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Abstract: This paper analyzes common confusions involving basic concepts in statistical 

hypothesis testing. One-third of the social science statistics textbooks examined in the 

study contained false statements about significance level and/or p-value. We infer that a 

large proportion of social scientists are being miseducated about these concepts. We 

analyze the causes of these persistent misunderstandings, and conclude that the conventional 

terminology is prone to abuse because it does not clearly represent the conditional nature 

of probabilities and events involved. We argue that modifications in terminology, as well 

as the explicit introduction of conditional probability concepts and notation into the statistics 

curriculum in the social sciences, are necessary to prevent the persistence of these errors. 
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1. Introduction 

Although social scientists use statistical hypothesis testing extensively, it is not clear whether they 

always understand what their test results mean. In 1986 Michael Oakes conducted a survey of 

academic psychologists concerning their understanding of hypothesis tests, and found that on some of 

his questions over 70 percent of respondents gave wrong answers [1]. Oakes’ survey was almost 30 

years ago, but we have found these confusions persist until today. Indeed, in our research we found 
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several modern statistics textbooks written for social scientists that propagate fundamental interpretative 

errors. Apparently, social scientists’ persistent misunderstandings are due at least in part to the fact that 

many are being mistaught. 

Why have these mistakes not been corrected? Our investigation shows that the conventional 

terminology is the source of the confusion, because it does not clearly and unambiguously represent 

the conditional nature of the probabilistic concepts and quantities involved in hypothesis testing. It is 

incumbent upon the social science community to correct this situation. In any rigorous scientific field, 

widespread misunderstandings that are taught by textbooks themselves should not be tolerated. Our 

hope is that this paper will serve to motivate constructive changes that will bring increased clarity and 

rigor to the practice of statistics within the social sciences. 

The remainder of the paper is organized as follows. Section 2 provides brief definitions and 

explanations of some key concepts in hypothesis testing. Section 3 gives examples of wrong interpretations 

drawn from social science statistics textbooks. Section 4 analyzes the causes of these misinterpretations. 

Section 5 gives our conclusions, including our recommendations to remedy to the situation. Included at 

the end of the paper are a mathematical appendix in which various conditional probability calculations 

are demonstrated; and a complete list of the textbooks examined in the study. 

2. Hypothesis Testing Concepts and Terminology 

There are various forms of hypothesis testing, but all require the formulation of a null hypothesis 

(H0) and an alternative hypothesis (H1). For example, in evaluating the effectiveness of a certain 

abstinence education program in reducing venereal disease among high-school students, the null and 

alternative hypotheses might be expressed as follows: 

H0: Students that have been exposed to the program experience the same venereal disease 

rates as similar students that haven’t been exposed; 

H1: Students that have been exposed to the program experience lower rates of venereal 

disease compared to similar students that haven’t been exposed. 

To test a hypothesis, a statistical experiment must be conducted. McClave and Sincich [2] define 

such an experiment as “an act or process of observation that leads to a single outcome that cannot be 

predicted with certainty”. In an experiment that is designed to test a particular H0, the probabilities of 

different possible outcomes must depend on whether or not H0 is true. 

Another required feature of hypothesis testing is the significance level, which is usually represented 

by the Greek letter α. The significance level of a statistical test is defined as the probability that, in a 

situation where H0 is true, the experimenter nonetheless rejects H0 as a result of the test. To clarify 

this statement, we re-express it in the notation of conditional probability. This is not typically done in 

statistics textbooks for social scientists, but we will see that this will enable us to avoid the confusion 

that is often introduced (either explicitly or implicitly) in such textbooks. Using conditional probability 

notation, we may write 

α: = Pr[ H0 is rejected in an experiment | H0 is true for that experiment] (1)
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which may be read as: “Alpha is defined as the conditional probability that the null hypothesis is 

rejected in an experiment, given that the null hypothesis is actually true for that experiment.” 

In practical hypothesis tests (such as the ubiquitous z-test), the value of α is used to set a certain 

threshold value (which is calculated using probability theory). When the experiment is performed, a 

statistic is computed based on the results of the experiment. If the computed statistic is greater than the 

threshold, then H0 is rejected at significance level α. We shall not describe in detail the computations 

involved in this procedure, because these specifics are not germane to the issues we wish to consider. 

A concept that is closely related to the significance level is the notion of Type I error, for which 

textbooks give a variety of definitions. Bakeman ([3], p. 27) says, “A type I error…means rejecting the 

null hypothesis when it is in fact true”. Daly and Bourke ([4], p. 130) says, “If…the null hypothesis is 

true and a significant result is obtained, …, this form of error is called…a type I error”. Hopkins  

and Glass ([5], p. 221) says, “If we reject H0, and it is true, then we have made a type-I error”. 

Welkowitz ([6], p. 126) says, “Rejecting the null hypothesis for an experiment in which it is actually 

true is called a Type I error”. Popular internet resources give similar definitions: Wikipedia [7] states: 

“type I error is the incorrect rejection of a true null hypothesis”; and alternatively, “A type I 

error…occurs when the null hypothesis (H0) is true, but is rejected”. 

These definitions appear to be more or less equivalent. However, a possible difference emerges  

when we speak of the probability of a Type I error. If we go with Hopkins and Glass’s definition, then 

it seems we should say 

Probability of Type I error = Pr[ H0 is rejected in an experiment and H0 is true for that experiment] (2)

On the other hand, it is possible to interpret Bakeman’s definition as implying (in conditional 

probability notation) 

Probability of Type I error = Pr[ H0 is rejected in an experiment | H0 is true for that experiment] (3)

which is equal to α as defined above. Indeed, Bakeman’s definition is ambiguous, because his “when” 

could mean either “at the same time” or “given that”. In the former case, then Type I error denotes a 

possible final outcome of the completed experiment; while in the latter case, then Type I error is a 

conditional event. Ordinary English usage would seem to favor the former, simpler interpretation  

(for example, “seeing a gorilla when at the zoo” would not ordinarily be considered a conditional 

event)—but statistical authorities (including two reviewers of this paper) indicate that the latter 

interpretation is correct. In textbooks, generally no mention is made of the possible ambiguity. Many 

authors refer to α as the “probability of Type I error”, which presumes the conditional-event definition; 

but we shall see that some of these same authors also identify Type I error as a possible experimental 

outcome, leading to the false conclusion that α is the probability that H0 is wrongly rejected in a given 

experiment. Expressed in conditional probability notation, the difference between the two probabilities 

is clear—Pr[A|B] is not the same as Pr[A and B]—but unfortunately, the ambiguous conventional 

terminology leads to confusion between the two. 

Many statistics texts illustrate the concepts of Type I and Type II error using the following table 

(Table 1):   
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Table 1. Hypothesis Testing and Types of Error.  

 H0 is Actually True H0 is Actually False 

Experimental conclusion:  
reject H0  

Type I error is committed Experimental conclusion is correct 

Experimental conclusion:  
do not reject H0  

Experimental conclusion is correct Type II error is committed 

This table fails to resolve the ambiguity in the definition of Type I error. Under the final-outcome 

interpretation, the table lists the four possible outcomes of an experiment; while under the conditional-event 

interpretation, the column headings are preconditions, and the row headings list possible outcomes for 

each precondition. Under the first interpretation, the probabilities of the four table entries should sum 

to one; but under the second, the probabilities in each column sum to one. Frequently the probabilities 

of the upper left and lower right corners are identified as α and β, respectively—without clarifying that 

this identification requires that column headings.be interpreted as preconditions. 

Another concept that is closely related to α is the p-value. The p-value is commonly defined as the 

probability of obtaining a result at least as “extreme” as the result observed, given the precondition that 

the null hypothesis is in fact true for the experiment that was conducted. This definition relies on the 

vague and problematic notion of “extreme”; it also leaves open the question of what p-value means if 

the null hypothesis is not true for the conducted experiment. The following more precise definition 

avoids these problems. Suppose an experiment has been performed, and based on the results the value 

of the statistic is calculated and found to be V. Then the p-value for the experiment may be defined as 

the probability that H0 will be rejected in a not-yet-performed experiment (that is, an experiment for 

which the outcome is as yet unknown) in which both H0 is true and the threshold value used to 

determine rejection is V. In conditional probability language, we have: 

p-value: = Pr[ H0 will be rejected in a not-yet-performed experiment | in this experiment 

both H0 is true and the threshold value for the statistic is set equal to the value of the 

statistic that was obtained in the completed experiment] 

(4)

We should clarify that this not-yet-performed experiment could be a repetition of the completed 

experiment from which the p-value was calculated. Note however that H0 must be true in the repeated 

experiment for the p-value to represent the probability of a Type I error. But in practice we don’t know 

whether H0 is true for the completed experiment—otherwise we wouldn’t be doing the experiment in 

the first place. 

Practically, the p-value serves as an indicator of significance. When an experiment is performed the 

p-value computed from the experiment is compared with α to determine whether or not to reject H0. 

The p-value is the minimum significance level α which would lead to the rejection of H0 based on the 

experimental result (this is logically equivalent to the statement that α determines the maximum  

p-value which leads to rejection of H0). For example, suppose an experimenter first sets α = 0.05. He 

then conducts the experiment, and calculates p = 0.011 based on the results. In this case he rejects H0, 

since α > p; that is, α exceeds the minimum significance level that indicates rejection of H0. On the 

other hand, if another experimenter first sets α = 0.01, then repeats the same experiment and happens 

to obtain the same result of p = 0.011, then she does not reject H0 since α < p. The two experimenters 
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draw two different conclusions because the experimenter that set the smaller significance level is 

requiring more convincing evidence before she is willing to reject H0 (This example points out a 

somewhat misleading feature of the terminology: if two experimental tests end up rejecting H0, it is 

the test with larger significance level that provides less significant evidence that H0 is untrue).  

It is quite possible to simply define p-value in terms of its function as significance indicator, as  

we have described in the preceding paragraph. This interpretation is so much simpler than the 

conditional-probability definition that one might wonder why the former is used at all. Indeed, the 

conditional-probability definition is all too commonly misunderstood and misapplied, as we shall see 

in the following discussion. 

3. Contemporary Textbooks’ Misinterpretations of Hypothesis Testing Concepts 

In this section we present some erroneous interpretations of confidence level (α) and p-value that 

we found in contemporary statistics textbooks aimed for social scientists. Most of these texts were 

taken from the main library at the University of Texas at Austin, while others were texts used by 

acquaintances in their statistics classes in various branches of social science. 

3.1. Erroneous Interpretations of α 

The text by Healey [8] gives a practical example of a hypothesis test that compares absenteeism 

between treated alcoholics and the rest of the community. An alpha level of 0.05 is used, and 

experimental results corresponded to a p-value smaller than 0.05. Healey concludes ([8], p. 191):  

In the example at hand, the null hypothesis was rejected and the probability that this 

decision was incorrect is 0.05. 

At first glance, this statement may appear reasonable. But expressed as a statement of conditional 

probabilities, it becomes: 

Pr[H0 is wrongly rejected in a given experiment | H0 is rejected in the experiment] = α (5)

This is entirely different from our original specification of α: 

α: = Pr[ H0 is rejected in a given experiment | H0 is true for the experiment] (6)

By neglecting the condition that is implicit in the definition of α, Healy has been led into making a 

false statement. 

Bachman & Paternoster [9] make essentially the same mistake. In their example, they perform a 

one-tailed z-test and use an alpha level of 0.01, which corresponds to a threshold value for the  

z-statistic of 2.33. The z-statistic computed based on the experiment is +4.34. They conclude ([9], p. 286): 

As zobt > 2.33, you would reject the null hypothesis, knowing there is a 1 in 100 chance that 

you are making the wrong the decision (Type I error). 

Here is one instance where the authors are apparently treating Type I error as an experimental 

outcome rather than a conditional event, since they equate it with making a wrong rejection of H0 in a 

case where H0 is not known to be true. If they had intended for Type I error to represent a conditional 

event, they should have said something like the following: “As zobt > 2.33, you would reject H0, 
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knowing that in an experiment where H0 is true there is a 1 in 100 chance that the experimental result 

will lead to rejection of H0 under the current decision criterion (Type I error)”. This is an entirely 

different assertion from the one they actually made. 

To illustrate the practical impact of these errors, we give two examples in the context of criminal 

justice. First, suppose that an accused criminal has a certain rare parasite, and a statistical test on 

biological matter known to be from the criminal with α = 0.1 yields p = 0.07, where H0 corresponds to 

the assertion that the actual criminal is parasite-free. At the trial the defense attorney, citing Healey, 

claims that there is a 10% chance that the actual criminal is parasite-free, meaning there is a 10% 

chance that his client is being wrongly convicted. But the test’s finding shows nothing of the kind. The 

value of α gives the probability that a parasite-free individual will test positive for the parasite; it says 

nothing about the probability that person that has tested positive is actually parasite-free. As a second 

example, suppose that a corrupt prosecutor wants to find a scapegoat for a crime that he knows was 

committed by the mayor’s son, who happens to be a college student. In this case, a sample of the actual 

criminal’s handwriting is part of the evidence gathered from the crime scene. So the prosecutor obtains 

10,000 writing samples from male high school students (preferably from “undesirable” neighborhoods). 

Then one by one, he randomly selects samples and conducts statistical tests with α = 0.0002, where H0 

corresponds to the assertion that the writing sample is not from the criminal. He continues until he 

finds a student’s writing sample for which the null hypothesis is rejected. The prosecutor then arrests 

the student, and at the trial bases his case on Healey’s assertion that there is only a 1 in 5000 chance 

that the decision to convict is the wrong decision. Once again this is a false argument. The probability 

which α represents applies only to not-yet-performed experiments—it cannot be interpreted as a 

probability concerning the conclusion from a completed experiment. Note that in this case, the 

precondition that H0 is true actually applies—and the decision to reject H0 is wrong with probability 1, 

not α as implied by Healey. 

3.2. Erroneous Interpretations of p-Value 

In some textbooks, misinterpretations of significance level are compounded by misinterpretations of 

p-value. Bhatterjee [10] provides a good example of how easy it is to fall into error when one fails to 

recognize that alpha is a conditional probability. He writes ([10], pp. 129–30: italics ours):  

Sir Ronald A. Fisher, established the basic guidelines for significance testing. He said that 

a statistical result may be considered significant if it can be shown that the probability of it 

being rejected due to chance is 5% or less. In inferential statistics, this probability is called 

the p-value, 5% is called the significance level (α), and the desired relationship between the 

p-value and α is denoted as: p ≤ 0.05. The significance level is the maximum level of risk 

that we are willing to accept as the price of our inference from the sample to the 

population. If the p-value is less than 0.05 or 5%, it means that we have a 5% chance of 

being incorrect in rejecting the null hypothesis or having a Type I error. 

Before discussing interpretive errors in this passage, we must first address the sentence in italics, 

which is incorrectly stated. One possible correction is: “The result of a statistical test leads to the rejection 

of a null hypothesis if the probability of the result given the null hypothesis is true is 5% or less.” 
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Note that Bhatterjee unfortunately fails to mention the condition “given the null hypothesis is true”, 

which immediately leads him into trouble. He goes on to identify the p-value as the probability that the 

null hypothesis is wrongly rejected due to chance (presumably he is referring to the probability of an 

incorrect rejection in the experiment under consideration, although he is not entirely clear on this). 

Thus Bhatterjee’s claim can be expressed mathematically as:  

Pr[H0 is wrongly rejected in an experiment | p-value = q] = q (7)

This is completely different from either of the above definitions of p-value, and can be shown 

mathematically to be incorrect (see Appendix). Bhatterjee then repeats the mistake of Bachman and 

Paternoster by claiming that α gives the probability that the null hypothesis is incorrectly rejected in 

experiments where the p-value is less than α (like Bachman and Paternoster, he treats Type I error as 

an experimental outcome). He does not appear to realize that this is inconsistent with his earlier claim 

that the p-value gives this probability. 

Hopkins and Glass [5] similarly misinterpret p-value, although their mistake is phrased somewhat 

more subtly. In comparing the mean I.Q. of a sample of children to a hypothesized mean, they conduct 

a z-test and obtain the result |z| = 2.67 (which corresponds to a p-value of 0.0064). They conclude ([5], 

p. 222): “The probability of making a type-I error in such situations, when the absolute value of z is 

2.67, is less than 0.01”. Once again, type-I error is being identified here as the experimental result of 

wrongly rejecting H0 rather than a conditional event. In a footnote on the next page they say, “The 

probability of a type-I error is generally not reported as 0.0064. The high degree of precision implicit 

in this 0.0064 value is accurate only if all statistical assumptions are perfectly achieved”. Apparently 

Hopkins and Glass think that in a “statistically ideal” world, it is the p-value that determines the 

probability of a Type I error for the associated experiment. 

Weisburd and Britt ([11], p. 125) make the following statement: “The estimate of the risk of Type I 

error that is associated with rejecting the null hypothesis in a test of statistical significance (based on a 

sample statistic) is called the observed significance level and is ordinarily represented by the symbol p”. 

Here they interpret the p-value not as an actual probability, but an estimated probability (since they 

never define “risk”, we can only infer that “risk” means “probability”). 

Suffice it to say that there is no mathematical justification for any of these authors’ claims, no 

matter whether Type I error is interpreted as a conditional event or as an experimental result. In the 

former case, the (conditional) probability of Type I error is equal to the value of α set for the experiment, 

regardless of the experimental outcome. In the latter case, the p-value is insufficient to determine the 

probability that H0 has been wrongly rejected, as we show in the Appendix. In fact, in any experiment 

in which H0 has been rejected, depending on the circumstances the probability that this rejection is 

wrong can be anything from 0 to 1 regardless of the p-value. Consider for instance two drug-testing 

scenarios, the first of which uses urine samples from 1-year old infants, while the second uses urine 

samples from participants at the Cannabis Cup event in Denver, Colorado. In the former case, any 

rejection of H0 (no recent marijuana use) is almost certain to be wrong; while in the latter case, 

virtually all rejections of H0 are in fact correct. 

Sometimes authors do their damage in “drive-by” remarks which are intended to give readers an 

intuitive idea of the meaning of p-value. Thus Anthony ([12], p. 226) states, “…you should remember 

what it means to have a p-value of 0.05. It means a Type I error will occur roughly 5% of the time.” 
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Similarly, Suchmacher and Geller ([13], p. 44) assert that “Therefore, we can express a conclusion by 

stating that p (Type I error probability) inferred from a study is less than α (statistical significance level 

that corresponds to the highest tolerable cutoff for Type I error—often 5%, or 0.05), as pre-established 

by the investigator”. When expressed as conditional probability equations, both Anthony’s and 

Suchmacher and Geller’s claims turn out to similar to Bhatterjee’s. 

4. Analysis of Causes of Erroneous Interpretations 

In our examination of various textbooks, we have repeatedly encountered mistakes due to the 

mishandling of conditional events and conditional probabilities. Indeed, neither the notation nor the 

concept of a conditional probability is mentioned in the majority of statistics textbooks for the social 

sciences, whether or not they make erroneous statements. Such textbooks often take a cavalier  

attitude towards clarifying the preconditions for conditional probabilities. Consider this excerpt from  

Bakeman ([3], p. 27): 

If we set our alpha level to the conventional .05, then the probability that we will reject the 

null hypothesis wrongly, that is, make a Type I error, is also .05. After all, by setting the 

alpha level to .05 for a statistical test we commit ourselves to rejecting the null hypothesis 

if the result we obtain would occur 5% of the time or less given that the null hypothesis is 

true. If we did the same experiment again and again, and in fact there is no effect in the 

population, over the long run 95% of the time we would correctly claim no effect. But 5% 

of the time, just by the luck of the draw, we would wrongly claim an effect. 

This paragraph, except for the first sentence, is precisely correct (though students may find it hard 

to follow). But the first sentence, leads the reader to believe that (in mathematical language) 

α = Pr[H0 is wrongly rejected in an experiment | confidence level for the experiment = α] (8)

which is false. The very title of the section (“Type I error: the risk of making a false claim”) reinforces 

this same wrong impression. Bakeman never defines “risk” as being predicated on the condition that 

H0 is true, which easily leads the reader to infer that “risk” is the same as “probability”. The less 

careful reader will come away from this section with a faulty understanding of α. 

The way p-value is ordinarily presented (including the fact that the letter “p” is used) suggests that  

p-value is a probability associated with the experiment it is computed from. But it is actually a 

probability associated with a hypothetical experiment that in practice is never performed. Our intuition 

also hinders rather than helps us in the interpretation of p-value. It seems obvious that given two 

different experiments that reject their respective null hypotheses, the experiment with the smaller  

p-value should have a smaller probability of Type I error. But in fact, if Type I error is interpreted as 

an event conditioned on the null hypothesis, then the probability of Type I error has nothing to do with 

the p-value. If on the other hand Type I error is identified as an incorrect rejection of the null hypothesis 

in the completed experiment, then correct analysis of this situation requires Bayes’ theorem and 

calculations involving conditional probabilities. These paradoxical features of p-value show that it 

does not lend itself to an intuitive interpretation as a probability, and that attempts at such interpretations 

should be avoided.  
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5. Conclusions 

Out of 24 social science statistics textbooks we surveyed, 8 made statements about α or p-value that 

were definitely false. Several others made ambiguous statements that could easily be misunderstood by 

students. This problem is not uncommon; neither is it unimportant. We have given examples in which 

misunderstandings lead to significant misinterpretations of experimental results. 

We have showed that in general these misinterpretations are due to confusions over terminology. 

No matter how carefully explained, if terminology too closely resembles expressions in common use, 

then the common use will prevail and the careful explanations will be forgotten. The only effective 

solution to this problem is to reform the terminology. Certainly a less ambiguous definition of Type I 

error is called for, which makes it plain that it refers to a conditional event: for example, “In the case 

where H0 is true, a Type I error is said to occur when H0 is wrongly rejected”. 

If furthermore social scientists would start referring to α as a conditional probability, we believe this 

would put an end to most if not all of the persistent confusions concerning α. 

As far as p-value, the situation is more problematic. It is unfortunate that p-values are so entrenched 

in the literature, for it quite possible to do statistical hypothesis testing without them. Realistically 

however, it seems that p-values are probably here to stay. So we propose that textbooks (and instructors) 

stick to defining p-value as an indicator of significance (as explained in Section 2), and avoid identifying 

p-value as a (conditional) probability. 

Our study illustrates the subtle yet enormously powerful influence that terminology exerts on its 

users’ thought process. Scientists cannot afford to become complacent in their terminology, but rather 

should encourage scrutiny for hidden biases—including scrutiny by experts outside their own field. 

Indeed, our results argue for closer collaboration between mathematicians and social scientists in the 

educational process. In many (if not most) American universities, statistics for social scientists is taught 

outside of the mathematics or statistics departments. No doubt this is because social science departments 

want to focus particularly on the methods and applications that are important to their own respective 

fields. The drawback to this approach is that errors such as we have described in this paper may go 

undetected. Our results suggest that social science departments should consider increased input from 

the math and/or statistics departments, perhaps (for instance) in the form of team-taught courses. 
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Appendix A: Conditional Probability Calculations 

In this section, we calculate several of the conditional probabilities mentioned in the  
foregoing discussion. For justification of these calculations, we refer the reader to any textbook on 
mathematical probability. 

First, we compute 

Pr[H0 wrongly rejected in a given experiment | H0 is rejected in the experiment] (A1)

which was mentioned in our discussion of Healey [8] in Section 3.1. In the following, we leave off “in 
the given experiment” for brevity of expression. So we have 

Pr[H0 is true | H0 is rejected] = Pr[H0 is true and H0 is rejected]/Pr[H0 is rejected] 

= 
୔୰[ு଴	୧ୱ	୰ୣ୨ୣୡ୲ୣୢ	|ு଴	୧ୱ	୲୰୳ୣ] ୔୰[ு଴	୧ୱ	୲୰୳ୣ]	୔୰[ு଴	୧ୱ	୰ୣ୨ୣୡ୲ୣୢ	|ு଴	୧ୱ	୲୰୳ୣ]୔୰[ு଴	୧ୱ	୲୰୳ୣ]ା୔୰[ு଴	୧ୱ	୰ୣ୨ୣୡ୲ୣୢ	|ு଴	୧ୱ	୤ୟ୪ୱୣ] ୔୰[ு଴	୧ୱ	୤ୟ୪ୱୣ]	 

= 
஑୔୰	[ு଴	୧ୱ	୲୰୳ୣ]௔୔୰[ு଴	୧ୱ	୲୰୳ୣ]ା(ଵି) ୔୰[ு଴	୧ୱ	୤ୟ୪ୱୣ]	 

= ቀ1 +	 (ଵି)(ଵି୔୰[ு଴	୧ୱ	୲୰୳ୣ])௔୔୰[ு଴	୧ୱ	୲୰୳ୣ]	 ቁିଵ	
(A2)

where we have denoted the (conditional) probability of Type II error by β according to the usual 
convention. In practice, it is impossible to determine β or Pr[H0 is true], and these values could be 
anything from 0 to 1. Clearly this expression is not equal to α, as some writers claim. 

Next we compute 

Pr[H0 is wrongly rejected in an experiment | p-value from the experiment = q] (A3)

which Hopkins and Glass [5] claimed was equal to q in a “statistically ideal” world. Again using 
abbreviated notation, we find  

Pr[H0 is wrongly rejected | p-value = q]  

= Pr[ H0 is true and p-value = q ] / Pr[p-value = q] 

= 
୔୰[௣ି୴ୟ୪୳ୣୀ௤	|ு଴	୧ୱ	୲୰୳ୣ]୔୰	[ு଴	୧ୱ	୲୰୳ୣ]୔୰[௣ି୴ୟ୪୳ୣୀ௤	|ு଴	୧ୱ	୲୰୳ୣ]୔୰[ு଴	୧ୱ	୲୰୳ୣ]ା	୔୰[௣ି୴ୟ୪୳ୣୀ௤	|ு଴	୧ୱ	୤ୟ୪ୱୣ]୔୰	[ு଴	୧ୱ	୤ୟ୪ୱୣ] 

= 
௤୔୰	[ு଴	୧ୱ	୲୰୳ୣ]௤୔୰[ு଴	୧ୱ	୲୰୳ୣ]ା	୔୰[௣ି୴ୟ୪୳ୣழ௤	|ு଴	୧ୱ	୤ୟ୪ୱୣ]୔୰	[ு଴	୧ୱ	୤ୟ୪ୱୣ] 

= ቄ1 +	ቀ୔୰[௣ି୴ୟ୪୳ୣୀ௤	|ு଴	୧ୱ	୤ୟ୪ୱୣ]୔୰[௣ି୴ୟ୪୳ୣୀ௤	|ு଴	୧ୱ	୲୰୳ୣ] ቁ ቀ ଵ୔୰[ு଴ ୧ୱ ୲୰୳ୣ] − 1ቁቅିଵ 

(A4)

In general, both numerator and denominator in the expression ቀ୔୰[௣ି୴ୟ୪୳ୣୀ௤	|ு଴	୧ୱ	୤ୟ୪ୱୣ]୔୰[௣ି୴ୟ୪୳ୣୀ௤	|ு଴	୧ୱ	୲୰୳ୣ]	ቁ are zero, but 

the expression still corresponds to a well-defined ratio of probability densities which in practice are 
impossible to estimate (as is the probability that H0 is true). Certainly, the expression is not equal to  
q in general. 

Finally we compute 

Pr[H0 is wrongly rejected in an experiment | confidence level for the experiment = α] (A5)

which we mentioned in our discussion of Bakeman [3] in Section 4. The expression can be rewritten as 
(with our usual abbreviation) 

Pr[H0 is wrongly rejected | confidence level = α and H0 is true]·Pr[H0 is true]  
+ Pr[H0 is wrongly rejected | confidence level = α and H0 is false]·Pr[H0 is false] (A6)
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The second term is zero, since it is impossible to wrongly reject H0 in an experiment where H0 is 
false. On the other hand, the first conditional probability is equal to α. In summary we have: 

Pr[H0 is wrongly rejected in an experiment | confidence level for the experiment = α] 

= α·Pr[H0 is true in the experiment] 
(A7)

Since Pr[H0 is true in the experiment] is less than or equal to 1, one could say that the confidence 
level α for an experiment could be interpreted as a “maximum risk” of wrongly rejecting H0. We concur, 
but this means something completely different from what many writers appear to think. In particular, it 
has nothing whatsoever to do with the probability that rejection of H0 in an already-completed 
experiment constitutes a Type I error. In the district attorney example discussed in the text, this probability 
is equal to 1; and it is equally possible to construct a scenario where the probability is equal to 0. 

Appendix B: Textbooks Examined in the Study 

Anthony, Denis. Understanding Advanced Statistics: A Guide for Nurses and Health Care 
Researchers. Edinburgh: Churchill Livingstone, 1999. 
Bachman, Ronet, and Raymond Paternoster. Statistical Methods for Criminology and Criminal Justice. 
New York: Mcgraw-Hill, 1997.  
Bakeman, Roger. Understanding Social Science Statistics: A Spreadsheet Approach. Hillsdale: 
Lawrence Erlbaum Associates, 1992. 
Bhattacherjee, Anol. Social Science Research: Principles, Methods, and Practices. Tampa: Global Text 
Project, 2012. Available online: http://scholarcommons.usf.edu/oa_textbooks/3 (accessed on 7 May 2015). 
Blalock, Hubert M. Social statistics, rev. 2nd ed. New York: McGraw-Hill, 1979. 
Bland, Martin. An Introduction to Medical Statistics. Oxford: Oxford University Press, 1987. 
Cotton, John W. Elementary Statistical Theory for Behavioral Scientists. Reading: Addison Wesley, 1967. 
Couch, James V. Fundamentals of Statistics for the Behavioral Sciences. New York: St. Martin’s, 1982.  
Daly, Leslie, and Geoffrey J. Bourke, Interpretation and Uses of Medical Statistics, 5th ed. Oxford: 
Blackwell Science, 2000. 
Healey, Joseph F. Statistics: A Tool for Social Research, 9th ed. Stamford: Cengage Learning, 2011. 
Hopkins, Kenneth D., and Gene V. Glass. Basic Statistics for the Behavioral Sciences. Englewood 
Cliffs: Prentice-Hall, 1978. 
Jackson, Sherri. Statistics and Research Design (Custom edition for Psychology 418 at the University 
of Texas at Austin). Mason: Cengage Learning, 2008. 
Jordan, Kelvin, Bie No Ong, and Peter Croft. Mastering Statistics: A Guide for Health Service 
Professionals and Researchers. Cheltenham: Stanley Thornes Ltd., 1998. 
Mueller, John H., and Karl F. Schuessler. Statistical Reasoning in Sociology, 3rd ed. Boston: 
Houghton Mifflin, 1977. 
Oakes, Michael W. Statistical Inference. Chestnut Hill: Epidemiology Resources, Inc., 1990. 
Runyon, Richard, Kay Coleman, and David Pittenger. Fundamentals of Behavioral Statistics, 9th ed. 
Hawkins: McGraw-Hill Higher Education, 2000. 
Sedlmeier, Peter. Improving Statistical Reasoning Theoretical Models and Practical Implications 
Account. Mahwah: Lawrence Erlbaum Associates, 1999. 
Suchmacher, Mendel, and Mauro Geller. Practical Biostatistics: A User-Friendly Approach for 
Evidence-Based Medicine. Amsterdam: Academic, 2012. 
Schefler, William C. Statistics for Health Professionals. Reading: Addison-Wesley, 1984. 
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Weinbach, Robert W., and Richard M. Grinnell. Statistics for Social Workers, 4th ed. New York: 
Longman, 1998. 
Weisburd, David, and Chester Britt. Statistics in Criminal Justice, 3rd ed. New York: Springer Science 
& Business Media, LLC, 2007. 
Welkowitz, Joan, Barry H. Cohen, and R. Brooke Lea. Introductory Statistics for the Behavioral 
Sciences. New York: Wiley, 2011. 
Wilcox, Rand R. New Statistical Procedures for the Social Sciences: Modern Solutions to Basic 
Problems. Hillsdale: Lawrence Erlbaum Associates, 1987. 
Willemsen, Eleanor W. Understanding Statistical Reasoning. San Francisco: W. H. Freeman, 1974. 
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