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Abstract: Ash shoot dieback has now spread throughout Europe. It is caused by an interaction
between fungi that attack shoots (Hymenoscyphus fraxineus) and roots (Armillaria spp., in our case
Armillaria gallica). While detection of the pathogen is relatively easy when disease symptoms are
present, it is virtually impossible when the infestation is latent. Such situations occur in nurseries
when seedlings become infected (the spores are carried by the wind several dozen miles). The
diseases are masked by pesticides, fertilisers, and adequate irrigation to protect the plants. Root rot
that develops in the soil is also difficult to detect. Currently, there is a lack of equipment that can
detect root rot pathogens without digging up root systems, which risks damaging trees. For this
reason, the use of an electronic nose to detect pathogens in infected tissue of ash trees grown in pots
and inoculated with the above fungi was attempted. Disease symptoms were detected in all ash
trees exposed to natural infection (via spores) in the forest. The electronic nose was able to detect the
pathogens (compared to the control). Detection of the pathogens in seedlings will enable foresters to
remove diseased trees and prevent the path from nursery to forest plantations by such selection.

Keywords: ash; dieback; root rot; e-nose; heat shock protein; forest protection; Hymenoscyphus
fraxineus; Armillaria gallica

1. Introduction

Hymenoscyphus fraxineus is an alien invasive pathogen [1] that has spread rapidly
across Europe in the last 20 years, causing massive declines in ash trees of all ages [2,3].
The presence of H. fraxineus was recorded as early as 1990 in East Asia (Japan, Korea,
Northeast China), where it occurs as a harmless saprotroph on Fraxinus mandshurica and
Fraxinus rhynchophylla, suggesting that European ash dieback has an East Asian origin.
Symptoms of the disease include necrosis of leaves and twigs, discolouration of wood,
wilting of shoots, and death of twigs, branches, and stems. This damage occurs because
after colonising bark and wood tissues, and the fungus secretes a phytotoxin, e.g., viridiol,
which causes the death of plant tissues [4]. We hope that an electronic nose (e-nose) will
detect this or other volatile compounds. When branches die, the tree sprouts epicormic
shoots near the infection site to replace those lost, often giving the tree a bushy appearance.

Pathogens 2021, 10, 1359. https://doi.org/10.3390/pathogens10111359 https://www.mdpi.com/journal/pathogens

https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0003-2906-246X
https://orcid.org/0000-0003-4688-2582
https://orcid.org/0000-0001-8061-435X
https://orcid.org/0000-0003-2036-6571
https://orcid.org/0000-0001-9666-8483
https://orcid.org/0000-0001-9654-5854
https://orcid.org/0000-0001-5863-053X
https://doi.org/10.3390/pathogens10111359
https://doi.org/10.3390/pathogens10111359
https://doi.org/10.3390/pathogens10111359
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pathogens10111359
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens10111359?type=check_update&version=2


Pathogens 2021, 10, 1359 2 of 21

These too may eventually succumb to the disease [5]. Although the disease is easy to detect
in its advanced form, there is usually no hope of saving the trees, so it is essential to detect
it in nursery stock. The pathogen has likely appeared on ash seedlings in nurseries because
it was introduced there. Often nurseries bring in young seedlings to be subcultivated
before they are sold. It is also possible that wind-blown ascospores infected the seedlings
in the nurseries. There are known cases of other species, e.g., Phytophthora, being brought
in with river water for plant watering. This route can hardly be ruled out either.

Ash trees grown in nurseries should be pathogen-free, but the pesticides, fertilisers
and good water regimes mask the disease. Then seedlings planted in plantations and left
alone will die en masse. If e-nose can detect the pathogen in asymptomatic plants already
in a nursery, it will help foresters select the suitable propagation material for plantings in
the forest.

The roots of weakened ash trees are attacked by a fungus of the genus Armillaria.
The genus Armillaria is distributed worldwide and currently includes over 40 officially
described species [6]. These pathogens play a significant role in the death of many trees
and stands in orchards, vineyards or ornamental plants in gardens. Indirect interactions
(via host) among pathogens H. fraxineus and Armillaria spp. result in severe shoot damage
in crowns, at the base of trunks and rot of roots [1,7–10]. The conidia of H. fraxineus are
abundantly produced on freshly infected petioles in autumn and winter [11] whilst the
ascospores are produced on fallen leaves next summer. The fungus can survive inside
petioles under natural conditions for up to five seasons after leaf fall [12]. The presence
of fungal fruit bodies allows the detection of both pathogens with the e-nose in the litter
and the infestation of tree roots. In the case of Armillaria, the e-nose would then be the
only device that can detect pathogens in roots without digging them up in young forest
plantations and mature trees. Such an advantage could be used in cities where falling
trees from wind because of Armillaria damaged roots threaten the health and property of
their residents.

The development of e-nose technologies for disease diagnosis began in the biomedical
field in the mid-1980s for detecting biotic (microbial) causes of human disease [13]. The use
of e-nose devices for disease diagnostic applications has subsequently expanded to plant
and animal hosts for numerous analyses that include non-invasive early detection of plant
and animal diseases through the invention of new gas sensor device types and disease
detection methods with sensor arrays designed and adapted for different chemical classes
of volatile organic compounds (VOCs) closely associated with individual diseases [13].

Recent advances in e-nose technologies, derived from numerous types of aroma
sensor technologies, have been developed for a variety of applications in the broad areas of
agriculture and forestry [14,15]. E-noses have been used in various commercial agricultural
industries, including agronomy, biochemical processing, botany, cell culture, plant variety
selection, environmental monitoring, horticulture, pesticide detection, plant physiology,
and pathology. Applications in chemotaxonomy, stem tracking, wood and paper processing,
forest management, forest health protection, and waste management in forestry also exist.
Thinking about the potential and expected specificity of e-nose for plant disease diagnosis,
one might get the impression that e-nose is used to detect diseased or severely stressed
plants, regardless of the source of the stress. In forestry, one can imagine such diagnostics
being required in many areas, from selecting seedlings to be planted in forest plantations
to selecting trees to be felled as part of silviculture or forest protection (sanitary cuttings).
Secondary pests or pathogens easily attack weakened trees left in the forest. Currently,
the selection of weakened trees is made intuitively based on the forester’s experience (e.g.,
selecting so-called weakened trees for felling based on the crown’s appearance). However,
when droughts occur (and they are becoming more frequent and longer), many trees that
belong to the co-dominant or even dominant group according to the Kraft classification are
weakened. In this case, the changes detected by e-nose at the level of volatile secondary
metabolites would be beneficial to decide which trees should be considered for removal in
the context of clearing or thinning to improve the growing conditions for the remaining
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trees. In this way, we can use the natural processes of plants to produce volatiles (secondary
metabolites) for defence, such as the well-known caffeine in coffee or nicotine in tobacco.
We are currently looking for these substances in trees using gas chromatography with a
GC-MS mass spectrophotometer. They belong to the phenolic compounds, sterols, and
terpenes [15,16].

An important limitation of electronic nose applications should be acknowledged
compared to classical chemical analytical methods such as GC-MS. Unlike the former,
the measurements performed by e-noses cannot provide objective information about the
chemical components present in the measured samples. The analysis of the captured signals
applies machine learning pattern recognition methods, which often act as a black box and
cannot explain the classification. Different sample types of different chemical compositions
may cause similar patterns in the sensor’s responses, making it impossible to differentiate
between the studied species. That is similar to human experience when various odours
can give similar impressions. Another drawback of the approach of applications of the
e-nose measurement combined with the machine learning techniques is the difficulty in
detecting new patterns in data when new odours are not present in the training phase of
the experiment.

Nevertheless, artificial intelligent noses have also been used as rapid and non-invasive
tools for diagnosing insects and diseases affecting vegetables and fruit trees [17] with
particular focus on bacterial, fungal and viral infections as well insect damage. Volatile
organic compounds emitted by plants provide helpful information about plant growth,
defence, and health, offering the possibility of non-invasive monitoring of plant health [15].
Compared to the traditional gas chromatography-mass spectrometry (GC-MS) technique, e-
noses are non-invasive and can be a fast, low-cost option for various applications. However,
the use of e-noses for plant pest diagnosis is still under development. There are challenges
related to sensor performance, sampling and detection in open areas, and scaling of
measurements. This paper tests feasibility of using PEN3 e-nose for early detection of ash
fungal pathogens while investigating their interactions and ash seedlings. It includes a
comprehensive comparison between three seedling treatments, i.e. natural H. fraxineus and
artificial A. gallica inoculations and phosphite fertiliser, which will allow us to discriminate
above fungi in the soil, as well as assess the health status of ash.

One of the plant adaptation mechanisms is the ability to produce different VOCs [18],
which are involved in response to biotic stress such as herbivory [19], mechanical dam-
age [20], pathogens [21]. As an indicator of stress level in plants, we used Hsps and their
primary regulator-heat shock factor gene (Hstf ) expression measurement. Stress caused by
abiotic factors can add up or have a synergistic effect. In addition, stress factors, according
to the so-called chain disease concept, may follow one another (when one ends, another be-
gins), or, as in Manion’s spiral disease theory [22], stress factors may occur simultaneously.
Manion divides them into predisposing (acting for a long time like drought), initiating
(causing damage like H. fraxineus) and contributing (e.g., Armillaria). The damage caused
by Armillaria could be largely due to a reduced ability to absorb water. This observation
supports Manion’s theory that contributing factors in the forest ecosystem (at a particular
place and time) directly cause the tree or stand death. They benefit from the weakening
of trees by predisposing and inciting (triggering) factors. In the case of ash dieback, the
most important factors act together: predisposing factors such as climate change (and the
resulting drought), H. fraxineus (inciting) and Armillaria (contributing).

Heat shock proteins (Hsps) play an extensive role in many cellular processes, giving
them a general role in tolerating different environmental stress treatments. Maintaining
proteins in their functional conformation and preventing aggregation of non-native proteins
are particularly important for cell survival under stress [23–25]. Under stress, these stress-
responsive biomolecules act as molecular chaperones through up- or down-regulation [26].
Stress has a significant impact on the expression of Hsp [26–28]. The expression of heat
shock protein genes in ash has not yet been investigated. To assess the molecular response
to plant damage caused by phytopathogens, we examined the expression of three selected
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Hsp genes, Hsp17, Hsp70, Hsp90 and one of their regulator-heat shock transcription factor
(Hstf ). Recently the only available data for ash are Hsp17, Hsp70, Hsp90 heat shock genes
and one of their regulators-heat shock transcription factor (Hstf ). All the genes were used
to evaluate stress level after A. gallica and Actifos treatment of ash.

In summary, the main objective of this study was to determine the feasibility of
detecting ash pathogens using e-nose, using the example of a fungus attacking the shoots
of H. fraxineus (needed for seedling selection in nurseries) and the root systems of A. gallica
(needed for older trees that may be at risk), and the study of Hsp gene expression was to
show the response of ash trees to infection.

2. Materials and Methods
2.1. Experimental Design
2.1.1. Preparation of the Plant Material

The 3-year-old trees F. excelsior in the study were grown in 10-L pots (with garden soil
of pH 5.5–6.5) and originated from seeds collected from trees growing along roadsides,
which did not show dieback symptoms common in forest stands. After spending a year in
the forests, they were grown in a greenhouse (temperature range there between 1 °C (win-
ter) to 30 °C (summer), and the photoperiod was the same as in nature. The study included
48 ash seedlings divided into five treatments: C—control, A—seedlings implemented with
Actifos, G—seedlings inoculated with the pathogen Armillaria gallica and AG—seedlings
treated with Actifos and inoculated with A. gallica. We had 8 samples of the Control (C)
category and 10 samples of each other category as it is presented in Table 1.

Table 1. Descriptive statistics for the number of dead shoots and weight of roots dry biomass at the
end of the test in each of the studied samples categories. The p-value for the Kruskal–Wallis test by
ranks. The studied categories of samples: Actifos+A. gallica (AG), Control (C), Actifos (A), A. gallica
(G), Isolated Control (I).

Number of Shoots Weight of Roots

N Avg Min Max Std p-Value Avg Min Max Std p-Value

AG 10 5.4 0 13 4.8 0.27 75 26 199 62 0.0041
C 8 4.4 0 9 3.3 0.38 93 21 494 163 0.00001
A 10 7.3 1 17 4.8 0.62 36 6 74 22 0.54
G 10 7.1 1 12 3.9 0.37 57 8 186 56 0.034
I 10 3.1 0 16 5.3 0.0003 604 27 1072 359 0.45

The isolated control (I) variant included plants grown in a separate box under natural
conditions (they were not directly exposed to foliar infestation by conidia and ascospores).
In contrast, all other plants listed were brought into the forest and placed under the canopy
of mature ash trees so that they were exposed to the natural pressure of Hymenoscyphus
fraxineus inoculum throughout 2016. The selected photographs of plants prepared in our
experiment are presented in Figure 1.

2.1.2. Preparation of the Fungal Inoculum

Inoculation of plants with Armillaria gallica Marxm. & Romagn. was carried out with
pieces of hazelwood Corylus avellana L. For preparation, these were autoclaved (120 °C,
30 min) after cutting into sections about 10 cm long and placed in metal boxes containing
pure fungal culture obtained from a mixed forest. After 6 months, when the wood was
completely colonised and the rhizomorphs began to grow outward, they were placed next
to the roots in the soil of potted plants depth of approximately 2 cm. The plants’ treatments
(A and AG) with ammonium phosphate (Actifos) were applied once in May 2016. Seedlings
were treated with a 0.6% aqueous solution of Actifos ((NH4)2HPO3 from Agropak, Poland).
Its full chemical composition is as follows: nitrogen—10.2%, boron—0.02%. copper—
0.008%, iron—0.06%, manganese—0.04%, molybdenum—0.004%, zinc—0.02%. Actifos
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spraying aimed to induce natural resistance in the plants and protect them from natural
infections. The isolated control (I) was free from all these treatments and grew in a separate
box in the greenhouse under natural conditions throughout the study period.

Figure 1. Examples of potted ash trees (a,b) dead and diseased ash trees, both with roots damaged
by A. gallica; (c,d) control ash trees exposed to infestation by H. fraxineus in the forest; (e–g) control
ash trees left in the greenhouse (isolated) and showing no disease symptoms; (h,i) ash trees treated
with Actifos phosphate fertilizer.

2.1.3. Detection of Hymenoscyphus fraxineus in Ash Tissues

To confirm successful natural inoculation (via spores) and damage caused to shoots
(one per plant was tested), we used the molecular technique described by King and
Webber [29]. The primers Hym_F ′5-GCGAATGAATATGGGCTTACA-3′ and Hf_R ′5-
GCATAGCGTGGCTCTCTGG 3′ were used to detect H. fraxineus. Polymerase Chain
Reaction (PCR) was performed with a total sample volume of 20 µL in a Veriti 96 well AB
thermal cycler (Applied Biosystems, California, USA). Each sample contained: 3 µL of
genomic DNA, 10 µL of RedTaq PCR ReadyMix (Sigma-Aldrich, Milwaukee, WI, USA),
1 µL of each (forward and reverse) 5 µL primer, and sterile water to a final volume of 20 µL
according to King and Webber [29]. PCR reaction conditions were: initial denaturation
95 °C for 3 min, 35 cycles of 95 °C for 1 min, 57 °C for 1 min and 72 °C for 1 min; a final
extension of 72 °C for 5 min. PCR products were resolved on 2% agarose gels.

2.1.4. Plant Biomass Assessment

The number of shoots that died at the end of the experiment was counted and com-
pared between all treatments. At the end of the experiment, all plants were removed from
their pots and roots were cleaned with tap water. Later, roots were placed in a Termaks
series 2000 dryer (KJ Auktion, Aalborg, Denmark) and dried at a temperature of 64.9 °C
until total evaporation of water. The weight of roots biomass was then measured on RAD-
WAG WTC 2000 scale (Jawag, Jarosław, Poland) in three replicates per single plant. To
validate all dry biomass measurements, the Student t-test was performed in the Statistica
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program ver. 12.0 (StatSoft, Tulsa, OK, USA), for α = 0.05. Data with p-values of <0.05 were
considered statistically significant.

2.2. Electronic Nose
2.2.1. PEN3 Electronic Nose

The electronic nose measurements in the reported experiments were performed with
a commercially available device, PEN3 (Airsense Analytics GmbH, Schwerin, Germany).
The measurement setup used in our experiment is presented in Figure 2. The PEN3 consists
of a gas sucking and sampling installation, a detector unit containing the sensor array
composed of 10 metal oxide semiconductor (MOS) type chemical sensors, and software for
data collection and pattern recognition. The device sensors, listed in Table 2 are working at
high temperatures (150–500 °C) and respond to the broad range of chemical compounds.

Figure 2. (a)—Measurement setup using PEN3 electronic nose. (b)—Highlighted jar with soil sample
during measurement procedure.

Table 2. Sensor array details in PEN3 electronic nose device, as reported in the menu of options of
the e-nose software.

Sensor Main Gas Targets

W1C Aromatic organic compounds.

W5S Very sensitive, broad range sensitivity, reacts to nitrogen oxides, very sensi-
tive to negative signals.

W3C Ammonia, also used as sensor for aromatic compounds.
W6S Detects mainly hydrogen gas.
W5C Alkanes, aromatic compounds, and nonpolar organic compounds.
W1S Sensitive to methane. A broad range of organic compounds detected.

W1W Detects inorganic sulfur compounds, e.g., H2S. Also sensitive to many
terpenes and sulfur-containing organic compounds.

W2S Detects alcohol, partially sensitive to aromatic compounds, broad range.
W2W Aromatic compounds, inorganic sulfur and organic compounds.

W3S Reacts to high concentrations of methane (very selective) and aliphatic
organic compounds.

As is recommended by the manufacturer, the PEN3 device has been pre-warmed for
at least 10 min before a series of measurements. Before measuring each sample, the clean
air, filtered by the activated carbon, was blown in reverse through the electronic nose to
clean the sensor array and the gas transmission tubes. During the measurement phase, the
headspace gas of the sample was sucked into the sensor chamber at a constant flow rate.
The gas was sampled using a tube connected to a needle. The measurement time was set
to 120 s, and sensors response values were acquired every second using the producer’s
software. The examples of collected response curves of the electronic nose are presented in
Figure 3, where the conductance of the sensor normalised by the baseline value (G/G0)
is plotted.
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Figure 3. Sensors responses as conductance normalized by the baseline value (G/G0), for measure-
ments of roots samples of Isolated Control category.

The baseline value was measured when the sensors were exposed to clean air condi-
tions at the beginning of the measurement. Details of operation conditions of the electronic
nose are listed in Table 3.

Table 3. Parameters of PEN3 electronic nose operations.

Sampling Interval 1 s
Pre sampling time 5 s
Measurement Time 120 s
Flush Time 300 s
Chamber Flow 7.7 mL/min
Temperature 25 °C
Humidity 60%

2.2.2. Taking Measurements with E-Nose

The present study used a portable electronic nose PEN3 based on a standard metal
oxide gas matrix. Three root samples (and rhizomorphs in G and AG variants) and
three rhizospheric soil samples were collected from each ash seedling growing in the
IBL greenhouse. The material was collected in jars and weighed (roots about 5 g, soil
about 50 g). After sealing the samples in the jars, they were placed in a room with a
constant temperature of 25 °C and humidity of 60%. The samples were measured 1–3 h
after collection. For this purpose, the lids of the jars were previously drilled so that they
had 2 holes, which were sealed with a special high-temperature resistant film for the time
of autoclaving, then these places were pricked with needles for the time of measurement
(120 s). The measurement setup used in our experiment is presented in Figure 2.

The samples preparation and e-nose measurements were performed during several
days in randomised order. First of all, at the beginning of the day of the measurements,



Pathogens 2021, 10, 1359 8 of 21

one seeding from each of the studied variants was randomly selected. Then, samples
for measurements were prepared, and from each seeding, 3 samples of roots and soils
were collected. The samples were measured in random order, and the randomisation was
performed using Microsoft Excel random number generator.

2.3. Electronic Nose Data Analysis Techniques

We applied two commonly used statistical methods to analyse data collected by the
measurement performed by the PEN3 electronic nose. First of all, we extracted from the
sensors’ response curves several types of features describing their shapes to visualise the
data, which is helpful to understand appearing patterns. For that purpose, we applied
the Principal Component Analysis method. However, the primary type of data analysis
was to build several machine learning classification models to evaluate the possibility
of differentiating between the considered categories of the samples. All analysis and
visualisation of electronic nose data presented in this report were conducted using Python
3.7 language codes, using statistical analysis methods from the scikit-learn module [30].

2.3.1. Classification Models

The main goal of odour measurements by electronic nose device is to differentiate
between studied sample categories by finding patterns in collected signals and apply-
ing statistical machine learning methods. The electronic nose device does not analyse
the chemical composition of gases as it is possible by analytical methods such as gas
chromatography-mass spectrometry.

Machine learning methods can be applied to create statistical classification models to
discriminate between the studied samples using the data collected by the electronic nose
measurements [31–33]. In this task, we follow a well-established methodology.

Before the model training process, the modelling features are extracted from the
response curves, which allow reducing the dimensionality of the problem [34,35]. In the
performed experiments, one sample measurement produces 1200 data entities. This number
equals the number of sensors multiplied by the number of reads of sensor conductance
magnitude performed during 2 min, with a 1-second interval. The first type of such feature
group is the sensor’s response magnitude at the characteristic moments, such as at the
end of the measurement, at max/min of the response, or the indicated moment elapsed
from the beginning of the sensor’s exposure the odour [36–38]. The following modelling
features are other essential characteristics of the response curve: average (equivalent to the
integral/area under the curve), standard deviation, skewness, and kurtosis. In addition,
the basic statistics such as max, min, std, mean, skewness, kurtosis, calculated from the
response curve derivative [39–41], after smoothing by the exponential moving average
method. The following features are characteristic times, such as the time to reach 10%, 25%,
50%, 90% of the sensor response range, and time to reach max/min of the curve derivative.

As the first step of the model training procedure, the used dataset of features was split
into two parts: the testing subset, used later only for independent estimation of the model
performance, and the training subset used for model training and selection. For this task,
we applied group splitting, which assured that all data collected from a given tree sample
had been assigned to testing or training datasets. Our analysis for the testing dataset took
apart data from randomly selected two trees of each category.

In the next step, the series of classification models were trained, and the most im-
portant features were selected using the recursive forward selection algorithm [35]. For
that purpose, the training part of the dataset was again split into two parts: the first one
was used to estimate the model parameters, and the second one to validate the model
performance and select between competitive models using the accuracy measure. The
validation was performed ten times in a loop for various random selections of the training
split. We also applied the random group shuffling method for this data split, assuring that
data collected by the measurements of a given tree were used either to model training
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or validation. For the validation part, we took apart data collected from two trees. As a
machine learning modelling technique, we used Logistic Regression.

When the best-performing model has been selected, the data from the testing dataset
were scored, and the model performance statistics were calculated.

The described above procedure has been repeated as the shuffling cross-validation
(CV) procedure when testing and training subsets data collected from different trees have
been assigned. We repeated the CV loop 30 times for random selection of these subsets
groups. The estimates of the model performance statistics have been averaged over the
CV results. We used accuracy to evaluate the model performance, defined as the ratio of
correctly classified samples to all samples.

2.3.2. Principal Component Analysis

In our studies, we performed the commonly used statistical technique of Principal
Component Analysis (PCA) to transform the input data to lower-dimensional space, which
helps to give intuitive insight and understand the patterns appearing in the distribution of
data for the studied case. The PCA transformation has an intuitive interpretation as the
rotation of the coordinate system, giving the new coordination in the order of quantity of
the captured variability of the dataset. As the input for the PCA transformation, we used
the set of features extracted from the sensor’s response. The set of features selected by
the machine learning classification model was used as input for the PCA transformations.
Since the input features have different ranges and represent non-comparable quantities,
we used the initial normalisation of the input dataset to equal variance.

In our analysis, we build binary classification models for classification between pairs
of the studied categories. For that reason, data visualisation is also performed in pairs of
sample categories. We chose the models containing five features.

2.4. Heat Shock Protein and Heat Shock Transcription Factor Gene Expression Analysis

To investigate the molecular response of ash to stress, we analysed expression heat
shock protein genes. For designing of primers we used sequences of three heat shock pro-
tein genes (Hsp17, Hsp70 and Hsp90) as well as heat shock transcription factor (Hstf ) of Frax-
inus pennsylvanica from Hardwood Genomics Project database https://hardwoodgenomics.
org (accessed on 1 June 2021). Currently, sequences are available for above mentioned
heat shock proteins genes only. Unfortunately, there are no available sequence data for
heat shock protein genes for F.excelsior. Tubulin (Tub) gene was used as a reporter gene in
our experiment. Total RNA was extracted from leaves of F.excelsior using Plant RNA Mini
Kit (Syngen Biotech, Wrocław, Poland), following the manufacturer’s protocol. The total
RNA extracted and its purification from protein and polysaccharides were determined
using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).
RNA integrity was checked electrophoretically in a 1.5% agarose gel stained with ethidium
bromide. Only samples that met both quality and integrity requirements were used in
subsequent experiments. Three high-quality RNA samples (i.e., biological replicates) were
obtained for each condition. The reverse transformation was performed using the Go-
ScriptTM Reverse Transcription System (Promega GmbH, Karlsruhe, Germany) according
to the manufacturer’s instructions. Primers for analysis of Hsps gene expression were
designed using Primer-BLAST [42] under default parameters. Real-time PCR reactions
were performed in 20 µL volume: 10 µL 2× qPCR SYBR Master Mix (Sigma Aldrich, Mil-
waukee, WI, USA), 2 µL cDNA, 2 µL each primer (5 µM forward and reverse) (Genomed,
Warsaw, Poland), 6 µL H2O. Thermocycling conditions consisted of the initial denaturation
step at 95 °C for 3 min and 40 cycles at 95 °C for 10 s, annealing at 55 °C for 20 s, and
elongation at 72 °C for 20 s. Real-time PCRs were performed in the 7500 Real-Time PCR
system (ThermoFisher Scientific, Waltham, MA, USA). Based on obtained Ct values, the
2∆∆Ct method was used to calculate the relative ratio of Hsps’ expression, but the correct
amplification efficiency was used instead of the value 2 [43]. We used a noise-resistant

https://hardwoodgenomics.org
https://hardwoodgenomics.org
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iterative nonlinear regression algorithm (Real-time PCR miner; www.miner.ewindup.info,
accessed on 1 June 2021) to determine the efficiency of the PCR reaction [44].

2.5. Detection of H. fraxineus and A. gallica in Ash Tissues

The PCR reaction confirmed the successful infection of all ash shoots with Hymenoscy-
phus fraxineus, indicating that the amount of fungal inoculum in the air was abundant and
sufficient to cause natural infection and the development of dieback symptoms. We also
found successful inoculation of root systems with hazel canes colonised by A. gallica. All
root systems were damaged to a greater or lesser extent by the fungus (Table 4).

Table 4. List of primers. Genes ID according to https://hardwoodgenomics.org (accessed on 1 June 2021).

Gene ID Primes Name Sequence

Hsp17 Fraxinus_pennsylvanica_120313_comp43352_c0_seq1 FrHsp17f GGTGGACAAGCCGGTAGTTA

FrHsp17r ACGCAAATCTTCACCTTTGG

Hsp70 Fraxinus_pennsylvanica_120313_comp60882_c0_seq2 FrHsp70f CTGGGGAGGAAAGATCATCA

FrHsp70r CAACTTCTGGTTTCGGGTGT

Hsp90 Fraxinus_pennsylvanica_120313_comp64929_c0_seq2 FrHsp90f AGCATGAAGCCACTCTCCAT

FrHsp90r CGAAATTAACCCGAGACACC

Hstf Fraxinus_pennsylvanica_120313_comp62864_c0_seq1 FrHsff TGGTCCCAAGATTGAGGAAG

FrHsff AGGATCATGCATTTCCGAAG

Tub Fraxinus_pennsylvanica_120313_comp63421_c0_seq2 FrTubf TGCATGTGGAAGAAATGGAA

FrTubr AGGGGAAGAATGGAAGAGGA

3. Results
3.1. Number of Shoots and Weight of Roots Biomass

At the end of the experiment, we counted the number of dead shoots and weighted the
dry biomass to evaluate the condition of the measured samples. The descriptive statistics
and p-value obtained from these measures are presented in Table 4.

The shoots affected by H. fraxineus died in all the experimental variants. On average,
the highest number of dead shoots was observed in variant A (7.3) and the lowest in I (3.1).
Variant G had a similar average value for the number of dead shoots as variant A (7.1). The
seedlings of C and AG had an average of 4.4 and 5.4 dead shoots, respectively.

Spraying shoots with Actifos (A) did not affect protection against the pathogen, and
the number of dead shoots was similar in ash trees with roots infected by A. gallica (G).
Seedlings not inoculated with A. gallica (C) and those inoculated with A. gallica but treated
with Actifos at the same time (AG) showed similar infestation but at a lower level. Only
ash trees that were not exposed to the fungal spore inoculum (isolated) had statistically
significantly fewer dead shoots, indicating that the amount of inoculum in the forest is still
high, and it would be difficult to establish a healthy ash stand nowadays.

The lowest average dry root weight was recorded in variant A (35.6 g) and the
highest in variant I (603.5 g). The pathogen A. gallica (G) caused a statistically significant
reduction in root biomass, which rotted as in the forest. The p-value for the Kruskal-Wallis
test by ranks is presented in Table 4. A single spray application of Actifos (AG) almost
doubled root biomass (compared to A), indicating the benefits of this treatment for ash
trees, probably due to stimulation of natural immune processes. However, Actifos (A) itself
hurt root development, which could be due to both its toxic effect (and thus stimulation
of immune processes) and the large number of shoots infected with H. fraxineus (which
prevented the induction of resistance due to lack of sufficient assimilates). This observation
is confirmed by other observations on ash trees that were not inoculated with Armillaria

www.miner.ewindup.info
https://hardwoodgenomics.org
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but were exposed to the natural spore pressure of H. fraxineus in the forest. In this case (C),
the number of dead shoots was similar (reducing resistance), but the physical absence of
the root-degrading fungus almost doubled their dry biomass compared to (A). The dry
biomass of isolated ash roots (I) was several times higher than other treatment options.
Both the dead shoots and the roots testify to the effectiveness of the fungal inoculation
methods (artificial and natural), so we could detect them in diseased ash trees using an
electronic nose.

3.2. Electronic Nose Sensor Responses

The results of the measurements by the PEN3 electronic nose are values or sensors
conductivity as a function of time. These values are unitless as they are normalised by
the baseline sensor response to the clean air conditions, measured just before the sensor’s
exposure to the measured odour.

In Figure 3 we present the obtained results of measurements of odours of ash roots of
Isolated Control samples. As one can notice in this figure, there is significant variability in
the results from measurements of various samples. This effect is due to the variability of
individual trees and other sources of random variabilities, such as environmental conditions
and internal operations of MOS sensors. In other research by the same type of electronic
nose device, similar issues of repeatability of measurements results are reported [36,45].
We present the results obtained only from one of the measured sample types, which does
not overload this figure. Presentation of all measurements on one single figure in the
considered case could not distinguish any patterns just by visualisation. Similar figures for
other types of samples are presented in the Supplementary Materials.

As we already mentioned, it is common to represent the sensor response curves by
a smaller number of features describing the shapes of the curves for analytical purposes.
It may be instructive to observe the distribution of measurement points for one of such
features and notice differences between the studied categories. In Figure 4 we draw a
box-plot chart for the area under the curve feature, for all used sensors, with grouping by
studied categories of the samples.

Several important observations can be noticed after examining the plotted data. In this
figure, we present data collected in the experiment when samples of roots were mea-
sured. In the case of measurements of soil samples, we were not able to notice any
patterns. These data for soil measurements are presented in the figure available in the
Supplementary Materials.

First of all, there is no apparent difference pattern between Isolated Control (I) samples
and other types of samples. It is most noticeable when we look at measurements performed
by sensors W1W (sulfur-organic), W2W (sulfur-chlorine), and W5S (broad-range), but also
a slight difference can be noticed for the sensor W2S (broad-alcohol). From Figure 4 it could
also be noted that the box-plot for Isolated Control is higher than for the other categories.
As we see from Figure 3 these sensors in the presence of the measured gases react by an
increase of the measured conductance value. That means that also the displayed in Figure 4
feature increases for higher sensor reaction. From that observation, we can conclude that
odour components cause the noticed difference in higher quantities in Isolated Control
samples than other sample categories.
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Figure 4. Distribution of modelling feature extracted from the sensor response characteristics (integral/sum
of the response data) for measurements of roots samples. The exact value of the y-axis for various sensors
has no physical interpretation, thus is presented only in arbitrary units. The studied categories of samples:
Actifos (A), Actifos+A. gallica (AG), A. gallica (G), Isolated Control (I), Control (C) are plotted in the x-axis.
In the box-plots, the horizontal line inside the box represents the sample median, the box area spans from
the 1st to the 3rd quantile, the whiskers span from Q1−1.5 ∗ IQR to Q3 + 1.5 ∗ IQR (IQR—interquantile
range). This plot overlays all data points presented by dots, allowing us to see outliers and the whole data
distribution.

In this figure, we can also observe that there is no pattern indicating the possibility of
differentiation samples infected by the A. gallica (G and AG) and not infected samples (A)
and (C), at least for the considered modelling feature. The data distributions for (G) and
(AG) samples strongly overlap with distributions for (A) and (C) samples.

3.3. Classification Models

In our studies, we built several machine learning classification models with various
targets. First of all, we tried to distinguish between the samples infected by the A. gallica
fungus and other samples. We failed in these attempts and could not train a model that
could be efficient in such a task.

Our subsequent analysis focused on a more detailed examination and trained series
of binary target classification models for differentiation between pairs of studied categories
of samples. In this task, we proceeded with a few further refinements of the models to
improve their performance.

In the beginning, we tried to use the sensors’ response values as modelling features
reached the final moment of observation. These features have not led us to satisfactory
classification performance. Thus, we tested another approach to model building various
complex features describing the sensors response curves described in the Materials and
Methods section. We noticed an improvement in the modelling performance but also had
some more observations that allowed further improvements.
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One observation that was already mentioned after examination of Figure 4 was that
the most helpful information for differentiation between studied cases is contained in
signals from sensors W1W, W2W, and W5S. This observation was also confirmed by the
selection made by the features selection algorithm, as almost only features related to
these sensors were used in the models. Thus, we trained a new set of models. Only data
obtained by these sensors were used and noticed that the classification accuracy has not
degraded compared to the previous attempt. The following observation from examining
the modelling features selected by the best performing models was that the most important
features are often related to sensors’ behaviour at the beginning of the response curve.

After that observation, we decided to simplify our approach and use only the raw
data collected during the first 10 s of the measurement as modelling features. We prepared
a new dataset containing as modelling features the sensors response values collected in
the 1-second intervals and the features calculated as proportions of values from pairs of
sensors and difference between such values. We had not used the raw data values collected
by the electronic nose for all of these features but the values after smoothing the response
curves by the exponential moving average. Also, for the training of these models, we used
the variable selection procedure. The final results are presented in Figure 5.
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Figure 5. Accuracy of roots (a) and soil (b) samples differentiation by machine learning models. On
x-axis comparison between various pairs samples types is presented: Actifos+A. gallica (AG), Actifos
(A), A. gallica (G), Control (C), Isolated Control (I). The horizontal line indicates the performance of
the baseline model of random selection.

As we can notice, for the measurements of roots samples, the accuracy of differentia-
tion between Isolated Control and all other categories of studied samples is 74–78%. The
accuracy of differentiation between Control and A. gallica samples is about 58%, but as we
already admitted, in our opinion, such a value close to a random model is instead saved to
treat it as a negative result.

In our experiment, we also tried a more appealing task, testing the possibility of
differentiation of the infected samples by examining the odour emitted by the roots and
odours of soil samples. Success in it would give hope of detection of fungi infection by
non-damaging methods. Unfortunately, we had not observed such a possibility and need
to report negative results. This insufficiency is presented in Figure 5, where, as one can
notice, the accuracy of the models are very close to the random selection. There is slightly
better accuracy for the case of differentiation between Isolated Control and Actifos samples.
However, the accuracy performance of about 62% is, in our opinion, not satisfactory for
application purposes.

3.4. Principal Component Analysis Using Electronic Nose Data

As we discussed above, the results presented in Figure 4 indicate the possibility
of differentiation between Isolated Control and other types of studied categories. Such
observation was confirmed by building machine learning classification models, which we
discuss in the following section. It may also be interesting to visualise the distribution of
the studied sample categories after the transformation of the input features by the Principal
Component Analysis.
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In Figure 6 we present the two most significant principal components of transforma-
tion of these features. These visualisations also confirm a clear distinction between these
samples. We present here only the pairs of sample categories, for which, according to the
classification modelling, such distinction is achieved.

A remark concerning the PCA transformation of the modelling features should be
noted here. As we already explained as the input features, we use the responses of three
selected sensors during the first 10 s after their exposure to the studied sample odour. These
data are strongly correlated, and the PCA transformation helps to reduce the dimensionality
of the dataset. Also, for the PCA transformation, we used the five most important features
selected by the classification model. However, since the models are trained in the cross-
validation loop, we obtained a set of 30 models for each pair of classified categories. Due
to the randomness of the samples, various features were selected. The Figure 6 presents
just selected examples.
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Figure 6. Principal Component Analysis of five most important features selected by the classification
models. Measurements of roots samples for differentiation of Isolated Control—I versus (a) Actifos+A.
gallica—AG, (b) Actifos—A, (c) A. gallica—G, (d) Control—C, as indicated in the figure panes.
Variability captured by the PC is indicated in axis labels.

3.5. Heat Shock Protein and Heat Shock Transcription Factor Gene Expression Analysis

For the analysis of Hsp’s and Hstf genes corresponding forward and reverse primer
pairs were used. Each amplicon was found only in a single peak in melt curves indicating
no dimer or multiple products. Analysis of the expression of heat shock protein genes
showed that A. gallica infection increased Hsp17 expression approximatelly 2-fold, Hsp70,
Hsp90 and Hstf 2.8–3.0 fold (Figure 7). Similar effect on Hsp’s gene expression have actifos
but its effect on Hstf was higher and increased its expression 5.8-fold. A. gallica infection
together with actifos treatment have cumulative effect on Hstf and increased it expression
7.1-fold. Although the expression of Hstf under combined treatment of ash by A. gallica
and with Actifos increased, the expression of Hsp’s genes regulated by this transcription
factor not only did not increased but even decreased.
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Figure 7. Relative expression level of Hsp’s and Hstf genes in Fraxinus excelsior.

4. Discussion

As the title of the article suggests, at this stage, we focus on the problem of ash dieback
caused by the fungus H. fraxineus. It causes the death of seedlings already in nurseries, and
what is worse, some of them end up (symptomless) in forest plantations. Then the cost
of eradication is very high if it is possible at all. We, therefore, need a method for early
detection of the fungus that allows seedlings to be protected (e.g., chemically) or selected
to exclude infected seedlings from further cultivation. Therefore, healthy seedlings (I-
isolated) were compared with other seedlings exposed to natural infection with ascospores
of the fungus present in the forest. All exposed plants were infected to varying degrees,
despite the application of Actifos. This situation frequently occurs in nurseries and later
in plantations and was measured by E-nose (Figure 6). It shows that healthy seedlings (I)
can be selected from those infected only by H. fraxineus (C), or sprayed with Actifos and
infected by H. fraxineus (A), or by H. fraxineus and A. gallica (G), or even by H. fraxineus,
A. gallica and treated with Actifos (AG). The method of damage estimation (number of dead
shoots and dry roots biomass) caused by pathogens and their differentiation is presented in
Table 1. Note that as healthy seedlings were taken as variant (I), the others were infected by
H. fraxineus and were additionally inoculated with A. gallica (G) or treated with Actifos (A)
or arranged both together (AG). The following Figures 4–6 show the detection capabilities
of these combinations using the electronic nose. These stresses are additive in nature. The
additional (relative to H. fraxineus) root infection by A. gallica resulted in an increase in
the average number of dead shoots by almost half (C-4.4, and G-7.1), while the control
had an average of only 3.1. Similar relationships were observed between the roots of
H. fraxineus and A. gallica (G), which were heavily damaged (57 g) compared to H. fraxineus
(C), only 93 g, but the biomass of control plants reached a level 10 times higher (604 g).
Wood rot (also caused by Armillaria spp. fungi) is a severe fungal disease of trees, requiring
clear-cutting of about 100,000 ha of stands annually in Poland (internal reports from forest
districts submitted each year to the Forest Research Institute—IBL). These fungi invade
trees through roots or open wounds and attack all cell wall components with extracellular
digestive enzymes, leading to the destruction of the nutrient-rich sapwood and affecting
the strength and stability of the wood. Baietto et al. [46] used a new non-invasive sampling
and gas sensor array analysis to detect stem and root rot in living trees successfully. This
approach we used to test e-nose on live ash trees to diagnose wood rot disease caused by
artificially inoculated A. gallica (with pieces of infected hazelwood). Our measurements
on seedlings encourage continuing research on adult trees, because to date, assessment
of their stability and detection of internal rot have been carried out visually (presence
of fruiting bodies and rot at the base of the trunk) or with commercial instruments and
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methods, which are often invasive (resistograph), time-consuming (Picus echo sounder)
and therefore unsuitable for use in forest environments.

Moreover, most conventional instruments do not provide an adequate assessment
of decay occurring in the root system. Baietto et al. [46] conducted a long-term research
project to develop a novel approach for the internal diagnosis of tree decay by detecting
differences in volatile organic compounds released by wood decay-causing fungi and wood
from healthy and decayed trees. They (as well as we) tested commercial electronic noses
under laboratory conditions, focusing on testing e-noses for their ability to discriminate
between different logs and species of wood rot fungi, as well as sapwood from different
tree species [46] took the next step in the field, which we also want to do, and tested the
diagnostic ability of e-noses to detect differences in odour compounds emitted by healthy
and inoculated wood (stem chips and root fragments) in different soil types to assess
whether soil odour can affect the ability of e-noses to discriminate between uninfected
and diseased root fragments. In the final phase, we would also like to test soil air for the
presence of volatile organic compounds released by root-destroying fungi on diseased
standing trees.

Early detection of wood rot is critical, especially in high-value stands, because control
measures must be initiated long before tree failures result in property damage or injury to
citizens. Climate change exacerbates adverse conditions and increases physiological stress
on trees, leading to greater susceptibility to attack by pathogenic wood-destroying fungi.
Therefore, it is necessary to detect wood rot early, not only in the trunks but especially in
the roots that hold the trees in the soil. Detecting fungal root rot on trees is particularly
difficult because the conventional detection tools currently used to diagnose wood rot
are not applicable below ground level. Portable electronic olfactory systems or electronic
noses, now used in many different scientific and industrial fields, have already been tested
for early wood rot fungi [47]. Like us, the authors evaluated the accuracy and efficacy
of a PEN3 portable electronic nose for discriminating between healthy and decayed root
segments artificially inoculated separately with root rot fungal species and incubated in
soil under laboratory conditions. The PEN3 electronic nose discriminates between healthy
and inoculated root segments and root rot fungi in soil for most host-fungus combinations.
In our case, the discriminatory power of the e-nose varied depending on whether the
seedlings were isolated (protected) or exposed to foliar infection by H. fraxineus.

In conclusion, in ash trees, there is an interaction between shoot damage by H. fraxineus,
root malnutrition and root rot by A. gallica. Root rot caused by A. gallica is often the direct
cause of trees dying and being blown over by the wind. Therefore, information on whether
the tested ash trees are only affected by the shoot mentioned above pathogen or whether
their roots are already affected by A. gallica root rot can be very helpful in determining other
management strategies in both forests and urban green areas. Tree evaluation methods
currently used to assess the structural stability of individual trees typically involve visual
analysis followed by measurement of the internal strength of the wood using a variety of
instruments that are often invasive, expensive, or unsuitable for use in a forest environment.
In addition, most conventional instruments do not provide an adequate assessment of
decay occurring in the root system. Our subsequent research aims to test the ability to
detect differences in volatile organic compounds (VOCs) released by wood decay fungi
and wood from healthy and decayed trees. Such studies were previously conducted by
Baietto et al. [48]. The authors independently evaluated three e-noses based on different
operating technologies and analytical methods (without direct comparison) to determine
the ability to detect the onset of decay in artificially inoculated wood. All three e-nose
instruments could discriminate between sound and artificially inoculated decayed wood
with high precision and reliability.

E-nose technology was recently applied by Cellini et al. [49] to detect various plant
diseases and pests with promising results. However, despite numerous advantages such as
ease of use, non-destructive nature and bulk sampling, there are also disadvantages such
as low sensitivity and specificity compared to microbiological and molecular methods. The
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above authors also pointed out that electronic nose is crucial in plant disease diagnosis and
pest detection, and instrumental and procedural advances in sensory analysis are needed
to discriminate between healthy and infected or infested plants. It is also consistent with
our observations that the application of electronic nose technology should support, guide
and optimise the diagnostic techniques traditionally used.

Alternatively, the morphology of wood rot fungal fruiting bodies collected from
infected trees can be reviewed. An expert opinion on their behaviour (wood rot type
caused) and consequences for risk can be provided. In the absence of fungal fruiting bodies,
wood can be examined for the presence of fungi by DNA extraction and amplification of
ITS -rDNA by PCR and sequencing of ITS regions.

Schmidt et al. [50] collected wood samples from infected urban trees, extracted total
DNA from infected wood, amplified and sequenced the fungus ITS. By comparing the
sequences examined with the NCBI gene bank data, the species can be identified. This
technique allows accurate and rapid identification of fungi that cause tree rot. However,
due to its high workload, it can only be applied to valuable trees or, conversely, to determine
if fungal species are not protected by law. However, we would like to focus on detecting
soil fungi in forest nurseries as producers of healthy seedlings for future sustainable and
diverse forests.

In this article, we do not focus on the effect of so-called resistance fertilisers, to which
we can include Actifos. However, it is worth mentioning that the action of ammonium
phosphate fertiliser stresses the plants, which has been shown in earlier studies [51] and
is now (Figure 7). Its role as a resistance elicitor probably lies in its slightly toxic effect
on root systems, especially fine roots. This effect triggers defence processes (synthesis
of phenolic compounds, terpenes and sterols) that protect the roots against infections.
In the experiment, a concentration of 0.6% was used, which is recommended by the
manufacturer of Actifos for ornamental plants. However, this concentration is very low
and has not been used successfully in forestry. Much higher concentrations have been
used in oak stands, e.g., a 50% concentration of the spray [52] by aerial spraying. The
atomizers used in this case allow for a fine droplet size of 250 microns, whereas hand-
held sprayers produce droplets twice that size. Therefore, the manufacturer probably
recommended a lower compound concentration, which influenced the poorer results in
root protection of ash trees. In Australia, similar concentrations of phosphite preparations
sprayed from aircraft, close to 50%, were successfully used to protect stands of eucalyptus
against Phytophthora cinnamomi [53].

In the first phase of investigating the possible use of e-nose in forestry, we would
like to focus on distinguishing between diseased and healthy plants, i.e. between infected
and pathogen-free and not between stressed and non-stressed plants. This observation is
crucial in nurseries where we select material for planting in forest plantations. It is the only
way to eliminate diseased seedlings that will carry the disease there if planted in the forest.
It should be emphasised that stressed plants, activating defence processes against harmful
factors, produce secondary metabolites that the electronic nose can monitor. In this case,
we will be able to detect physiological changes before permanent disease symptoms appear.
This knowledge will allow early decisions on further management and the development
of appropriate countermeasures. Commercial devices such as the Handy PEA are also
available for stress testing and can be used to measure chlorophyll fluorescence, which
is inversely related to photosynthetic efficiency [54]. However, the stress is temporary,
and the plant recovers as soon as the stress ceases. Conversely, suppose an asymptomatic
but infected plant is planted under conditions favourable to the pathogen (e.g., full soil
saturation with water). In this case, the plant quickly becomes diseased and dies, even
though it shows no symptoms in the nursery because the pesticides have masked the full
development of the disease. Stress studies must be considered complementary in our case
better to understand the predisposition of plants to infection by pathogens and confirm
that infection has already occurred when the plant has responded with gene expression and
production of resistance proteins. Plants have complex adaptive mechanisms at the cellular
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and molecular levels. Under stress, plants transcribe and translate heat shock proteins
(HSPs). Hsps’ genes from distinct plant species respond differently to various types of
stress [27,55]. While their response to heat, cold, osmotic, and salt stress is relatively well-
studied [56,57], information about their response to pathogen infection is rather scarce.
This study revealed an intense response of ash immune mechanisms to A. gallica infections
by activating the expression of the Hsp’s and Hstf genes. Influence of H. fraxineus and
A. gallica on Hsp ’s has not yet been described. However, other phytopathogenic fungi
have an overall effect on the expression of these genes. Analysis of the expression of the
Hsp90 genes in silver birch leaves showed that Phytophthora plurivora infection combined
with 60% defoliation increased Hsp90 expression about seven times [58]. Phytophthora
infestans led to up-regulation of Hsp70 genes and increased synthesis of Hsp70 proteins
in tomatoes [59] and Solanum tuberosum [60], which indicates that it could participate in
mediating the disease resistance in plants in response to biotic stresses.

The synthesis of biologically active substances by plants is an effective method to
reduce the attack of insects and the spread of pathogens. Biochemical compounds, such
as volatile substances (belonging to secondary metabolites produced by the synthesis of
terpenes and phenylpropanoid compounds) and growth inhibitors and some hormones
are involved in plant defence responses to stress. Plants under the stress of defoliation
generally reduce the production of sugars, proteins, starch, lignin, and hemicellulose
while increasing the synthesis of secondary metabolites, including phenols, terpenes, and
sterols [61].

The above result shows that the sensor signals collected just after the abrupt change
of the measurement conditions from clean air to the measured gas conditions exhibit the
most significant power of the discrimination between the sample categories. Other authors
have reported similar results [62–64], when different electronic noses devices and types
of odours have been studied. It has also been reported [65,66] measurement technique in
"sniffing" mode when frequent changes between studied odour and pure air occur or in
the initial time of the sensors’ action.

5. Summary

The accidental introduction of the fungus H. fraxineus (Hf) from Asia to Europe
has caused mass dieback of ash trees, including F. excelsior. Infected seedlings and lack
of resistance cause shoot death, which favours the development of the root pathogen
Armillaria. Root damage causes trees to topple over in the forest and the city, where trees
grow in limited areas. With the e-nose, we hope to detect the disease early while the trees
are still in the nursery. In this way, healthy seedlings can be selected to better survive
and develop as a forest-forming tree species, planted in plantations free of the pathogen
inoculum. The e-nose still needs to be refined, but initial studies are encouraging, especially
as it is the only device that can detect root rot without exposing the roots. Armillaria stress
increases Hsps gene expression by 2.0 to 2.8 times, while Actifos fertiliser increases Hsps
expression by 1.4 to 2.3 times. Simultaneous application of Actifos and Armillaria does not
alter Hsps expression. Actifos and Armillaria increase the expression of a transcription factor
that regulates Hsps expression. Actifos has a greater effect on Hstf expression (5.8-fold) than
Armillaria (3.0-fold). Actifos and Armillaria have additive effects on Hstf expression. Actifos
5.8 + Armillaria 3.0 = 8.8-fold, in the experiment 7.1-fold. This shows that both Armillaria
and Actifos induce stress, but the simultaneous application of Actifos and Armillaria does
not induce stress in ash trees. Since Hsps expression increases under the influence of
Armillaria, the trees should be more resistant to Hymenoscyphus, provided that Armillaria
does not destroy their roots so that the wind uproots them. Increases of Hsps in leaves
indicate that Armillaria is stress factor for F.excelsior what is expressed at least in leaves.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens10111359/s1, Figure S1: Whole experimental design; Figure S2: Experimental
plan from the Chojnów Forestry District (photo taken 25 September 2019 by Artur Pacia); Figure S3:
Sensors responses as conductance normalized by the baseline value (G/G0), for measurements of

https://www.mdpi.com/article/10.3390/pathogens10111359/s1
https://www.mdpi.com/article/10.3390/pathogens10111359/s1
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roots samples of Actifos (A) category; Figure S4: Sensors responses as conductance normalized by
the baseline value (G/G0), for measurements of roots samples of Actifos+Gallica (AG) category;
Figure S5: Sensors responses as conductance normalized by the baseline value (G/G0), for mea-
surements of roots samples of Control (C) category; Figure S6: Sensors responses as conductance
normalized by the baseline value (G/G0), for measurements of roots samples of Gallica (G) category;
Figure S7: Distribution of modelling feature extracted from the sensor response characteristics (inte-
gral/sum of the response data) for measurements of soil samples. The exact value of the y-axis for
various sensors has no physical interpretation, thus is presented only in arbitrary units. The studied
categories of samples: Actifos (A), Actifos+Gallica (AG), Gallica (G), Isolated Control (I), Control (C)
are plotted in the x-axis. In these boxplots, the horizontal line inside the box represents the sample
median, the box area spans from the 1st to the 3rd quantile, the whiskers span from Q1 − 1.5*IQR to
Q3 + 1.5*IQR (IQR-interquantile range). In this plot, we overlay all data points presented by dots,
which allow us to see outliers and the whole distribution of data.
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