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Abstract: Biofilms are bacterial communities encased in a rigid yet dynamic extracellular matrix.
The sociobiology of bacterial communities within a biofilm is astonishing, with environmental
factors playing a crucial role in determining the switch from planktonic to a sessile form of life. The
mechanism of biofilm biogenesis is an intriguingly complex phenomenon governed by the tight
regulation of expression of various biofilm-matrix components. One of the major constituents of the
biofilm matrix is proteinaceous polymers called amyloids. Since the discovery, the significance of
biofilm-associated amyloids in adhesion, aggregation, protection, and infection development has
been much appreciated. The amyloid expression and assembly is regulated spatio-temporarily within
the bacterial cells to perform a diverse function. This review provides a comprehensive account of
the genetic regulation associated with the expression of amyloids in bacteria. The stringent control
ensures optimal utilization of amyloid scaffold during biofilm biogenesis. We conclude the review by
summarizing environmental factors influencing the expression and regulation of amyloids.
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1. Introduction

Biofilm is an aggregative behavior of microbial cells for self-protection and better sur-
vival [1]. Microbes within a biofilm can cooperate and coordinate with each other allowing
them to adopt a community-based lifestyle [2]. Initially, marine microbiologists used the
term “biofilm” to distinguish planktonic and adherent bacterial cells, but sooner, it was
recognized as a major concern for both environment and human health [3]. Bacterial colony
within a biofilm is encapsulated by an extracellular matrix (ECM) that aids in substrate
adhesion [2] and acts as a stronghold for microbial cells against environmental insults [1].
It facilitates water retention, absorption of inorganic ions and organic compounds, excess
carbon storage, horizontal gene transfer, polymicrobial interaction, mechanical stability,
antibiotic resistance, and biofilm architecture development [1,4–6]. Macromolecules, such
as extracellular DNA (eDNA), polysaccharides, and proteins are the key components of the
biofilm matrix [4]. The proteinaceous bacterial ECM components consist of pili, flagella,
adhesins, secreted extracellular proteins, and proteins of outer membrane vesicles [7].

One of the secreted ECM proteinaceous components of a bacterial biofilm matrix is
amyloids [8]. Amyloids are structured protein aggregates initially known to be associated
exclusively with the pathological manifestation of human diseases [9]. However, the notion
changed with the attribution of functional roles to the amyloids [10]. Both pathological and
functional amyloids share similar biophysical and biochemical features [10–12]. Functional
amyloids are ubiquitous and play a pivotal role in biofilm development, growth of aerial
structures, modulation of melanin synthesis, scaffolding, epigenetic control of polyamines,
and transmission of genetic information [12,13].

The amyloid scaffold is a well-suited structure for biofilm assembly since it pro-
vides rigidity and stiffness to the matrix [14]. Figure 1 summarizes the discovery of
biofilm-associated amyloids in Escherichia coli (CsgA and CsgB; curli specific gene) [15],
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Pseudomonas aeruginosa (Fap) [16], Bacillus subtilis (TasA and TapA) [17], and Staphylococcus
aureus (phenol soluble modulins: PSMs and biofilm-associated proteins: Bap) [18,19]. As
a part of the biofilm matrix, amyloids contribute to adhesion onto the abiotic and biotic
surface, increase hydrophobicity and promote colonization [20]. They also increase struc-
tural stability, provide resistance against environmental stresses, drive protection against
phage particles and matrix-degrading enzymes [21]. Apart from functional roles, bacterial
amyloids are also associated with disease pathology and are known to enhance gut inflam-
mation, provoke host cytolysis, and influence neuronal-inflammation and cerebral amyloid
aggregation [22,23]. Some of them are recognized as microbial-associated molecular pat-
terns (MAMPs) and help evoke host immune response [24]. Overall, functional amyloids
play a major role in biofilm formation and contribute to disease progression. Therefore, it is
essential to understand the regulatory mechanism that controls amyloid assembly during
biofilm development.
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In this review, we discussed the genetic regulation that controls the expression of
functional amyloids in E. coli, B. subtilis, and S. aureus. As a prelude, we briefly described
biofilm formation and its genetic regulation, followed by a detailed description of the
gene regulation of amyloids associated with biofilm formation. The description of genetic
regulation of all the matrix components of biofilm is beyond the scope of this review. Since
the environment directly influences biofilm formation, we also described the environ-
mental signals that regulate the expression of functional amyloids. Understanding the
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regulatory mechanism of functional amyloids may help tackle biofilm-related diseases in
an improvised manner and provide new avenues for drug discovery.

2. Biofilm Assembly and Its Gene Regulation

Biofilms are highly heterogeneous bacterial communities, where the 3D architecture
and chemical composition change according to environmental conditions [2,6]. Despite
heterogeneity in composition and structure, biofilm assembly is a uniform process in
most bacteria [6]. The stages involved in biofilm biogenesis can be briefly described as (1)
reversible attachment to the surface, (2) irreversible and stable attachment, (3) proliferation
and microcolony formation, (4) maturation, and (5) dispersion [1]. Mature biofilm provides
bacteria several advantages over the planktonic lifestyle and remains as one of the most
featured adaptations.

Biofilm formation is regulated by various intracellular and intercellular signaling
systems [25]. The major signaling systems responsible for the synthesis and assembly of
various matrix constituents during biofilm formation include quorum sensing, bis-(3′-5′)-
cyclic diguanosine monophosphate (c-di-GMP) signaling, and non-coding small RNAs
(sRNA) [25]. Quorum sensing allows bacteria to detect cell density change through autoin-
ducers and respond via a change in gene expression [26]. Modulation in intracellular levels
of c-di-GMP leads to differential gene expression profile. Higher c-di-GMP concentration
results in inhibition of motility, induce matrix-associated polysaccharide and adhesins
synthesis [25]. sRNAs have been reported to regulate exopolysaccharide synthesis and
export, amyloid expression, and motility [25].

3. Gene Regulation of Bacterial Functional Amyloids during Biofilm Assembly
3.1. Escherichia

E. coli express proteinaceous fibrils-like structures called curli, which are essential
for cell contact and promote host colonization [15]. Curli elicit close interactions with
surfaces and form inter-bacterial bundles permitting a stable cell association within the
biofilm [27,28]. Chapman and his colleagues were the pioneers to provide a breakthrough
in understanding the amyloid characteristics of proteins in bacteria by discovering curli
in biofilms [15]. Curli is one of the best-studied bacterial functional amyloids [29]. The
expression and translocation of curli are governed by curli specific genes (csg) encoded by
csgBAC operon [30]. csgBAC encodes for minor curli subunit CsgB, major curli subunit
CsgA, and periplasmic protein CsgC, respectively [30]. Under biofilm-forming conditions,
curli assembly is initiated by CsgB that provides a suitable template for efficient CsgA
amyloid assembly on the outer cell surface [31,32]. CsgC is a periplasmic protein that
keeps CsgA in a soluble form within the cells [33]. Another operon csgDEFG encodes
four accessory proteins that are essential for proper curli assembly [15]. CsgG is an
outer membrane nonameric lipoprotein that aids in the secretion of CsgA and CsgB curli
subunits [34]. CsgE alters CsgG pore properties and adds specificity to CsgG-dependent
secretion [35,36]. Within the cells, CsgE also helps in maintaining CsgA in its soluble
state [35,36]. CsgF is a curli adaptor protein that facilitates curli amyloid assembly onto
the cell surface [37]. Curli biogenesis is a highly regulated process controlled by various
genes and gene products [38]. The highly robust nature, striking mechanical properties,
and stiffness like silk makes curli an exciting system to understand the machinery that
modulates its expression [39]. Here we shed light on the significant regulators of curli
expression:

CsgD: CsgD is a FixJ/LuxR transcriptional family master regulator protein that posi-
tively regulates csg expression [40]. The expression of CsgD is modulated at both transcrip-
tional and post-transcriptional levels by regulatory proteins and sRNAs [41]. OmpR, RcdB,
PlaR, H-NS, RstA, CpxR, and IHF are the major transcriptional factors that recognize the
environmental cues and accordingly affect csgD expression [41]. OmpR, IH-F, RcdB, and
RstA are positive regulators, while PlaR, CpxR, and H-NS are negative regulators of csgD
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expression [41]. Besides these, the complex of catabolite repressor protein and cyclic AMP
also influence curli expression by positively regulating csgD transcription [42].

sRNAs: sRNAs such as McaS, OmrA, OmrB, RprA, RydC, RybB, and GcvB downreg-
ulate csgD expression [43–45]. RydC is a trans encoded sRNA that makes a complex with
host factor I protein (Hfq), which is paired with transcription initiation sequences (TIS) of
csgD mRNA [44]. The stable complex between RydC-Hfq and csgD mRNA hampers csgD
expression, reducing csgBAC transcription, thereby drastically impairing curli biogenesis
and biofilm formation [44]. RydC-Hfq mediated csgD downregulation is suggested to
be a potential mechanism for E. coli to switch between planktonic and sessile state [44].
On the contrary, McaS, RprA, and GcvB interact with Hfq and RNaseE, thereby inducing
ribonucleolytic cleavage of csgD mRNA and abolishing curli expression [45]. The OmrA/B
set of sRNAs also drastically reduces csgD expression by inducing translational inhibition
and abolishes curli synthesis [43].

Tol-Pal system: E. coli has a Tol-Pal system encompassing five proteins required to
maintain outer membrane integrity [46] and amyloid-dependent biofilm assembly [47].
Tol-Pal cascade deactivates RcsB/A system and downregulates OmpR expression [47].
RcsB/A blocks csgBAC operon and inhibits CsgA expression whereas, OmpR increases
csgD expression [47].

BolA-like protein family: Proteins belonging to BolA-like protein family are genetic
regulators and its homologues are conserved from prokaryotes to eukaryotic organisms [48].
E. coli BolA (encoded by bolA) is a transcriptional switch and a stress regulator protein
that governs a variety of phenotypes including biofilm formation, bacterial morphology,
membrane permeability, and flagella formation [48,49]. Recently, BolA was found to be
involved in curli formation by directly binding to csg operon and positively influencing its
expression [49].

Other regulators: A recent study suggests a positive role of purine biosynthesis
genes purF, purD, purM, and purK in curli expression [50]. Apart from purine biosynthe-
sis gene, the disrupted putative membrane protein IgaA homolog; YrfF results in curli
downregulation [50]. Mutated YrfF gene displays uncontrolled colanic acid production
by over-expression of Rcs two-component system that negatively controls transcription
of curli genes [50]. Furthermore, in the same study, a novel negative regulator of csgD
and csgA transcription, named repressor of curli production (RcpA) was identified [50].
As summarized in Figure 2, the post-transcriptional regulation of csgD, several inducers,
and repressors collectively modulate csg expression and contribute to amyloid-associated
biofilm biogenesis.

3.2. Bacillus

B. subtilis is a Gram-positive bacterium widely found in the environment [51]. It forms
biofilms on solid surfaces and at the air-liquid interface [51]. The biofilm matrix of B. subtilis
is composed of surface hydrophobic layer protein (BslA), major biofilm matrix protein
component (TasA), γ-poly-DL-glutamic acid, and exopolysaccharide comprising galactose,
N-acetyl-galactose, and glucose [51]. TasA is an amyloidogenic protein that readily forms
amyloids under in vivo and in vitro conditions [17,52]. TasA and exopolysaccharides
contribute to the architectural development and structural integrity of the biofilm [52].
TasA anchoring or assembling protein (TapA) assists in fibril assembly of TasA onto cell
membrane [53]. The amino-terminal of TasA and TapA are recognized by signal peptidase
W (SipW) that trims the signal peptides during translocation of proteins to the extracellular
environment [54]. The expression and secretion of TasA and TapA are under the tight
control of tapA-sipW-tasA operon [17]. Figure 3 shows the regulation of TasA expression
and the accessory proteins required for proper TasA assembly.
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Sporulation transcription factor genes (Spo0A) and HTH-type transcriptional regulator
(SlrR): Stage 0 Sporulation Protein A (Spo0A) is a central response regulator protein that
regulates the expression of genes involved in matrix synthesis and sporulation [55]. The
phosphorylated form of Spo0A (Spo0A~P) controls differential gene regulation within the
cell [55]. The threshold level of Spo0A~P regulates the expression of tapA-sipW-tasA operon
by two mechanisms [55]. First, Spo0A~P mediates the inhibition of SinR activity [55].
SinR is a master regulator of B. subtilis biofilm formation [55]. Under normal conditions,
SinR binds to tapA promoter and prevents tapA expression [55,56]. However, in response
to environmental stimuli, Spo0A~P level reaches a threshold that further induces the
expression of an anti-repressor protein SinI [55]. SinI forms an irreversible heterodimer
with SinR and thereby prohibits SinR from binding to tapA promoter, leading to tapA
expression [55,57]. As SinI sequesters SinR, another SinR repressed gene, slrR, is transcribed,
which further blocks SinR activity [58,59]. Thus, when SinI is expressed under the control of
Spo0A~P, it inhibits SinR activity, leading to activation and accumulation of SlrR, triggering
cells to produce more SlrR [58,59]. The shift from low SlrR to high SlrR state within the
bacterial cells is recognized as an epigenetic switch, which helps in biofilm biogenesis
for several generations via SinR inhibition by SlrR. Altogether, SinI and SlrR inhibit SinR
activity, resulting in tapA expression and contribute to biofilm formation [55].
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Secondly, Spo0A~P modulates the expression of a regulatory protein AbrB, which
is a negative regulator of slrR [55]. This regulation is achieved via two mechanisms: (1)
Spo0A~P directly represses the expression of AbrB, and (2) Spo0A~P induces expression of
protein AbbA, which sequesters AbrB from slrR promoter [56,58,60,61]. In addition to slrR,
AbrB also negatively regulates the abh gene, which positively regulates slrR expression [62].
Some extra-cytoplasmic function (ECF) RNA polymerase σ-factors transcriptionally regu-
late abh expression [63]. These factors are activated by various stress signals that suggest a
regulatory process independent of Spo0A~P response regulatory mechanism [63].

Transcriptional regulator (SlrA): SlrA is a paralog to SinI that is involved in regulating
tapA epigenetic switch [58,64]. Like SinI, SlrA is also a SinR repressor. Activated SlrA
sequesters SinR, leaving the slrR promoter accessible to the transcription machinery, which
leads the cell to a high-SlrR state, resulting in tapA expression. slrA expression is controlled
via transcriptional repressor YmcC. However, what cues relieve YmcC from the promoter
of slrA are yet to be explored [58,64].

Regulator of extracellular matrix (Rem): RemA and RemB are the two positive protein-
regulators essential for manifesting tapA-sipW-tasA transcription [65,66]. RemA directly binds
to the promoter region of tapA operon and induces the expression. However, the upstream
signaling which monitors RemA activity is yet unknown [65,66]. Altogether, inducers, re-
pressors, anti-repressors, and epigenetic switch frames a complex regulatory system that
supervises tasA expression and contributes to TasA dependent biofilm formation.

3.3. Staphylococcus

Staphylococcus is a Gram-positive bacteria predominantly involved in nosocomial
infections [67]. It can adhere to indwelling medical devices and adapt a biofilm lifestyle
for better survival [67]. Staphylococcus biofilm matrix consists of eDNA, proteinaceous
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adhesins, aggregates, exopolysaccharides, and teichoic acids [67]. Two proteins, namely
phenol soluble modulins (PSMs) and biofilm-associated protein (BAP), greatly influence
biofilm development [18,19,68,69]. The following section will summarize the genetic
control of PSMs and BAP through various regulatory mechanisms.

A. Phenol soluble modulins (PSMs): PSMs are small α-helical peptides involved in
the virulence of S. aureus infections [68,70]. PSMs form amyloid-like structures and assist
in biofilm stabilization by protecting the cells against matrix-degrading enzymes [18,71].
However, the monomeric form of PSMs holds relevance in biofilm disassembly [72–74].
There are two variants of PSMs: PSMsα and PSMβ [70]. The psm genes are clustered in
two loci, expressing the shorter α type 1–4 and the longer β type 1 and 2 PSM peptides [70].
S. aureus PSMα1, PSMα3, PSMα4, and PSMβ1, PSMβ2 are amyloidogenic [18,75,76]. The
different forms of PSMs display amyloid polymorphism with PSMα1 and PSMα4 having
cross-β amyloid fibrils whereas PSMα3 forms cross-α fibrils [77]. S. aureus PSM fibrils
involved in biofilm stabilization are majorly composed of PSMα1, PSMα2, PSMα4, and
PSMβ1, PSMβ2 peptides [18]. Unlike in vitro PSM amyloid assembly, S. aureus grown in
culture media requires eDNA for PSM polymerization [78]. The expression of PSMs is
governed by different regulatory factors, as depicted in Figure 4. Here we report the major
regulatory systems responsible for PSM expression:
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Accessory gene regulator (Agr): The Agr system is the main regulatory system that
influences the expression of several virulence factors [79]. The Agr system encompasses
two divergent transcriptional units, RNAII and RNAIII [79]. RNAII encodes for AgrA-
D proteins. AgrD is a precursor for an autoinducing peptide [79]. In the presence of
autoinducing peptide, the sensor histidine kinase; AgrC activates AgrA that further in-
duces RNAII, RNAIII, and psm gene transcription [79]. The Agr system also appears to
be an important regulator for governing psm expression because agr deletion mutants
result in downregulation of PSM expression [79]. RNAIII is an Agr effector molecule that
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downregulates the expression of genes involved in the synthesis of surface proteins and
upregulates the ones responsible for exoprotein expression [80]. The role of RNAIII in
cell death and subsequent increase in eDNA release suggest that the Agr system not only
positively regulates PSM expression, but may create an environment that could facilitate
PSM polymerization [81].

AraC/XylS-type regulator: The regulator of biofilm formation (Rbf) is an AraC/XylS
type regulator modulating Staphylococcus biofilm formation [82]. Rbf directly represses
psmα transcription without significantly affecting psmβ transcription [82]. Another AraC
family regulatory protein, Rsp, positively influences psmα and psmβ transcription [83].
Rsp influences psm transcription in an Agr-independent manner [83]. Rsp binds to the
upstream region of Agr binding site onto psmα operon, whereas it binds to both upstream
and downstream region of Agr binding sites on psmβ operon [83]. The PSMs are one of the
known agents for causing skin and soft tissue infections [83]. In one of the experiments
using mice models, it has been demonstrated that rsp deletion decreases the skin abscesses
in mice. However, compared to agr deletion mutants, S. aureus rsp agr double mutant failed
to reduce the abscesses area [83]. Rsp seems to regulate PSM expression but may not be a
critical regulator as Agr system.

Staphylococcus accessory regulator A (SarA): SarA is another regulator that controls
gene expression of virulence factors [84]. A study between foodborne and clinically
associated S. aureus strains revealed the positive role of SarA in regulating PSM gene
expression [84]. Whether SarA directly or indirectly influences psm expression is not yet
known. Further studies are required to understand the role of SarA in PSM expression.

HTH-type transcriptional regulator (MgrA): MgrA is a transcription regulator that
affects PSM expression and biofilm formation [80,85]. It negatively regulates PSM expres-
sion by binding to psmα and psmβ operon [85]. However, mgrA deletion mutants display
more psmβ expression compared to psmα expression [85], suggesting MgrA has more reg-
ulatory effect on psmβ compared to psmα operon. MgrA weakens biofilm detachment at
the late biofilm developmental stage by repressing psm expression; however, its presence
discourages biofilm formation at the early developmental state [85].

B. Biofilm-associated protein (Bap): Bap is a cell surface anchored protein that plays a
dual role in biofilm formation [86]. The monomeric state of Bap helps in antibiotic resistance,
intracellular adhesion whereas the amyloid form elevates clumping and facilitates biofilm
assembly on abiotic surfaces and host tissues [86]. After secretion, Bap is covalently
attached to the cell surface and processed to release the N-terminus region, which remains
soluble at neutral pH, but forms extracellular amyloid-like aggregates when pH drops
to the acidic range [19]. The gene encoding Bap lies within Staphylococcal Pathogenicity
Island bovine 2 (SaPIbov2) [87]. SarA is the major regulatory protein that controls Bap
expression.

Staphylococcus accessory regulator (SarA): SarA directly promotes Bap-dependent
S. aureus biofilm formation [88]. Northern blot analysis reveals reduced bap mRNA in
the sarA mutant compared to wild-type [88]. Furthermore, during the late exponential to
stationary phase, the expression of sarA is induced by its sigB (alternative sigma factor B, a
stress response regulator) dependent promoter [89]. Thus, sigB may indirectly impact bap
expression via regulating sarA expression at late exponential to stationary phase of bacterial
growth [89].

Phase variation: phase variation is a phenomenon that drives the conversion of a
non-biofilm-producing phenotype to a biofilm-producing one and vice versa [90]. This
phenomenon is also observed in Bap-dependent biofilm-producing S. aureus strains [91].
Under in vitro conditions, S. aureus performs two-way conversion of phase variant pheno-
type, i.e., from biofilm-positive phenotype to biofilm-negative phenotype and vice versa.
However, S. aureus infecting the sheep mammary gland displays one-way phase variant
conversion, from biofilm-negative phenotype to biofilm-positive phenotype [91]. The
negative biofilm phase variants of S. aureus have a reduced Bap expression, whereas the
positive phase variants display higher Bap levels [91].
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4. Targeting Functional Amyloids Transcriptional Regulation as an Anti-Biofilm Strategy

The biofilm community display resistance mechanisms against the conventional
antibiotic through incomplete or slow permeability of antibiotics to matrix milieu, presence
of different cell subpopulation, and altered chemical environment within the biofilm [92].
One way to tackle the biofilm mediated antibiotic resistance is to target the process involved
in biofilm formation itself in combination with different antibiotic and/or antimicrobial
compounds [93]. Here, we enlist some of the small molecules and/or natural compounds
that can target genetic regulation of biofilm-associated functional amyloids (PSMs and
curli) in combination with antibiotics or alone as a successful anti-biofilm strategy.

Staphylococcus spp.: A computational approach suggested 4-[(2,4-diflurobenzyl)amino]
cyclohexanol as the best small molecule to target Staphylococcus sarA [94] 4-[(2,4-diflurobenzyl)
amino] cyclohexanol showed anti-biofilm activity against clinically isolated multidrug
resistance S. aureus strains, but not the anti-bacterial activity [95]. It also reduced the
minimum inhibitory concentration of the antibiotic during combinational studies. Cin-
namaldehyde, a major component of cinnamon essential oil present in barks and leaves
of cinnamon trees, displays dose dependent anti-biofilm and antibacterial activity [96].
Cinnamaldehyde treated methicillin-resistant Staphylococcus aureus strains had lower levels
of sarA mRNA [96]. As SarA positively control bap and psm expression, cinnamaldehyde
and 4-[(2,4-diflurobenzyl)amino] cyclohexanol may have impact in downregulating their
expression [84,88,96]. The dose dependent effect of thymol on MRSA results in MRSA
biofilm inhibition [97]. However, once the dose exceeds 100 µg/mL, thymol displays an-
tibacterial effects. Thymol mediated significant downregulation of sarA and sarA regulated
virulent genes expression [97]. Thus, thymol have the potential to downregulate bap and
psm transcription via interfering sarA expression. Additionally, rifampicin in combination
with thymol ameliorates its antibacterial activity onto planktonic and preformed S. aureus
biofilm cells. Moreover, 5-Dodecanolide (DD) is a phytochemical exhibiting anti-biofilm
activity against MRSA and other clinical associated S. aureus strains. C. elegance treated
with DD demonstrated 64% reduction in MRSA colonization compared to non-treated
control [98]. DD promotes agr, RNAIII, PSMα, expression and downregulates sarA tran-
scription [98]. DD treated cells showed elevated DNase and protease activity. Interestingly,
DD decreases eDNA release in dosage dependent manner [98]. PSM in a lesser or no eDNA
environment remains in a monomeric state within the culture medium. The monomeric
state of PSM assist in biofilm disassembly [18,69,72,73,78,99]. Altogether, the increased
expression of PSM in a lesser eDNA environment along with elevated protease activity
could be a possible mechanism of DD to exhibit anti-biofilm activity.

Escherichia spp.: Epigallocatechin gallate (EGCG) is a green tea polyphenol that has
been shown to inhibit E. coli biofilm formation and possess antibacterial activity at a much
higher concentration [100]. EGCG inhibits curli expression and amyloid formation via
reduced expression of csgD in E. coli cells [100]. Curli has been known to play an important
role in early progression of Parkinson’s disease in α- synuclein overexpressing mice [101]
by accelerating α-synuclein amyloid formation. However, the presence of EGCG not
only inhibits curli mediated amyloid formation but also improves motor impairment in
α-synuclein overexpressing mice [101]. Likewise, EGCG inhibits amyloid formation by
human proteins such as transthyretin (TTR), α-synuclein and amyloid-β peptide [102–105].

Thus, EGCG is a potential candidate for inhibition of amyloid-dependent biofilm
formation. Another phenolic compound named ginkgolic acids from G. biloba profoundly
inhibits Enterohemorrhagic E. coli O157:H7 (EHEC) biofilm formation [106,107]. Similarly,
coumarin and umbelliferone have anti-biofilm effect on E. coli O157:H7 strain [108]. Further-
more, coumarin also modulates motility, quorum sensing and toxin related gene expression.
In another study, 83 essential oils for inhibiting Enterohemorrhagic E. coli O157:H7 (EHEC)
biofilm were evaluated out of which pimento berry, clove, cinnamon bark, and bay oil gave
the best result, reducing more than 75% of the biofilms [109]. Further analysis suggested
the eugenols to be the essential components for its anti-biofilm activity of the oils [109]. In
an animal model of C. elegans infected with EHEC, it was observed that the worms survived
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when treated with clove or eugenols as compared to non-treated controls [109]. Phloretin,
an antioxidant present in apples, demonstrate anti-biofilm activity against E. coli O157:H7.
Phloretin repress autoinducer-2, curli and toxic gene expression [110]. In a dose dependent
manner, the honey from different floral sources such as clover, acacia and polyfloral display
E. coli O157:H7 biofilm inhibition. Along with downregulation of csg gene, honey reduces
quorum sensing and virulence gene expression within E. coli O157:H7 [111]. Altogether,
different kinds of chemicals have been explored to target the genetic regulators involved in
functional amyloid regulation.

5. Environmental Factor Regulating Gene Expression of Biofilm-associated Amyloids

The bacterial cells sense and respond to environmental cues via altered gene expression.
Modulation in gene expression results in a change of protein pool within the cytoplasmic
milieu that governs the formation or dissociation of the biofilm matrix [25]. Therefore,
it is of prime interest to study the environmental factors that affect the regulation of
matrix components. Here, we discuss some of the environmental factors that regulate the
expression of biofilm-associated amyloids.

6. Environmental Factors Influencing csg Expression in E. coli

The adequate expression of curli depends on several environmental factors such as
altered osmolarity, low temperature, and stationary growth phase conditions, as shown
in Figure 5 [112–114]. During low osmolarity conditions, EnvZ/OmpR two-component
system and histone like nucleoid structuring (H-NS) protein drive csg expression [115].
EnvZ is a sensory kinase of EnvZ/OmpR two-component system that senses osmolarity
change and phosphorylates OmpR, which positively regulates csgD expression [114,116].
However, at low osmolarity and high salt condition or in the presence of high sucrose
concentration, H-NS represses csgD expression [114]. CpxA/CpxR two-component system
also influences csg expression [114]. CpxA possesses kinase phosphatase activity, whereas
CpxR is a response regulator of a two-component system. Under physiological condi-
tions, more phosphatase and less kinase activity of CpxA onto response regulator CpxR
is observed, leading to de-repressed activity of the downstream targets [112]. Whereas
in high salt concentration, phosphorylated CpxR hampers csgD expression thereby re-
ducing csgA transcription [112,114]. Besides, at high sucrose or salt concentration, RcsC
sensory kinase from Rcs two-component system phosphorylates RcsB contributing to csg
downregulation [114,117,118].

Temperature is another major environmental factor that regulates curli expression [113].
Some strains of E. coli synthesize curli at low temperature (~30 ◦C), which is accomplished
by a small protein called Crl [113], levels of which are elevated during the transition to
stationary phase [113]. Crl forms holoenzyme with the alternative sigma factor σs (RpoS)
and activates csgBA promoter [113]. Natural F plasmids in E. coli strains lead to the curli
biogenesis by upregulating csgBAC operon at 37 ◦C [119]. Altogether, a thermosensing
mechanism allows csgA expression at various temperatures [113].

The presence of metals also enhances curli expression [120]. Exposure to sub-inhibitory
level of nickel leads to high expression of curli and biofilm thickening [120]. Similarly,
sulfur is required for E. coli surface adhesion and biofilm formation. Sulfate is the primary
source of sulfur as it is abundant in the environment. Once taken up by the bacterium,
sulfate is reduced to hydrogen sulfide via an assimilation pathway [121] that results in
formation of two nucleotides: adenosine 5′-phosphosulfate (APS) and phosphoadenosine
5′-phosphosulfate (PAPS) [122]. The inactivation of PAPS reductase coding gene cysH leads
to the overproduction of PAPS in the medium, which promotes curli production [121].
Along with metals, antioxidants, such as vitamin C in its minimum inhibitory concentra-
tion, inhibits biofilm formation by E. coli. Vitamin C affects the quorum sensing activity
and exopolysaccharide production, thereby interfering with downregulation of genes
responsible for biofilm formation such as csgA, csgG, and fimA [123].
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7. Environmental Factors Regulating TasA Expression in B. subtilis

B. subtilis fends against various environmental stresses such as osmotic pressure,
nutrient availability, and bactericidal agents [124,125]. The osmotic pressure created either
by the addition of polyethylene glycol (PEG) or due to the presence of exopolysaccharide
results in downregulation of tapA-sipW-tasA operon, thereby inhibiting gene expression of
matrix components [124]. The inhibitory effect is SinR and KinD dependent [124]. KinD
is a phosphotransferase, being part of the network that can phosphorylate Spo0A [124].
Threshold levels of Spo0A~P facilitated tasA expression [55,57]. Elevated Spo0A~P levels
are required to stimulate the significant expression of sporulation specific gene SpoAII.
Besides, the presence of PEG leads to KinD dependent SpoIIA expression [124]. Interestingly,
B. subtilis need to bypass the matrix formation to achieve a sporulation state which is
also KinD dependent [126]. Altogether, higher osmotic pressure will elevate Spo0A~P
levels that may bypass the matrix formation, downregulating tasA expression, and aid in
sporulation [124,126].

Molecules and metabolites such as nystatin from Streptomyces and auto-inducers
like surfactin can stimulate biofilm formation in Bacillus [125]. Surfactin, nystatin, and
valinomycin can disrupt cell membrane leading to potassium leakage [125]. The potassium
leakage is sensed by Sporulation kinase C (KinC) that phosphorylates Spo0A resulting
in Spo0A~P production. When Spo0A~P reaches a threshold level, the sub-population
produces a biofilm matrix via stimulating tasA operon (Figure 6) [125]. This gives an insight
into how Bacillus spp. establishes communication with other microbes and colonize in
unfavorable environmental conditions [125].
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Figure 6. Role of antibiotics and antifungal in modulating TasA expression.

Under nutritional stress, B. subtilis displays cannibalism that delays or avoids entry
into the sporulation phase [125]. Certain bacteriocins, such as surfactin, trigger the pro-
duction of cannibal toxins (sporulation killing factor, sporulation delaying protein) and
matrix components like TasA [125] that favors the growth of matrix producers. In contrast,
the cells that are unable to transcribe matrix-producing genes are lysed. The lysed cells
secrete a set of nutrients on which matrix producers feed, grow, and delay the entry into
the sporulation phase [125].

8. Conclusions

Biofilm assembly is a highly regulated process with various genes playing a pivotal
role in the synthesis and organization of matrix components. Amyloids, being a robust
scaffold, contribute significantly to the architecture of the majority of bacterial biofilms.
Dedicated systems and genes strictly regulate the amyloid assembly during biofilm forma-
tion. Bacterial amyloid acts as a double-edged sword as it provides structural–functional
aspects to the biofilm and contributes to the manifestation of numerous infectious diseases.
Therefore, understanding the genetic control of amyloids will help us target the genes
involved in its regulatory mechanism and pave the way to curb amyloid-associated biofilm
infections.
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