hexoses, pentoses,
sugar acids, hexosamines, polyols, polysaccharides, oligosaccharides, glucosides, peptides,
L-amino acids, biogenic and heterocyclic amines, TCA-cycle intermediates, aliphatic or-
ganic acids, and others. The ratio of AWCD and AWDD of substrate group [75,76] and the
particular carbon sources for tested fungi was calculated to indicate the specific respiration
rate for the mean values of each substrate group and shows catabolic capacity compared
with fungal biomass production. The higher ratio indicates the higher stressful metabolic
situation, showing lower biomass production and higher respiration rates [77,78].

4.4. Statistical Analysis

Data analysis was performed with the STATISTICA 13.0 (StatSoft Inc., Tulsa, OK, USA)
software package. One-way analysis of variance ANOVA (with confidence interval 95%)
was performed to compare the growth of selected strains on individual carbon sources and
the level of substrate utilization, expressed as AWDD, AWCD, and R indices. Then, the
indices were assessed by two-way ANOVA analysis regarding the effect of the incubation
time and tested fungal isolates. ANOVA was followed by a post hoc analysis using Tukey’s
HSD (Honestly Significant Difference) test. The summed data matrices also were evaluated
following multidimensional scaling to detect additional relationships between variables.
Cluster analysis was performed to detect groups in the data set. To illustrate the results,
the similarities of the carbon utilization patterns between the strains were presented using
heat maps graphs and the percentage of total carbon source utilization. As a function of
the carbon utilization a dendrogram calculated with the Ward method [79] and Sneath
dissimilarity criterion [80] was performed to indicate the dissimilarity of fungal groups
based on their response to substrates tested.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens11010050/s1, Figure S1: Ribbon chart depicting the
consumption response (A490 nm) of P. lingam and P. biglobosus to substrates located on Biolog®

FF plates, shown as the following substrate groups: (A) polyols, (B) pentoses, (C) glucosides, (D)
oligosaccharides, (E) polysaccharides. The analysis was performed on the basis of consumption
(A490 nm) potentiates (A > 0.2, n = 3). Figure S2: Ribbon chart depicting the consumption response
(A490 nm) of P. lingam and P. biglobosus to substrates located on Biolog® FF plates, shown as the
following substrate groups: (A) hexoses, (B) sugar acids, (C) L-amino acids, (D) aliphatic organic
acids, and (E) tricarboxylic acid (TCA) cycle-intermediates. The analysis was performed on the
basis of consumption (A490 nm) potentiates (A > 0.2, n = 3). Figure S3: Ribbon chart depicting the
consumption response (A490 nm) of P. lingam and P. biglobosus to substrates located on Biolog® FF
plates, shown as the following substrate groups: (A) peptides, (B) biogenic and heterocyclic amines,
(C) hexosamines and (D) others. The analysis was performed on the basis of consumption (490 nm)
potentiates (A > 0.2, n = 3).
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