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Abstract: Rickettsial pathogens are amongst the emerging and re-emerging vector-borne zoonoses of
public health importance. Though traditionally considered to be transmitted by ixodid ticks, the role
of argasid ticks as vectors of these pathogens is increasingly being recognized. While bat-feeding
(Ornithodoros faini) and chicken-feeding (Argas walkerae) argasid ticks have been shown to harbor
Rickettsia pathogens in Zambia, there are currently no reports of Rickettsia infection in southern
Africa from warthog-feeding (Phacochoerus africanus) soft ticks, particularly Ornithodoros moubata and
Ornithodoros porcinus. Our study sought to expand on the existing knowledge on the role of soft
ticks in the epidemiology of Rickettsia species through screening for Rickettsia pathogens in warthog
burrow-dwelling soft ticks from two national parks in Zambia. The tick species from which Rickettsia
were detected in this study were identified as Ornithodoros porcinus, and an overall minimal Rickettsia
infection rate of 19.8% (32/162) was observed. All of the sequenced Rickettsia were identified as
Rickettsia lusitaniae based on nucleotide sequence similarity and phylogenetic analysis of the citrate
synthase (gltA) and 17kDa common antigen (htrA) genes. Utilizing all of the gltA (n = 10) and
htrA (n = 12) nucleotide sequences obtained in this study, BLAST analysis showed 100% nucleotide
similarity to Rickettsia lusitaniae. Phylogenetic analysis revealed that all of the Zambian gltA and htrA
gene sequences could be grouped with those of Rickettsia lusitaniae obtained in various parts of the

Pathogens 2021, 10, 1306. https://doi.org/10.3390/pathogens10101306 https://www.mdpi.com/journal/pathogens

https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0002-5384-2493
https://orcid.org/0000-0001-7814-9997
https://orcid.org/0000-0001-9266-5162
https://orcid.org/0000-0002-8385-5359
https://orcid.org/0000-0003-2182-4319
https://orcid.org/0000-0002-5266-3602
https://orcid.org/0000-0003-4897-7841
https://orcid.org/0000-0001-8621-5472
https://orcid.org/0000-0003-2569-2755
https://orcid.org/0000-0001-9423-0816
https://doi.org/10.3390/pathogens10101306
https://doi.org/10.3390/pathogens10101306
https://doi.org/10.3390/pathogens10101306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pathogens10101306
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens10101306?type=check_update&version=2


Pathogens 2021, 10, 1306 2 of 10

world. Our data suggest that Rickettsia lusitaniae has a wider geographic and vector range, enhancing
to our understanding of Rickettsia lusitaniae epidemiology in sub-Saharan Africa.

Keywords: Rickettsiae; Rickettsia lusitaniae; Ornithodoros porcinus; Argasid; Zambia

1. Introduction

The Rickettsia genus is composed of pathogens considered to be amongst the emerging
zoonotic vector-borne pathogens [1,2] and can be divided into three primary groups based
on genotype: the ancestral, typhus and spotted fever group (SFG) [3]. The common vectors
for this genus include ticks, fleas, mites and lice [4]. Whilst the role of hard ticks (Family
Ixodidae) as important vectors and reservoirs of Rickettsia species is well established [4–6],
recent evidence indicates that soft ticks (Family Argasidae) also play a significant role as
vectors [7–12].

Within the tropical areas of Africa, 10 Argasidae species have been defined, with
Ornithodoros moubata complex (vectors of African swine fever and human relapsing fever),
Ornithodoros porcinus (vectors of African swine fever) and Ornithodoros savignyi (cause of
sand tampan toxicosis) being considered to have the greatest veterinary and public health
significance [13]. In Africa, the role of soft ticks as vectors of zoonotic pathogens is very well
established in the transmission of tick-borne relapsing fever causative agents (Ornithodoros
moubata complex—Borrelia duttonii, Ornithodoros sonrai—Borrelia crocidurae and Ornithodoros
erraticus—Borrelia hispanica) [14]. However, investigations into the role of soft ticks in the
transmission of Rickettsia species have been limited, but interest in this line of research is
currently gaining momentum.

The circulation of Rickettsia species in African soft ticks has been reported in the
genera Ornithodoros, Argas and Carios, with the reported Rickettsia including R. hoogstraalii,
R. lusitaniae, Candidatus Rickettsia africaseptentrionalis, Candidatus R. mauretanica, as well
as some unidentified Rickettsia species, with these reports emerging from Morocco, Algeria,
Ethiopia, Tunisia, Namibia, South Africa and Zambia [7–12]. The soft ticks analyzed across
Africa have been collected from bat caves, rodent burrows, bird nests and crevices in
human and livestock dwellings.

In Zambia, Qiu et al. [10] reported the presence of R. hoogstraalii and R. lusitaniae in Ar-
gas walkerae and Ornithodoros faini ticks, respectively, with R. lusitaniae being reported for the
first time in Africa. R. lusitaniae is a newly emergent Rickettsia species whose pathogenicity
to humans, geographical spread and vector and/or host range is yet to be fully elucidated.
Considering the reports of Rickettsia species in soft ticks in Zambia [10], our study sought
to screen for these pathogens in ticks collected from warthog burrows in selected national
parks of Zambia, expanding our knowledge on their role in the epidemiology of Rickettsia
pathogens in the country.

2. Results
2.1. Tick Sampling and Identification

A total of 162 ticks, comprising 75 from Kafue National Park (KNP) and 87 from
South Luangwa National Park (SLNP), were analyzed in this study. All the ticks were
morphologically identified as Ornithodoros species and were subsequently pooled into a
total of 58 pools (KNP—24, SLNP—34). Further confirmation of the species’ identity was
obtained by phylogenetic analysis of the mitochondrial 16S rRNA gene sequences in those
pools that tested positive for Rickettsia species. Phylogenetic analysis revealed that the
31 mitochondrial 16S rRNA gene sequences obtained in this study clustered within the
O. porcinus complex group (Figure 1).
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Fig. 1: Phylogenetic analysis of 16S rRNA gene of soft ticks collected in South Luangwa National Park in

Zambia. The analysis involved 60 nucleotide sequences and there were a total of 431 positions in the final

dataset. The reference sequences included in the analysis are shown with their GenBank accession

numbers and species names. The sequences obtained in this study are in red text. Bootstrap values ≥ 50%

are shown at branch nodes.
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LC649662 SLNP/20/2019 Ornithodoros porcinus

LC649643 SLNP/01/2019 Ornithodoros porcinus

LC649644 SLNP/02/2019 Ornithodoros porcinus

LC649661 SLNP/19/2019 Ornithodoros porcinus

LC649660 SLNP/18/2019 Ornithodoros porcinus

LC649645 SLNP/03/2019 Ornithodoros porcinus

LC649659 SLNP/17/2019 Ornithodoros porcinus

LC649658 SLNP/16/2019 Ornithodoros porcinus

LC649657 SLNP/15/2019 Ornithodoros porcinus

LC649646 SLNP/04/2019 Ornithodoros porcinus

LC649647 SLNP/05/2019 Ornithodoros porcinus

LC649656 SLNP/14/2019 Ornithodoros porcinus

LC649655 SLNP/13/2019 Ornithodoros porcinus

LC649648 SLNP/06/2019 Ornithodoros porcinus

LC649654 SLNP/12/2019 Ornithodoros porcinus

LC649653 SLNP/11/2019 Ornithodoros porcinus

LC649652 SLNP/10/2019 Ornithodoros porcinus

LC649649 SLNP/07/2019 Ornithodoros porcinus

LC649651 SLNP/09/2019 Ornithodoros porcinus

LC649650 SLNP/08/2019 Ornithodoros porcinus

L34329 Ornithodoros porcinus porcinus

LR899128 Ornithodoros porcinus

AB105451 Ornithodoros porcinus

LC649664 SLNP/22/2019 Ornithodoros porcinus

LC649670 SLNP/29/2019 Ornithodoros porcinus

LC649669 SLNP/28/2019 Ornithodoros porcinus

LC649668 SLNP/27/2019 Ornithodoros porcinus

LC649671 SLNP/30/2019 Ornithodoros porcinus

LC649667 SLNP/25/2019 Ornithodoros porcinus

LC649672 SLNP/31/2019 Ornithodoros porcinus

LC649666 SLNP/24/2019 Ornithodoros porcinus

KR907251 Ornithodoros waterbergensis

KJ133593 Ornithodoros waterbergensis

KJ133573 Ornithodoros phacochoerus

KJ133596 Ornithodoros phacochoerus

KJ133575 Ornithodoros phacochoerus

KY457534 Ornithodoros compactus

KY457533 Ornithodoros compactus

KJ133590 Ornithodoros compactus

MK208994 Ornithodoros huajianensis

MK208993 Ornithodoros huajianensis

MF415628 Ornithodoros moubata

LR899135 Ornithodoros moubata

KJ133594 Ornithodoros moubata

LR899133 Ornithodoros moubata

LR899136 Ornithodoros moubata

KJ133576 Ornithodoros pavimentosus

MF415632 Ornithodoros pavimentosus

KJ133577 Ornithodoros savignyi

MF415641 Ornithodoros noorsveldensis

KJ133601 Ornithodoros noorsveldensis

MF415642 Ornithodoros noorsveldensis

GU355919 Ornithodoros kalahariensis

MF415637 Ornithodoros kalahariensis

KJ133598 Ornithodoros kalahariensis

KJ133605 Ornithodoros kalahariensis

88

99

100

54

95

100

97

98

96
55

78

100

100

100

99
82

91

98

61

Ornithodoros kalahariensis

Ornithodoros noorsveldensis

Ornithodoros pavimentosus

Ornithodoros moubata

Ornithodoros huajianensis

Ornithodoros compactus

Ornithodoros phacochoerus

Ornithodoros waterbergensis

Ornithodoros porcinus

Figure 1. Phylogenetic analysis of the mitochondrial 16S rRNA gene of soft ticks collected in South Luangwa National
Park in Zambia. The phylogenetic tree was generated using the maximum likelihood method. The analysis involved
60 nucleotide sequences with a total of 431 positions in the final dataset. The reference sequences included in the analysis
are shown with their GenBank accession numbers and species names, while sequences obtained in this study are in red text.
Bootstrap values ≥50% are shown at branch nodes.
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2.2. Rickettsia Screening and Identification

On initial screening for Rickettsia using the loop-mediated isothermal amplification
(LAMP) technique, an overall minimum infection rate (MIR) of 19.8% (32/162) was ob-
served. When separated by area of sampling, all of the positive pools were from SLNP,
while no Rickettsia genome was detected in ticks from KNP. The MIR for SNLP was de-
termined as 36.8% (32/87). On statistical analysis, the overall pooled prevalence was
determined as 23% [95% CI (16.4–31.8)], with the pooled prevalence for SLNP determined
as 61.1% [95% CI (41.8–80.7)].

The sequences obtained from the positive pools, based on the gltA gene, showed
100% identity to the R. lusitaniae strain ZS13 that had been detected in the heart of the
common pipistrelle (Pipistrellus pipistrellus) in China (GenBank accession: MN388795).
Further sequence comparison based on the htrA gene showed 100% nucleotide sequence
identity to the R. lusitaniae strain OnF11 detected in O. faini ticks in Zambia (GenBank
accession: LC558319) [10].

On phylogenetic analysis of the gltA gene, the samples in our study clustered with
Rickettsia lusitaniae were detected in various parts of the world (Figure 2).

A similar clustering pattern was observed upon phylogenetic analysis of the htrA gene
(Figure 3).

Fig. 2. Phylogenetic tree of Rickettsia spp. based on gltA sequences and those detected from Ornithodorus porcinus

ticks collected in Zambia (red text). The analysis involved 28 nucleotide sequences with a total of 320 positions in the

final dataset. The Rickettsia spp. are divided into transitional group (TRG), spotted fever group (SFG) and ancestral

group (AG). Bootstrap values ≥ 50% are shown at branch nodes. Bar, number of substitutions per site.
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LC649683 Rickettsia lusitaniae Ornithodorus porcinus Zambia
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KY069261 Rickettsia conorii Rhipicephalus turanicus China
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Figure 2. Phylogenetic tree of Rickettsia spp. based on gltA gene sequences and those detected from O. porcinus ticks
collected in Zambia (red text). The genetic tree was generated using the maximum likelihood method. The analysis involved
28 nucleotide sequences with a total of 320 positions in the final dataset. The Rickettsia spp. are divided into transitional
group (TRG), spotted fever group (SFG) and ancestral group (AG). Bootstrap values ≥ 50% are shown at branch nodes. The
scale bar shows the number of substitutions per site.
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LC649684 Rickettsia lusitaniae Ornithodorus porcinus Zambia
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LC558319 Rickettsia lusitaniae Ornithodoros faini Zambia

DQ092218 Rickettsia lusitaniae Ornithodoros moubata East Africa

MH383146 Rickettsia lusitaniae Carios vespertilionis Hungary

DQ865207 Rickettsia rhipicephali Haemaphysalis juxtakochi Brazil

MH212172 Rickettsia raoultii Dermacentor China

MH212177 Rickettsia raoultii Dermacentor China

MG578509 Rickettsia parkeri Dermacentor parumapertus Mexico

MK744159 Rickettsia rickettsii Dermacentor variabilis Mexico

MG515013 Rickettsia africae Homo sapiens Brazil

KX196268 Rickettsia asembonensis Archaeopsylla erinacei Portugal

JN315969 Rickettsia asembonensis Ctenocephalides canis Kenya

AB795159 Rickettsia sp. Ambyomma sparsum Japan

AB795132 Rickettsia sp. Ambyomma sparsum Japan

KY273597 Rickettsia felis Amblyomma sculptum Brazil

MK509751 Rickettsia felis Canis lupus familiaris Cuba

DQ865205 Rickettsia bellii Haemaphysalis juxtakochi Brazil

EU567182 Rickettsia bellii Amblyomma cooperi Brazil99
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Fig. 3: Phylogenetic tree of Rickettsia spp. based on htrA gene sequences. The analysis involved 30

nucleotide sequences and a total of 233 positions in the final dataset. The sequences detected in

Ornithodorus porcinus collected from Zambia are shown in red text. Reference sequences are shown with

their GenBank accession numbers, Rickettsia species, host and country of origin. Bootstrap values ≥ 50%

are shown at branch nodes. Bar, number of substitutions per site.

Figure 3. Phylogenetic tree of Rickettsia spp. based on htrA gene sequences. The maximum likelihood method was used
to produce the phylogenetic tree. The analysis involved 30 nucleotide sequences and a total of 233 positions in the final
dataset. The sequences detected in O. porcinus collected from Zambia are shown in red text. Reference sequences are shown
with their accession numbers, Rickettsia species, host and country of origin. Bootstrap values ≥ 50% are shown at branch
nodes. The scale bar shows the number of substitutions per site.
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3. Discussion

In this study, we sought to investigate the presence of Rickettsia species in argasid
ticks collected from warthog burrows in two national parks in Zambia. To the best of our
knowledge, this is the second study that has sought to examine the role of soft ticks in
the epidemiology of Rickettsia species in the country. The previous study screened for
Rickettsia and Anaplasma species in ticks collected from warthog burrows (O. moubata),
chicken coops (Ar. walkerae) and a bat cave (O. faini), with Rickettsia species being detected
in both Ar. walkerae (R. hoogstraalii) and O. faini (R. lusitaniae) species [10]. As such, our
study adds to the growing body of knowledge concerning the presence and distribution of
Rickettsia lusitaniae in argasid ticks, with O. porcinus now being added as potential vectors
of this group of pathogens. Rickettsia species have previously been reported in Argas [8,9],
Ornithodoros [7,11] and Carios [11] tick species, which are associated with birds, bats and
rodents across the African continent. Our study adds warthogs to the list of possible hosts
of soft-tick-associated various Rickettsia species, further improving our understanding of
the circulation of Rickettsia species and their potential vectors in Zambia [10,15–18].

The observed prevalence in our study was higher than that observed by Qiu et al. [10]
[23% vs. 10%]. Whilst the difference in study design (pooling vs. single samples) cannot
be discounted as a cause of the observed differences in prevalence, it is also possible that
a difference in the tick species sampled, a difference in sampling locations and the hosts
on which the ticks were feeding, could also have contributed to the observed difference,
especially as these are known to influence the tick microbiome [19–23]. Geographic vari-
ation could also explain the absence of Rickettsia infection in ticks collected from KNP. It
has been suggested that differences in microbial composition of soil can influence the tick
microbiome [21], resulting in a difference in the microbial composition in ticks collected
from different geographical locations.

The present study is the first to report the presence of bacteria in O. porcinus ticks,
presenting an expanded geographic range of the bacteria in the country. Our study also
reports the presence of bacteria in the eastern part of the country, adding to the findings
that Lusaka previously reported [10]. In contrast, the study conducted by Qiu et al. [10]
did not detect R. lusitaniae in O. moubata collected from warthog burrows. The O. porcinus
in our study was shown to carry this pathogen, thus indicating that warthogs could also
play a role in the epidemiology of the pathogen, in addition to the bats previously reported.
We also observed a very high infection rate of R. lusitaniae in the screened samples. This
observation was not surprising considering the fact that Rickettsia species are transovarially
and transstadially transmitted in ticks [24].

4. Materials and Methods
4.1. Study Sites

The study was conducted in KNP and SLNP. The KNP, located in south-central Zambia,
is the biggest National Park in the country and is approximately 22,400 km2 in size. The
vegetation is mainly Miombo woodland, Kalahari woodland and swamps. In contrast, the
SLNP, located in the Luangwa Valley, eastern Zambia, is roughly 9050 km2 in size. The
vegetation in SLNP is a combination of Mopane and Miombo woodlands with mountainous
Muchinga escarpment. Soft ticks were collected from warthog (Phacochoerus africanus)
burrows and culverts in the two National Parks as previously described [25,26]. The loose
soil and litter were manually collected using a shovel and placed on black polythene
bags, after which they were exposed to sunlight to elicit tick movement. The ticks were
collected using entomological forceps and kept alive in tick bottles until identification using
morphological and molecular techniques [27–29]. From each infested burrow, 2–3 adult
ticks were picked at random and pooled. DNA was extracted from the pooled ticks
using the DNeasy® Blood and Tissue Kit (Qiagen, Hilden, Germany), according to the
manufacturer’s guidelines.
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4.2. Molecular Identification of Soft Ticks

Soft tick pools from SLNP that tested positive for Rickettsia were analyzed further
using primers 16S+1 (5′-CTGCTCAATGATTTTTTAAATTGCTGTGG-3′) and 16S-1 (5′-
CCGGTCTGAACTCAGATCAAGT-3′) to target the mitochondrial 16S rRNA gene [27]. The
PCR was performed using Ampdirect plus buffer (Shimadzu, Tokyo, Japan) with BioTaq
Polymerase (Bioline, London, UK) as described by the manufacturers. The amplification
reaction was conducted at one-step enzyme activation at 95 ◦C for 5 mins and 35 cycles of
94 ◦C DNA denaturation—1 min, 54 ◦C annealing—35 s and 72 ◦C extensions—1.5 min
with a final extension at 72 ◦C—7 min. Amplicons of the expected size were purified
from PCR products using AMPure XP beads (Beckman Coulter, High Wycombe, UK)
and sequenced directly using the BigDye terminator cycle sequencing ready reaction kit
version 3.1 (Applied Biosystems) on a 3500 Genetic Analyzer (Applied Biosystems, Foster
City, CA, USA). The obtained sequences were assembled and edited using GENETYX
ATGC software version 7.5.1 (GENETYX Corporation, Tokyo, Japan). Sequences were
deposited in the DDBJ GenBank under the accession numbers LC649643–LC649673.

Phylogenetic analysis was used to confirm the tick species. Evolutionary history
was inferred in MEGA6 using the maximum likelihood method based on the Hasegawa–
Kishino–Yano model. Model selection was conducted using MEGA6. Discrete Gamma
distribution was used to model the evolutionary rate differences between sites (5 cate-
gories (+G, parameter = 0.4299)). The analysis involved 60 nucleotide sequences, and all
positions containing gaps and missing data were eliminated. The bootstrap method (with
1000 replicates) was used to assess the phylogenetic tree topological reliability.

4.3. Molecular Screening and Identification of Rickettsia Species

Tick genomic DNA samples were subjected to loop-mediated isothermal amplification
(LAMP) for detection of rickettsial DNA by targeting the 17-kDa fragment, using the follow-
ing primers: Rr17F3 (5’-TGTTACAAGCCTGTAACGG-3’), Rr17B3 (5′-TCCTGTTCATCCAT
ACCTG-3′), Rr17FIP (5′-GAGAACCAAGTAATGCGCCGGGCGGTATGAATAAACAAGG-3′),
Rr17BIP (5′-AATTCGGTAAGGGCAAAGGACCACCGATTTGTCCACCAA-3′), Rr17LoopF
(5′-F1-X-CCGCCAAGAAGTGTTCCTGTA-3′) and Rr17LoopB (5′-Biotin-AGCTTGTTGGAGTA
GGTGTAGGTG-3′) [30]. The LAMP reactions were performed at 62 ◦C for 60 min and mon-
itored using the Rotor-Gene 3000 thermocycler (Corbett Research, Sydney, Australia), after
which melting temperature analysis was performed. For the purpose of sequencing using the
Sanger method, samples that were positive on the LAMP analysis were randomly selected for
amplification using conventional PCR targeting of the 581-bp fragment of the citrate synthase
gene [31] or the 550-bp fragment of the 17-kDa gene [32]. The PCR was performed as described
under amplification of soft tick DNA.

PCR product purification, sequencing, assembly and editing was conducted as de-
scribed under molecular identification of ticks. Sequences were deposited in the DDBJ
GenBank under the accession numbers LC649674–LC649695. For phylogenetic analysis,
maximum likelihood trees for the gltA and htrA gene sequences were generated in MEGA6
using the Tamura 3-parameter and Kimura 2-parameter evolutionary models as deter-
mined in MEGA6, respectively. Topological support was assessed using the bootstrap
method with 1000 replicates.

4.4. Statistical Analysis

The results from the LAMP analysis were used to determine the MIR, which was
calculated as the proportion of tick pools that showed amplification of the target gene, out
of the total number of ticks tested, multiplied by 100 [33]. Pooled prevalence estimates for
perfect tests with exact confidence limits were calculated using EpiTools epidemiological
calculators [34], assuming 100% test sensitivity and specificity for a fixed pool size. Exact
confidence (95% CI) limits were calculated based on binomial theory [35].
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5. Conclusions

We report the detection of R. lusitaniae in O. porcinus ticks in Zambia. Our study
adds to the growing knowledge of this newly emergent Rickettsia species as well as tick
species involved in the epidemiology of Rickettsia species in Zambia, with previous reports
concerning hard ticks indicating the circulation of a number of Rickettsia species, some of
which are of known zoonotic potential. Considering the apparent widespread presence of
Rickettsia species in hard and soft ticks in Zambia, there is a need for further studies in order
to explore various tick–host associations and to gain a more comprehensive understanding
of the epidemiology of these pathogens in the country.
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