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Abstract: Chlamydia suis is an important, highly prevalent, and diverse obligate intracellular pathogen
infecting pigs. In order to investigate the prevalence and diversity of C. suis in the U.S., 276 whole
blood samples from feral swine were collected as well as 109 fecal swabs and 60 whole blood samples
from domestic pigs. C. suis-specific peptide ELISA identified anti-C. suis antibodies in 13.0% of
the blood of feral swine (26/276) and 80.0% of the domestic pigs (48/60). FRET-qPCR and DNA
sequencing found C. suis DNA in 99.1% of the fecal swabs (108/109) and 21.7% of the whole blood
(13/60) of the domestic pigs, but not in any of the assayed blood samples (0/267) in feral swine.
Phylogenetic comparison of partial C. suis ompA gene sequences and C. suis-specific multilocus
sequencing typing (MLST) revealed significant genetic diversity of the C. suis identified in this study.
Highly genetically diverse C. suis strains are prevalent in domestic pigs in the USA. As crowding
strongly enhances the frequency and intensity of highly prevalent Chlamydia infections in animals,
less population density in feral swine than in domestic pigs may explain the significantly lower
C. suis prevalence in feral swine. A future study is warranted to obtain C. suis DNA from feral swine
to perform genetic diversity of C. suis between commercial and feral pigs.

Keywords: Chlamydia suis; peptide ELISA; PCR; feral swine; USA

1. Introduction

Obligate intracellular bacteria of genus Chlamydia contains 13 recognized species
(C. abortus, C. avium, C. caviae, C. felis, C. gallinacea, C. muridarum, C. pecorum, C. pneumoniae,
C. poikilotermis, C. psittaci, C. serpentis, C. suis, and C. trachomatis) [1,2]. Of all thirteen
chlamydial species, only five (C. suis, C. abortus, C. pecorum, C. psittaci and C. trachomatis)
are known to infect pigs [3,4]. The pig is the only known natural host of C. suis, and
C. suis infections in pigs have been reported to be associated with a variety of clinical signs
including conjunctivitis, rhinitis, pneumonia, enteritis, and reproductive disorders [4–7].
However, most recent reports also demonstrated asymptomatic C. suis infections in pigs in
Austria, Belgium, China, Germany, Japan, Italy, and Switzerland [7–11].

Feral swine are considered to be the single most invasive animal species in the United
States and have expanded from 17 to 38 states in the last 30 years [12]. In the state of
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Alabama, the home range of feral swine has also spread to all 67 counties [13]. It has been
reported that there is a high probability of interaction between domestic pigs having out-
door access and feral swine in certain geographic regions. Close contact between domestic
pigs and feral swine is considered a risk factor for transmission of pathogens, including
C. suis [14]. Wahdan et al. reported a low prevalence of Chlamydia DNA in the investigated
feral swine populations (1.4%, 4/292) in Switzerland. In addition, microimmunofluores-
cence test was performed to test for antibodies to Chlamydia spp. in sera from hunter-killed
feral swine harvested during the 2006–2009 hunting seasons in three Italian regions, and
63.6% (110/173) tested sera were shown to have antibody titers to chlamydiae >1:32 [15].

While C. suis was isolated from domestic pigs in the USA [5,16], little is known about
the prevalence and diversity of C. suis in pigs in the USA. Therefore, the present study
was undertaken to investigate the molecular and serological prevalence of C. suis in feral
and domestic pigs in Alabama. In addition, phylogenetic analysis using both ompA and a
C. suis-specific MLST typing scheme was performed to analyze the C. suis diversity.

2. Results

C. suis-specific peptide ELISA determined a significantly higher prevalence of anti-
C. suis antibodies in domestic pigs than in the feral swine. The anti-C. suis antibody
was detected in 13.0% (240/276) of whole blood samples in the feral swine, being sig-
nificantly lower than 80.0% positivity (12/60) in domestic pigs (Figure 1A) (p < 10−4).
In addition, the percentage of the whole blood samples with a strong positive antibody
level (OD value > 1.0) was significantly higher in domestic pigs than in feral swine (46.7%,
28/60 vs. 2.2%, 6/276; p < 10−4) (Figure 1A).
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Figure 1. Significant higher prevalence of C. suis in commercial pigs than in the feral swine determined by PCR and peptide
ELISA. (A) Species-specific peptide-ELISA determined a significantly higher prevalence of C. suis antibodies in commercial
pigs than in feral swine. (B). FRET-qPCR and DNA sequencing identified C. suis DNA in 21.7% (16/30) of the whole blood
and 99.1% of feces (108/109) of commercial pigs, but not in the whole blood of feral swine (0/276).

DNA sequencing following FRET-qPCR determined that only C. suis, no other chlamy-
dial species, was identified in swine samples of this study. In a similar trend as indicated
by peptide-ELISA, C. suis DNA was found in 21.7% (13/60) of the whole blood of domestic
pigs, but not in any of the whole blood samples from feral swine (0/276) (Figure 1B). While
the fecal swabs were not available from feral swine in this study, C. suis DNA was identified
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in 99.1% (108/109) of fecal samples of domestic pigs in this study. Paired blood and fecal
samples were collected from 60 of 109 domestic pigs in this study, and all 13 pigs which
were found to be C. suis positive in whole blood were also positive in their fecal swabs
(Figure 1B).

Seven distinct partial ompA sequences encompassing the variable domain 1 and 2
(VD1-2) from 24 pig C. suis isolates were identified in this study (Figure 2). Compared with
the existing ompA sequences deposited in GenBank, the partial ompA VD1-2 sequences
from C. suis strains identified in this study are highly polymorphic. Still, these seven highly
polymorphic ompA sequences identified in this study cluster and differ from those of other
isolates of other countries, but showed a high similarity with a swine isolate in Germany
(AY687634) (Figure 2). While considerable ompA sequence variation was observed in this
study, three identical sequences (MT997040, MT997041, and MT997042) were found from
fecal swabs of three domestic pigs (Figure 2).
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Figure 2. Phylogenetic tree of the ompA variable domains 1-2. A 489-bp fragment encompassing C. suis ompA VD1-2 of
seven porcine C. suis strains identified in this study (in blue font; name of strain, country, accession number) are compared
with 18 other C. suis sequences deposited in GenBank from six countries (Germany, Switzerland, Italy, USA, Japan, and
China). Branch lengths are measured in nucleotide substitutions and numbers show branching percentages in bootstrap
replicates. Scale bar represents the percent sequence diversity.

Bayesian phylogenetic analysis of concatenated nucleotide sequences of seven MLST
was performed on 11 C. suis sequences identified in this study, and these sequences
are compared with 17 other C. suis sequences deposited in GenBank from six countries
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(Germany, Switzerland, Italy, USA, Japan, and China). The C. suis isolates identified in this
study were found to be grouped in separate but diverse sub-clades (Figure 3).
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bootstrap replicates. Scale bar represents the percent sequence diversity.

3. Discussions

In this study, C. suis-specific peptide ELISA and highly specific and sensitive FRET-
qPCR were performed to investigate C. suis prevalence in domestic and feral pigs in
Alabama. Both peptide ELISA and FRET-qPCR indicated a high prevalence of C. suis in
domestic pigs. While fecal swabs from feral pigs were not available for FRET-qPCR in
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this study, peptide ELISA showed a positive but much lower anti-C. suis antibody in feral
swine than in domestic pigs (13.0% vs. 80.0%, respectively; p < 10−4; Figure 1A).

In a calf model to explore the prevalence of natural Chlamydia species, Jee et al. reported
that the group size of calves correlated positively with chlamydial infection in quadratic
regression, and a doubling of the group size was associated with a four-fold increase in
frequency and intensity of Chlamydia infection [17]. This might explain well the significantly
lower C. suis prevalence in feral swine than in domestic pigs as the population density
of feral swine is much lower than that of domestic commercial pigs. The observation of
this study further verifies the notion that crowding strongly enhances the frequency and
intensity of highly prevalent Chlamydia infections in animals [17].

C. suis OmpA PCR and the C. suis specific MLST scheme demonstrated that the highly
prevalent C. suis in domestic pigs in this study are also highly polymorphic as reported
elsewhere worldwide [7,11,18]. Phylogenetic analyses showed that the ompA VD1-2 gene
fragment of the C. suis strains in this study is highly polymorphic. C. suis MLST analysis also
suggested a shared ancestry of C. suis strains in the USA with those described in Europe.

C. suis is often found in the intestine [19,20], conjunctiva [21], the genital tract [22],
nasal swabs [23], lung tissue [24], and the liver of aborted fetuses [25]. In this study, the
prevalence of C. suis DNA in fecal swabs was significantly higher when compared to
those taken from whole blood samples (Figure 1). This result is most likely due to the
gastrointestinal tract being the primary site of infection and chlamydial replication. This
finding agrees with the report by Li et al., showing 8.0% positivity of C. suis in whole blood
and 60.0% positivity in feces [11]. In addition, anti-C. suis antibody prevalence was 80% the
blood of the assayed domestic pig in this study while C. suis DNA was present in 99.1% of
the fecal samples (Figure 1). The difference in serological and molecular prevalences might
be due to the limited sensitivity of the peptide ELISA used in this study, and the antibody
response might be too weak to be detected in the early stage of C. suis infection.

The microimmunofluorescence (MIF) test is the standard serological assay for species-
specific detection of antibodies against chlamydiae [26], but shows cross-reactivity and
poor sensitivity [27–29]. Rahman et al. established a species-specific molecular serology
for different chlamydial species based on the defined species-specific immunodominant B
cell epitopes [30,31]. In the present study, this previously validated C. suis-specific peptide
ELISA was used to detect antibodies in feral and domestic pigs. We reported that 13%
of the assayed feral swine were positive for C. suis antibodies which is lower than 63.6%
positivity in feral swine in Italy [15]. Specificity of MIF and peptide ELISA may explain, in
part, the different positivity of C. suis antibodies in Italian study and this work.

Samples of small populations of domestic pigs and wild feral swine from the state of
Alabama were available in this study. Future study is warranted to collect more samples
from different regions of the USA. and investigate the overall prevalence of C. suis in the
entire USA. In addition, fecal samples from feral swine in USA should be obtained to
compare genetic diversities of C. suis between commercial and feral pigs

In conclusion, the serological and molecular surveys in this study indicate that C. suis
infection in domestic pigs is common while a significantly lower C. suis prevalence is found
in feral swine. Molecular typing of detected strains suggests that C. suis in the USA. are
genetically diverse as the global diversity of this pathogen reported in other countries.

4. Material and Methods
4.1. Ethics Statement

Protocols for the collection of swine samples in this study were reviewed and approved
by the Auburn University Institutional Animal Care and Use Committee (Approval number:
2017-3143).

4.2. Collection of Whole Blood Samples from Feral Swine

Between July 2019 and March 2020, feral swine (n = 276) were trapped at a 4515-hectare
privately-owned land in Bullock County in Alabama as described [32]. The property lies
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within the Upper Coastal Plain physiographic region. It was estimated that the wild pig
density on this property is 15.5 pigs/km2 which is greater than the average density of
6–8 pigs/km2 in the region [33]. The feral swine were captured using the Jager Pro Hog
Control Systems corral trap with a remotely activated gate. The gate was be activated via a
cellular network to close when the feral swine were seen on camera inside the trap, and a
small caliber rifle was used to euthanize the feral swine.

Whole blood samples (n = 276) were collected into 5 mL EDTA tubes and were
transported on ice to the research lab within three hours of sample collection.

4.3. Collection of Whole Blood and Fecal Swab Samples from Domestic Pigs

Between July and August of 2020, 60 EDTA whole blood samples and 109 fecal swab
samples were collected from 109 domestic pigs at the Auburn University Swine Research
and Education Center (AUSREC). AUSREC is a breed-to-finish swine production facility
providing education and research to students and quality pork products to the community.
Whole blood samples were collected into 10 mL EDTA tubes and were transported on ice
to the research lab within three hours of sample collection. Fecal swabs were collected
into sterile Eppendorf tubes containing 400 µL 1× phosphate buffer solution, and were
transported to the research lab within 3 h of sample collection.

4.4. Peptide ELISA to Detect Anti-C. suis Antibodies in the Plasma Samples

The collected EDTA whole blood samples from feral swine and domestic pigs were
centrifuged at 1000× g for 10 min, and 200 µL plasma was transferred to microcentrifuge
tube and stored at −20 °C for peptide ELISA. The remaining blood samples were transferred
to microcentrifuge tubes and stored in −80 °C until nucleic acid extraction and PCR were
performed as described below.

The C. suis species-specific peptide antigens as well as the protocol of running peptide
ELISA were used as previously validated and described [30,34]. C. suis peptide antigens
were chemically synthesized with N-terminal biotin followed by a serine-glycine-serine-
glycine spacer mixture Thermo Fisher Scientific, Waltham, MA, USA). The peptide mixture
consisted of 30 peptide antigens with equal molar amount, and coated on streptavidin-
coated white microtiter plates (Fisher Scientific, Roskilde, Denmark).

The plasma was tested for anti-C. suis IgG with a horseradish peroxidase (HRP)-
conjugated goat anti-pig IgG (h + l) cross-adsorbed antibody (Bethyl Laboratories, Inc.,
Montgomery, TX, USA) by colorimetric ELISA [30]. Using the titration of diluted sera
and conjugates, the optimal concentrations of sera (1:40 dilution) and conjugates (1:80,000
dilution for the polyclonal IgG-HRP conjugate) were determined. Background of each
serum was determined by the wells coated with DMSO. Plasma samples were run in both
peptide and DMSO control in a replicate. Optical density was measured at 450 nm (Tecan
Spectrafluor Plus reader, Madison, WI, USA). The OD values for individual plasma sample
was calculated after background correction with 110% subtraction from the average of each
raw sample signal. The samples with an OD value below 0.19 were considered negative,
positive when the OD value was above 0.2, and strong positive as OD > 1.0.

4.5. Extraction of Nucleic Acids from Whole Blood Samples and Fecal Swabs

The High-Pure PCR Template Preparation Kit (Roche Diagnostics, Indianapolis, IN
USA) was used to extract total nucleic acids from whole blood according to the manufac-
turer’s instructions and described previously [11,32]. In brief, whole blood (400 µL) was
mixed with equal volume of binding buffer followed by homogenization and digestion
with proteinase K (10% of total volume). Nucleic acid was eluted in the final volume of
200 µL. DNA extraction from fecal samples followed the same procedure as described
above [11]. Each fecal swab sample was mixed with 400 µL of binding buffer, and eluted to
the final volume of 100 µL.
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4.6. Chlamydia FRET-qPCR

The Chlamydia FRET-PCR used in this study followed the protocols described by [35,36].
In brief, 10 µL of the extracted DNA was added to a 10 µL reaction mixture containing
5× PCR FRET buffer, 400 µM dNTP (Roche Diagnostics GmbH, Indianapolis, IN, USA),
0.34 units of Platinum Taq DNA Polymerase (Invitrogen), 1 µM of each forward and reverse
primer (Integrated DNA Technologies, Coralville, Iowa, USA) and a final volume of Molec-
ular grade Nuclease-free water. This PCR amplified a 168-bp fragment of the Chlamydia spp.
23S rRNA gene, and was able to detect all 11 Chlamydia species with a detection sensitivity
of single copy/reaction. PCR amplification was performed in a LightCycler 480-II real-time
PCR platform using a high-stringency 18-cycle step-down temperature protocol: 6 × 10 s,
95 °C; 10 s, 64 °C; 10 s, 72 °C; 9 × 10 s, 95 °C; 10 s, 62 °C; 10 s, 72 °C; 3 × 10 s, 95 °C; 10 s, 60 °C;
10 s, 72 °C; followed by 30 low-stringency cycles: 30 × 10 s, 95 °C; 10 s, 56 °C; 10 s, 72 °C. The
PCR products were further verified by electrophoresis followed by DNA sequencing (ELIM
Biopharmaceuticals, Hayward, CA, USA) using both primers.

4.7. C. suis-Specific ompA-PCR

For the investigation of the polymorphisms in the C. suis ompA gene, a set of previously
validated primers [11] were used in this study to amplify the ompA VD 1-2 (amplicon size:
491 bp) in 24 C. suis-positive samples (10 whole blood and 14 fecal swabs) from domestic
pigs. PCR amplification was performed with SYBR system in a LightCycler 480-II real-
time PCR platform using a high-stringency 18-cycle step-down temperature protocol as
mentioned above. The PCR products were further verified by electrophoresis followed
by DNA sequencing (ELIM Biopharmaceuticals, Hayward, CA, USA) using both primers,
and ompA sequences were submitted to the GenBank (Accession numbers: MT997036 to
MT997042).

4.8. C. suis-Specific MLST PCRs

In this study, a C. suis-specific MLST typing scheme based on a previously published
Chlamydiales MLST scheme [37,38] was performed to amplify seven C. suis housekeeping
genes in C. suis positive samples. These housekeeping genes were selected using the criteria
that they are widely separated on the chromosome and not adjacent to a putative outer
membrane, secreted, or hypothetical proteins that might be under diversifying selection
while it is assured that each locus had a similar extent of nucleotide substitutions to ensure
consistency [39]. PCR amplification of the seven housekeeping genes was performed
with SYBR system in a LightCycler 480-II real-time PCR platform following the above-
mentioned protocol.

The products of all seven C. suis MLST PCRs were sent to ELIM Biopharmaceuticals
(Hayward, CA, USA) for DNA sequencing using both primers, and the GenBank accession
numbers were obtained (Table 1).

Table 1. GenBank accession numbers for seven MLST genes of eleven C. suis isolates in this study.

Sample ID gatA oppA hflx gidA enoA hemN fumC

FS-3204 MW240765 MW240776 MW240787 MW240798 MW240809 MW240820 MW240831
FS-3912 MW240766 MW240777 MW240788 MW240799 MW240810 MW240821 MW240832
FS-3916 MW240767 MW240778 MW240789 MW240800 MW240811 MW240822 MW240833
FS-4007 MW240768 MW240779 MW240790 MW240801 MW240812 MW240823 MW240834
FS-5205 MW240769 MW240780 MW240791 MW240802 MW240813 MW240824 MW240835
FS-5311 MW240770 MW240781 MW240792 MW240803 MW240814 MW240825 MW240836
FS-5409 MW240771 MW240782 MW240793 MW240804 MW240815 MW240826 MW240837
FS-6915 MW240772 MW240783 MW240794 MW240805 MW240816 MW240827 MW240838

FS-1 MW240773 MW240784 MW240795 MW240806 MW240817 MW240828 MW240839
FS-2 MW240774 MW240785 MW240796 MW240807 MW240818 MW240829 MW240840

FS-21 MW240775 MW240786 MW240797 MW240808 MW240819 MW240830 MW240841
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4.9. Phylogenetic Analysis

Phylogenetic analyses were performed using the 489 bp variable region of the ompA
gene and the concatenated C. suis MLST sequences. For ompA, a total of 22 sequences
consisting of 7 from this study and 15 publicly available sequences obtained from GenBank
were aligned using the ClustalX 1.83. A Bayesian phylogenetic tree was created using an
alignment of a total of 11 concatenated MLST sequences from this study, and 14 additional
strains from Switzerland, USA, Italy, China, and Austria. Based on these alignments,
phylogenetic trees were constructed by the neighbor-joining method using the Kimura
2-parameter model with MEGA 6.0. Bootstrap values were calculated using 500 replicates.

4.10. Statistical Analysis

All statistical analyses were performed with the Statistica 7.0 software package (Stat-
Soft, Inc., Tulsa, OK, USA). Chi-squared test was performed to compare the positivity of
C. suis DNA and antibody between domestic pigs and feral swine, and between blood
samples and fecal swabs in domestic pigs. Difference at p ≤ 0.05 was considered significant.
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