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Abstract: One source of water contamination is the release of wastewater that has not undergone
efficient treatment. The aim of this study was to evaluate the reduction obtained with sodium
hypochlorite (NaClO), UV and peracetic acid disinfection treatment of Salmonella spp., pathogenic
Campylobacter, STEC and bacterial indicators in three full-scale municipal wastewater plants. A
general reduction in Salmonella was observed after disinfection, but these bacteria were detected
in one UV-treated sample (culture method) and in 33%, 50% and 17% of samples collected after
NaClO, UV and PAA disinfection treatments, respectively (PCR method). A better reduction was
also observed under NaClO disinfection for the microbial indicators. Independent of the disinfection
treatment, E. coli O157:H7 was not detected in the disinfected samples, whereas some samples treated
with UV and PAA showed the presence of the stx1 gene. No reduction in the presence of stx2 genes
was verified for any of the disinfection treatments. Campylobacter was not detected in any of the
analysed samples. The overall results highlight a better reduction in microbiological parameters with
a NaClO disinfection treatment in a full-scale municipal wastewater plant compared with UV and
PAA. However, the results indicate that a complete and specific monitoring program is necessary to
prevent a possible risk to public health.

Keywords: wastewater; disinfection; Campylobacter; Salmonella spp.; E. coli O157:H7; STEC; indicator
microrganisms; UV; peracetic acid; sodium hypochlorite

1. Introduction

Water scarcity is currently one of the main challenges being faced by humans and
governments; consequently, water quality protection for drinking purposes, aiming to
reduce the impact on human health, represents a priority issue [1]. One of the main sources
of water contamination is the release of wastewater that has not been properly treated,
representing an important possible contributor to numerous pathogens and chemical con-
taminants [2,3]. Primary and secondary wastewater treatment typically achieves 90–99.9%
enteric microflora reduction, but in some cases, this reduction may be poor. For this reason,
an additional conclusive step of effluent disinfection must generally be performed [4,5]. An
ideal disinfectant for this step should efficiently remove the pathogenic microorganism’s
maximum, avoiding the neoproduction of dangerous and undesirable by-products, and
should be inexpensive and technologically compatible [6]. The chlorination is the most
widely used method for the disinfection of wastewater, because it showed high effective-
ness and low residual effect and cost [7]. Although this treatment inactivates different
pathogens, the common application of chlorination in wastewater disinfection has led
to concerns regarding the presence of disinfection by-products (such as the total organic
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halogen) that are cytotoxic, genotoxic and carcinogenic [8]. Thus, alternative disinfection
treatments are utilised, such as ultraviolet (UV) radiation, peracetic acid (PAA) and ozoni-
sation. The main physical procedure for the disinfection of wastewater is UV irradiation;
one of the advantages of this method is that it produces nontoxic by-products [9]. However,
small doses might not be sufficient to inactivate some microorganisms, and they might
reverse the radiation effect through photoreactivation or dark repair. In addition, the total
suspended solids and turbidity in the sewage were found to cause a lower microbiological
reduction. [3,10]. PAA is a strong oxidant that represents different advantages: first, it has
a large spectrum of antimicrobial activity, which is not influenced by different values of
organic matter, without producing toxic and/or mutagenic by-products; moreover, it does
not require dechlorination and it presents a low dependence on pH [11,12]. Although PAA
can reduce the main enteric bacteria in wastewater, this disinfectant is associated with
microbial regrowth and it shows lower abatement of some microorganisms (e.g., viruses
and parasites) [13,14].

The information above on the main techniques applied for wastewater disinfection
underlines the need to identify the most suitable processes to treat sewage. In fact, the
contamination of surface waters by pathogenic microorganisms, as a consequence of inade-
quate wastewater disinfection, may promote waterborne disease spread, including those
caused by pathogenic Campylobacter, Shiga toxin (Stx)-producing Escherichia coli (STEC) and
Salmonella [15–17]. Although the predominant mode of Campylobacter and STEC transmis-
sion to humans is via the consumption of contaminated foods, water can also be a source
of human exposure [18,19]. The largest reported waterborne outbreak of Escherichia coli
O157:H7 in the United States was a consequence of a coinfection with Campylobacter jejuni,
affecting 775 persons in New York State in August 1999. The epidemiological investigation
has identified discharges of wastewater into river as the main source of contamination of
drinking water supplies [20]. Although O157:H7 represents the most investigated strain,
recent studies also highlight the role of non-O157 STEC strains as pathogens in aquatic
ecosystems [21,22]. A large outbreak (1431 cases), ascribed to Campylobacter water con-
tamination, was reported in Switzerland in 1998. The outbreak was due to pump failure
producing a spill of sewage into the groundwater [23]. Recently, a campylobacteriosis
outbreak (39 cases) associated with a municipal water system contaminated by wastewater
was reported in Nebraska [24]. Moreover, it is also important to highlight that a possible
risk for humans can also derive from the spreading of pathogenic bacteria through irriga-
tion with surface waters contaminated by wastewater effluents. For example, according to
the data provided by Centers for Disease Control and Prevention, Salmonella is the main
aetiological agent involved in the foodborne disease outbreaks (~53.4%) from 2006 to 2017,
and the consumption of produce was frequently associated with these outbreaks (~32.7%).
The recent literature suggests that irrigation water represent a possible source of Salmonella
contamination in produce, highlighting its possible role as a transmission vehicle [25].

The aim of this study was to evaluate the reduction obtained with sodium hypochlorite,
UV and peracetic acid disinfection treatment of the most important zoonotic bacterial
pathogens (Salmonella spp., pathogenic Campylobacter, and STEC) and typical bacterial
indicators of faecal contamination in three different full-scale municipal wastewater plants.

2. Results and Discussion
2.1. Bacterial Indicators

The presence of E. coli, coliform bacteria, enterococci, and C. perfringens spores was
investigated, comparing the reduction obtained with the three different disinfection treat-
ments (WWTP1 with NaClO, WWTP2 with UV, WWTP3 with PAA). Moreover, the re-
lationship between bacterial concentrations and pathogens was evaluated. The mean
concentrations of the faecal indicators found in the three WWTPs are reported in Table S1
(Supplementary Material).

Generally, in the non-disinfected effluents (E), the concentrations of the indicators were
higher in WWTP1 and WWTP2 than in WWTP3 (p > 0.05). Moreover, in all WWTPs, the
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bacterial levels observed in non-disinfected effluent were similar to those reported in other
studies [3,26,27]. Furthermore, the decreasing trend of the mean concentrations of the four
indicators in the three WWTPs was total coliforms > E. coli > Enterococci > C. perfringens.
The mean concentrations of coliform bacteria and C. perfringens spores were similar in the
non-disinfected effluent of the three WWTPs (ANOVA p > 0.05) (Table S2, Supplementary
Material). A difference between the mean concentration of E. coli and enterococci in the
non-disinfected effluents of WWTP1 and WWTP2 with respect to WWTP3 was observed,
but this difference was statistically significant only between WWTP1 and WWTP3 (ANOVA
p < 0.005 for E. coli and p < 0.05 for enterococci) (Table S3, Supplementary Material).

Moreover, ANOVA highlighted that the bacterial load in the WWTPs was similar
between the seasons (p > 0.05).

The decreasing trend of the mean concentration of the four indicators in the disinfected
effluents (DE) of the three WWTPs was C. perfringens ≥ Enterococci > total coliforms >
E. coli (Table S3, Supplementary Material). This trend was attributable to the different
sensitivities of the four indicators to the disinfection treatments applied, as reported by
other authors [27–29]. The concentrations of the four indicators were lower in WWTP1 than
in WWTP2 and WWTP3. The ANOVA and post-hoc tests highlight a significant difference
between the mean concentration of total coliforms, E. coli and enterococci in the disinfected
effluents of WWTP1 vs. WWTP2 and WWTP3. Otherwise, the mean concentrations of
C. perfringens spores were similar in the disinfected effluent of the three WWTPs (ANOVA
p > 0.05).

Moreover, a significant difference in the concentrations of the four indicators between
the E and DE of each WWTP was observed, with the exception of C. perfringens spores
in the WWTP3. Therefore, all three disinfection treatments were useful in reducing the
microbial concentration in the final effluent (Table S2).

Comparing the total mean reduction in all the indicators for each WWTP (Figure 1),
a significant difference was observed among the three WWTPs (ANOVA p < 0.0005),
particularly between WWTP1 and WWTP2 (post hoc p < 0.0005) and between WWTP1 and
WWTP3 (post hoc p < 0.0005).
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Figure 1. Box plot of microbial reduction by the three WWTPs (WWTP1: NaClO; WWTP2: UV;
WWTP3: PAA).

The mean removal of each microbial indicator by the three WWTPs is shown in
Figure 2: a lower reduction was found in the three WWTPs for C. perfringens spores,
without any significant differences among the three disinfection treatments; otherwise,
E. coli, coliform bacteria and enterococci reached a high abatement in all plants with
significant differences related to the application of the different treatments (NaClO, UV
and PAA) (ANOVA p < 0.0005).
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In particular, the reduction in coliforms, E. coli and enterococci in WWTP1 because
of NaClO disinfection was significantly greater than those reached in WWTP2 (post hoc
p < 0.0005, p < 0.005 and p < 0.005, respectively) and WWTP3 (post hoc p < 0.0005, p < 0.0005
and p < 0.0005, respectively), in which disinfection was made with UV and PAA, respec-
tively. Therefore, NaClO disinfection is confirmed as the most effective treatment in terms
of indicator microorganism reduction. It is important to emphasize that all three disinfec-
tion processes allow values below the regulatory reference limit for E. coli concentration
(5 × 103 CFU/100 mL) to be reached with reference to wastewater discharge into surface
waters in Italy [30]. However, the non-disinfected effluents of all plants always presented
concentrations above this limit, underlining the need for a disinfection step to reduce the
microbial impact of wastewater effluents on the receiving surface water. Considering that
Italian legislation for the reuse of wastewater effluents establishes a legal limit of 1 Log
CFU/100 mL for E. coli concentration [31], disinfection with NaClO always reached this
goal, except in July, which was probably due to the particularly high concentration of E. coli
in the non-disinfected effluent. In contrast, the effluents disinfected with UV and PAA did
not comply with the limit, except in two samples disinfected by UV (January and July) and
in one sample disinfected by PAA (January).

Pearson’s correlation analysis shows a positive correlation, even if not significant,
between the dosage of NaClO applied in the WWTP1 and the reduction in coliforms
(r = 0.771), of E. coli (r = 0.756) and the total mean abatement (r = 0.626). Additionally, for
NaClO contact times, positive but not significant correlations were found, with E. coli
(r = 0.761), C. perfringens (r = 0.608) and the total mean abatement (r = 0.631), while a
positive and significant correlation with coliform bacteria was found (r = 0.898; p < 0.05).
These results confirm the sensitivity of coliforms and E. coli to NaClO and show that the
reduction in C. perfringens was mainly dependent on the contact time rather than on the
dosage used.

No correlation (Pearson) was found with the dosage and contact time of PAA applied
in the WWTP3. No relationship between the parameters of UV treatment and the microbial
indicators can be determined because the power of UV lamps and the contact time are fixed.

2.2. Pathogenic Bacteria

The results of the detection of Salmonella spp., E. coli O157:H7 and Campylobacter
carried out in the three full-scale municipal wastewater plants are reported in Table 1.
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Table 1. Detection of Salmonella spp., E. coli O157:H7, E. coli virulence genes and Campylobacter (spp., C. coli, and C. jejuni) in
the untreated and disinfected samples.

Sample Sampling Month WWTP Salmonella E. coli O157:H7 Campylobacter Salmonella

invA O157 H7 Intimin SLT-I SLT-II Genus C. jejuni C. coli Culture Method

E September 2017 1 + + + − + − − − − +
DE September 2017 1 − − − − − + − − − −
E November 2017 1 + + + − + − − − − − *

DE November 2017 1 + − + − − − − − − −
E January 2018 1 + + + − − − − − − +

DE January 2018 1 − − + − − − − − − −
E March 2018 1 + − + − + − − − − +

DE March 2018 1 − − − + − − − − − −
E May 2018 1 + − − − + − − − − +

DE May 2018 1 − − − − − + − − − −
E July 2018 1 + − − − − − − − − +

DE July 2018 1 + − − − − − − − − −

E September 2017 2 + + + − + − − − − +
DE September 2017 2 − − + − + + − − − −
E November 2017 2 + − + + + − − − − − *

DE November 2017 2 − − + − − − − − − −
E January 2018 2 + − + − − + − − − − *

DE January 2018 2 − − − − − − − − − −
E March 2018 2 + − + − + − − − − +

DE March 2018 2 + − + − − − − − − −
E May 2018 2 + − − − + − − − − +

DE May 2018 2 + − − − + − − − − +
E July 2018 2 + − − − − − − − − +

DE July 2018 2 + − − − − − − − − −

E September 2017 3 + + + − + − − − − +
DE September 2017 3 − − − − − + − − − −
E November 2017 3 + − + − + − − − − − *

DE November 2017 3 − + − − − − − − − −
E January 2018 3 − − + − + − − − − − *

DE January 2018 3 − + + − + − − − − −
E March 2018 3 + + + − + − − − − − *

DE March 2018 3 − − + − − − − − − −
E May 2018 3 + − − − + − − − − +

DE May 2018 3 − − − − − − − − − −
E July 2018 3 + − − − − − − − − +

DE July 2018 3 + − − − − − − − − −

E: Effluent; DE: Disinfected Effluent; +: positive; −: negative; WWTP: Wastewater Treatment Plant; WWTP1: NaClO; WWTP2: UV; WWTP3:
PAA; * Salmonella spp. probably present but not identified for the presence of Proteus mirabilis.

Salmonella spp. were observed in all the analysed effluents using molecular methods,
except for the samples collected in WWTP3 in January 2018, while they were seen in 66.6%
of the non-disinfected effluents (E) with the culture method. Analogous percentages of
contamination were also reported in other studies [28,32]. The presence of Salmonella in the
effluents before disinfection treatment underlines that conventional municipal wastewater
treatments are not able to remove these bacteria. This finding underlines the importance
of using tertiary disinfection treatment to avoid the spread of enteric pathogens in the
environment and to prevent a possible risk to public health [4]. Considering the different
disinfection treatments, a generally consistent reduction in Salmonella contamination was
observed; in particular, with the culture-based method, Salmonella was detected in a sole
sample of the WWTP2 (May 2017), whereas with the PCR method, Salmonella was detected
in 33% of samples (2/6) collected after NaClO disinfection, in 50% (3/6) after UV treatment
and in 17% (1/6) after PAA disinfection. These results highlight that none of the disinfection
treatments was able to remove Salmonella contamination completely in the final effluent;
however, a better reduction was observed with PAA and NaClO disinfection with respect to
UV. The same trend was also observed for the microbial indicators. The efficacy of NaClO
and PAA in reducing Salmonella contamination has been reported in other studies [33,34],
where the performances of different WWTP disinfection technologies were evaluated. In
line with our results, Veschetti and collaborators [32] reported a similar bactericidal power
of PAA and NaClO against Salmonella and other microorganisms. The lower disinfection
of UV treatment with respect to PAA and NaClO could be due to the photoreactivation
mechanism of Salmonella and other pathogenic bacteria. In fact, the potential regrowth
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and repair of pathogenic bacteria (photoreactivation) in UV-disinfected wastewater was
reported as a drawback of the real application of this process [10].

Comparing the results obtained with the molecular and culture methods for Salmonella
detection, a lower contamination was observed in the effluent before disinfection as well as
after the treatments using the culture method. These results could be related to the difficulty
to isolate the strain from XLD agar because of the presence of interfering microflora
(e.g., Proteus mirabilis). This methodological problem should be taken into account when
the microbiological risk associated with the reuse of wastewater effluent is estimated,
considering that Italian regulation prescribes Salmonella spp. absence evaluated by the
culture method [31].

The results of the PCR analyses showed that 50% (3/6) of the WWTP1 and WWTP3
effluents were positive for E. coli O157:H7, while only one of the WWTP2 non-disinfected
samples (17%) was contaminated with this pathogenic microorganism. Independent of the
disinfection treatment applied, E. coli O157:H7 was not detected in any of the examined
disinfected samples, demonstrating the effectiveness of removal of this microorganism by
the tertiary disinfection treatments investigated.

A total of four (4/6 or 67%), four (4/6 or 67%) and five (5/6 or 83%) effluents before
disinfection showed the presence of amplicons corresponding to the stx1 gene (WWTP1,
WWTP2 and WWTP3, respectively). The stx2 gene was detected only in one effluent (E)
in WWTP2 (January 2018). The presence of amplicons corresponding to the stx1 and stx2
genes in effluents before disinfection was always associated with the O157:H7 serotype or
other STECs, as reported in Table 1. After disinfection, in WWTP1, no samples revealed
the presence of the stx1 amplicon, while WWTP2 and WWTP3 showed two (33%, 2/6)
and one (17%, 1/6) sample with the stx1 gene, respectively. No reduction in the presence
of stx2 genes was verified for the disinfection treatments; in fact, two (2/6 or 33%), one
(1/6 or 17%) and one (1/6 or 17%) effluent after disinfection revealed the presence of
amplicons corresponding to the stx2 gene in WWTP1, WWTP2 and WWTP3, respectively.
As reported in Table 2, three samples (DE WWTP1 and WWTP3 September 2017 and DE
WWTP1 May 2018) tested positive for stx genes, but they were not associated with the
presence of the STEC serogroups investigated in this study, in agreement with the results
obtained in our previous studies [28,35]. This finding was probably related to the presence
of bacteriophages carrying stx1/stx2 genes, since their role in the dissemination of such
sequences among STEC and Shigella strains and among other waterborne bacteria is well
known [36,37]. Another reason for the abovementioned stx1/stx2 amplification products
could be the presence of STEC serogroups other than those targeted in this research.

It is also important to consider that the presence of stx genes is essential to infection;
however, other virulence factors (e.g., the eae gene) could be involved [38]. In our study,
the eae gene (coding for the virulence factor intimin) was revealed in only one sample of
disinfected effluent, but in this sample the stx1/stx2 genes were absent.

Campylobacter were not detected in any of the samples analysed because no amplicons
corresponding to genus-specific 16S rRNA (Campylobacter spp.) and species-specific mapA
and ceuE genes (for C. jejuni and C. coli species) were detected. Considering the absence
of contamination by pathogenic Campylobacter, no conclusions about the reduction in the
different disinfection treatments can be drawn.

To verify the correlation between the presence of emerging pathogens and the counts
of faecal indicators such as E. coli, coliforms, enterococci and C. perfringens spores, a
logistic binary regression analysis was performed. No associations between the presence
of O157:H7 genes, the eae gene (intimin), stx1 gene (Shiga-like toxin I), stx2 gene (Shiga-like
toxin II), invA gene (Salmonella spp.) and the counts of microbiological indicators (E. coli,
enterococci, C. perfringens spores and coliforms) were observed (p > 0.05). Moreover, no
relationships were observed between Salmonella spp. contamination revealed by the culture
method and faecal indicators or other pathogens (p > 0.05). These results suggest that the
common bacterial indicators of faecal contamination in municipal wastewater samples
seem to not be reliable indicators of pathogenic bacteria presence. These considerations
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are in agreement with other studies on relationship between bacterial indicators and
pathogenic bacteria, including Salmonella spp. and STEC [39,40].

Table 2. Detection of non-O157 STECs by real-time PCR in untreated and disinfected samples.

Sample Sampling Month WWTP E. coli Serogroup

O157 O103 O26 O145 O111 O104 SLT-I SLT-II

DE September 2017 1 − − − − − − − +
E March 2018 1 − + + − + + + −
E May 2018 1 − + + + + + + −

DE May 2018 1 − − − − − − − +

E November 2017 2 − + + − + + + −
E January 2018 2 − + + − + + − +
E March 2018 2 − + + + + + + −
E May 2018 2 − + + + + + + −

DE May 2018 2 − + + + + + + −
DE September 2017 3 − − − − − − − +
E November 2017 3 − + − − + + + −
E January 2018 3 − + + + + + + −
E May 2018 3 − + + + + + + −
E: Effluent; DE: Disinfected Effluent; +: positive; −: negative; WWTP: Wastewater Treatment Plant; WWTP1: NaClO; WWTP2: UV;
WWTP3: PAA.

To conclude, the overall results obtained underline a better reduction in microbio-
logical parameters monitored using sodium hypochlorite as a disinfection treatment in a
full-scale municipal wastewater plant with respect to UV and PAA. However, pathogen
detection with molecular methods revealed the presence of Salmonella contamination and
stx2 genes in effluents disinfected with NaClO. This finding highlights the need for a
complete and specific monitoring program to prevent possible risks to public health, also
considering the lack of correlation between pathogens and microbial indicators.

3. Materials and Methods
3.1. Bacterial Strains and Culture Media

C. jejuni (ATCC 33291), E. coli O157:H7 (NCTC 129, nontoxigenic strain encoding the
eae gene), and S. typhimurium (ATCC 14028) were used as reference strains. The bacteria
utilized in this study were cultivated as reported in [28,35].

3.2. Sampling

Effluents before and after disinfection treatment were collected during six sampling
periods (September 2017, November 2017, January 2018, March 2018, May 2018 and
July 2018) from three Italian wastewater treatment plants (WWTP1—population equivalent
of 34000, WWTP2—population equivalent of 8000, and WWTP3—population equivalent of
8000). The different wastewater treatment plants are characterized by a disinfection step
with NaClO (15% w/w), UV lamp and PAA (15% w/w) for WWTP1, WWTP2 and WWTP3,
respectively. Chemical–physical characteristics of non-disinfected wastewater are reported
in Table 3, and information about disinfection conditions in the sampling period is reported
in Table 4. After the sampling, wastewater samples were maintained at +4 ◦C and analyzed
within 24 h.
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Table 3. Chemical–physical characteristics (mean ± SD) of the non-disinfected effluent in the
three WWTPs.

WWTP TSS (mg/L) COD (mg/L) pH

1 11.04 ± 4.53 28.38 ± 8.86 6.55 ± 0.57
2 11.22 ± 5.53 25.32 ± 9.02 6.86 ± 0.32
3 10.08 ± 5.77 21.38 ± 7.93 6.90 ± 0.31

WWTP: Wastewater Treatment Plant; TSS: Total Solid Suspended; COD: Chemical Oxygen Demand.

Table 4. Disinfection conditions in the different wastewater treatment plants monitored.

WWTP Sampling Period Flow
(m3/die)

Medium Flow
(m3/h)

Contact Time
(min)

Disinfectant
Agent

Quantity
* (mg/L) or (mJ/cm2)

1 September 2017 16,431 685 36.81 NaClO 0.69
1 November 2017 11,720 488 51.60 NaClO 1.50
1 January 2018 13,088 545 46.21 NaClO 1.34
1 March 2018 14,126 589 42.81 NaClO 1.24
1 May 2018 15,448 644 39.15 NaClO 0.73
1 July 2018 17,774 741 34.03 NaClO 0.64

2 September 2017 2451 102 / UV 54
2 November 2017 1605 67 / UV 54
2 January 2018 1638 68 / UV 54
2 March 2018 1394 58 / UV 54
2 May 2018 2851 119 / UV 54
2 July 2018 1485 62 / UV 54

3 September 2017 1556 65 18.66 PAA 3.93
3 November 2017 1710 71 16.98 PAA 3.58
3 January 2018 1528 64 19.01 PAA 4.01
3 March 2018 1920 80 15.12 PAA 3.19
3 May 2018 2436 102 11.92 PAA 2.51
3 July 2018 2218 92 13.09 PAA 2.76

* mg/L: concentration of disinfectant (NaClO or PAA); mJ/cm2: dosage UV.

3.3. Microbiological Analyses for Pathogen Detection

Effluents before and after disinfection were tested for pathogen detection. During
each sampling, a raw sewage sample spiked with a high concentration of pathogens
(~106 CFU/100 mL) was used as a positive control. The concentration, enrichment, DNA
extraction and PCR/real-time PCR steps were carried out as reported in our previous
studies [35,41,42]. Salmonella spp. detection was also evaluated using the culture method.
Briefly, samples were pre-enriched in peptone water (Oxoid), enriched in selective media
(Rappaport Vassiliadis Broth, RV, Oxoid) and streaked on specific media (Xylose Lysine
Deoxycholate agar Oxoid) [43]. The identification of selected bacterial colonies was carried
out using an API® 20E kit (BioMerieux, Marcy L’Etoile, France).

3.4. Microbiological Analyses for the Detection of Microbial Indicators

E. coli, enterococci, Clostridium perfringens spores and coliforms were analysed in all
samples. In brief, the membrane filtration method was used to process wastewater samples
for C. perfringens enumeration, as reported by ISO 14189:2013 [44]. Wastewater samples
were assayed for E. coli, coliforms, and enterococci with a commercial semiautomated
quantification method (Quanti-TrayTM 2000, IDEXX Laboratories, Milan, Italy). With
Quanti-Tray, a 100 mL sample was added to a specific substrate for each microorganism,
and the mixture was divided into 51 wells and incubated at a specific temperature. Then
the standard method, based on the Most Probable Number (MPN) approach, was used
to determine the number of bacteria in the original sample. The Colilert-18 test uses a
growth substrate with specific indicators (ONPG and MUG) to detect coliforms, and E. coli.
Coliforms use their β-galactosidase enzyme to metabolize ONPG and change it from
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colorless to yellow. E. coli use β-glucuronidase to metabolize MUG and create fluorescence.
The Enterolert Test uses another growth substrate to detect enterococci. When enterococci
utilize their ß-glucosidase enzyme to metabolize Enterolert’s nutrient-indicator (4-methyl-
umbelliferyl ß-D-glucoside) the sample fluoresces, the number of positive wells are counted
and referred to the MPN table provided to obtain the Most Probable Number of bacteria
(MPN/100 mL of sample). This method has been approved by U.S. EPA and it has been
included in Standard Methods for Examination of Water and Wastewater.

3.5. Statistical Analyses

IBM SPSS Statistics version 26.0 (IBM, Segrate, Italy) for Windows was used for sta-
tistical analyses. The relationship between the indicator bacteria load (log 10) and the
presence/absence of pathogens was carried out with binary logistic regression. The re-
duction in indicator load using the different disinfection treatments was analyzed with
ANOVA and Tukey’s post-hoc tests. The association between the disinfection conditions
(quantity and contact time) and the reduction in indicators was performed using Pear-
son’s correlation.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-081
7/10/2/182/s1, Table S1: Faecal indicators in the untreated (E) and disinfected effluents (DE). Table
S2: Results of the ANOVA and post-hoc Tukey test related to the four indicators in each WWTP. Table
S3: Results of the ANOVA and post-hoc Tukey test related to each indicator.
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