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Abstract: Academic performance prediction is an indispensable task for policymakers. Academic
performance is frequently examined using classical statistical software, which can be used to detect
logical connections between socioeconomic status and academic performance. These connections,
whose accuracy depends on researchers’ experience, determine prediction accuracy. To eliminate
the effects of logical relationships on such accuracy, this research used ‘black box’ machine learning
models extended with education and socioeconomic data on Pennsylvania to predict academic
performance in the state. The decision tree, random forest, logistic regression, support vector machine,
and neural network achieved testing accuracies of 48%, 54%, 50%, 51%, and 60%, respectively. The
neural network model can be used by policymakers to forecast academic performance, which in turn
can aid in the formulation of various policies, such as those regarding funding and teacher selection.
Finally, this study demonstrated the feasibility of machine learning as an auxiliary educational
decision-making tool for use in the future.

Keywords: machine learning; neural network; socioeconomic status; population; crime rate;
academic performance

1. Introduction

For a considerable duration, educational systems have widely utilized standardized
examinations as a large-scale means of effectively sorting students. When it comes to
evaluation efficiency, standardized test scores are overwhelmingly superior in identify-
ing talent over other qualities that schools ought to place greater emphasis on, such as
moral character, life adaptability, non-cognitive skills, and social responsibility (Ebel and
Frisbie 1972). These preferences are rooted in the strengths of standardized tests, which
are a product of historical and social conventions. There are considerable and obvious
advantages to employing paper-and-pencil examinations that feature a series of archetypal
questions, including practicality, reliability, good content validity, convenience, accessibility,
and openness.

Despite the usefulness of traditional tests in assessing students’ knowledge and skills,
there are several other factors that can impact academic performance, often overlooked.
One significant factor identified in predictive studies is socioeconomic status (SES), which
plays a vital role in widening the academic performance gap between students in rural and
urban institutions (Ramos et al. 2012). In some European countries, high SES often correlates
with above-average exam scores, highlighting the significant impact of SES on educational
performance (Jana et al. 2006; Willms et al. 2006). Conversely, in eastern Europe, low SES
and students from rural schools can negatively affect academic performance (Kryst et al.
2015). While some studies found few differences between rural and urban schools (Miller
et al. 2019) or no significant distinctions among students from different school settings (Fan
and Chen 1998). Many researchers and educators continue to explore the effects of SES
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on academic performance using correlation and regression analysis. As such, this study
aims to employ machine learning (ML) models, a novel approach in predictive studies, to
investigate the impact of SES on student academic performance. Numerous studies have
demonstrated the considerable accuracy of ML prediction compared to a classic statistical
method such as correlation and linear regression (Table 1) (Chang et al. 2020; Paulick
et al. 2013). As an artificial intelligence approach, ML has had a far-reaching influence on
handling the vast amounts of facts and numerical data generated by computers through
simulations of the human brain. For instance, an ML algorithm is superior in analyzing
considerable internet data than regular models, since it enables relatively rapid prediction
with high accuracy and large datasets (Fedushko and Ustyianovych 2019; Shakhovska
et al. 2017; Zhou et al. 2017). Applying ML algorithms also enables researchers and
teachers to recognize the key factors that strongly influence student performance and
find more effective ways to improve teaching quality (Buenaño-Fernández et al. 2019;
Hussain et al. 2019; Kemper et al. 2020). The problem is that previous studies were a
small-scale, incomprehensive and restricted data pool to address certain groups under
limited conditions. This scope cannot ensure overall effective outcomes of ML prediction,
and a large representative sample has yet to be used to further verify the precision of
ML results.

Table 1. Comparison of a classical statistical method (e.g., correlation and linear regression) and ML.

Classical Statistical Method ML Method Reference

Rationale

Necessary for understanding the
relationship between academic
performance and relevant factors (e.g.,
crime rate and population density)

Prediction of academic
performance by ML
algorithms

(Bujang et al. 2021; Chang et al. 2020;
Lykourentzou et al. 2009; Mduma et al.
2019; Papernot et al. 2017; Paulick et al.
2013; Şara et al. 2015)

Methods

The use of programs such as Mplus to
identify relationships between
academic performance and relevant
factors; calculation based on the
relationships

Prediction via ‘black box’
models without consideration
for relationships

(Bujang et al. 2021; Chang et al. 2020;
Lykourentzou et al. 2009; Mduma et al.
2019; Papernot et al. 2017; Paulick et al.
2013; Şara et al. 2015)

Accuracy Existing relationships and
assumptions Quality and quantity of data (Al-Jarrah et al. 2015; Ciolacu et al. 2017;

Sekeroglu et al. 2019)

Advantages Matured methods with clear
processes

Rapid and convenient
prediction for reasonable
results

(Ciolacu et al. 2017; Sekeroglu et al. 2019)

Limitations Sample selection bias The ‘black swan’ effect (Batrouni et al. 2018; Lorey et al. 2011)

In ML prediction, different variables may strongly affect student performance. In this
respect, Musso et al. administered a questionnaire on digital tools, health, social support,
demographic items, cognitive attributes, and learning and coping strategies and used a
neural network algorithm to predict student performance (Musso et al. 2020). Qazdar
et al. incorporated several variables, such as gender, test score, and performance, into
the forecasting of students’ test results (Qazdar et al. 2019). Yousafzai et al. use a digital
management system (which reflects student information and academic progress) to their
advantage in predicting test scores (Yousafzai et al. 2020). The decision tree and KNN
models used by the authors achieved an accuracy of 85%. Alyahyan and Düştegör explored
the factors that contribute to successful performance in academics (e.g., sociodemographic,
psychological and academic factors, and cognitive qualities) (Alyahyan and Düştegör 2020).
Boxer et al. discovered a negative relationship between crime and student performance
in language and math, with impoverished students engaged in more delinquencies and
criminal events (Boxer et al. 2020). Although there are many factors play a role in the
prediction of student performance, sociodemographics, and crime rates have an important
influence on academic performance in schools.
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Above all, the present research focused on the effects of socioeconomic status (SES) and
crime rates on school performance. The study chose Pennsylvania as the basis for our study
and an ML model to predict academic performance in the state. Using population, crime,
and school data, this study trained five ML models: a decision tree, random forest, logistic
regression, support vector machine, and neural network (Figure 1). Among these models,
the neural network could predict overall academic performance in schools precisely, despite
the significant deviations among individual students, such as abnormal performance in
examinations. This study also demonstrated the capability of the neural network to identify
which factors (e.g., crime rate) are the most important in affecting academic performance.
In summary, this work pointed to the feasibility of the ML model as an auxiliary tool for
decision making in the future.
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2. Materials and Methods
2.1. Data Collection

Pennsylvania is selected as the model area because (1) Pennsylvania provides a full set
of online education data; (2) Pennsylvania is a representative state that includes megacities
and rural areas; and (3) Pennsylvania is a state with a wide range of educational resources.
The educational data are downloaded from Pennsylvania School Performance Profile
(https://paschoolperformance.org/, accessed on 1 December 2022), including “Grade”,
“School level”, “Sample size”, “Subject”, “Percent of advanced student”, and “Percent of
below-basic student”. The county data are obtained from the United States Census Bureau
(https://www.census.gov/, accessed on 1 December 2022) and World Population Review
(https://worldpopulationreview.com/us-counties/states/pa, accessed on 1 December
2022), such as “County area”, “County population” and “County density”. The crime
data are taken from Pennsylvania uniform crime reporting system (UCR) records (https:
//www.attorneygeneral.gov/, accessed on 1 December 2022), such as “Total offence cases”,
and “Crime rate”. The rural-urban definitions are referred to Center for Rural Pennsylvania
(https://www.rural.pa.gov/data/rural-urban-definitions, accessed on 1 Dec 2022).

Based on our classifications presented in Table 2, we performed statistical analysis and
ML calculations.

https://paschoolperformance.org/
https://www.census.gov/
https://worldpopulationreview.com/us-counties/states/pa
https://www.attorneygeneral.gov/
https://www.attorneygeneral.gov/
https://www.rural.pa.gov/data/rural-urban-definitions
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Table 2. Classification method for data treatment.

County Area
(km2)

Approximate
Number

County
Population

(People)

Approximate
Number

Crime Rate
(per 1000 People)

Approximate
Number

≤1000 500 ≤50,000 25,000 (3, 6] 5
(1000, 2000] 1500 (50,000, 200,000] 100,000 (6, 10] 8
(2000, 3000] 2500 (200,000, 1,000,000] 500,000 (10, 16] 13

(3000, 4040] 3500 (1,000,000,
1,584,064] 1,500,000 (16, 30] 29

Population
Density

(people/km2)

Approximate
Number

Total Offenses
Cases

Approximate
Number

Percentage of
Advanced/Below-

Basic
Students

Approximate
Number

≤100 50 ≤10,000 5,000 0% 0%
(100, 500] 300 (10,000, 50,000] 25,000 (0%, 10%] 5%

(500, 1300] 900 (50,000, 200,000] 100,000 (10%, 20%] 15%
(1300, 4564] 3000 (200,000, 859,411] 500,000 (20%, 40%] 30%

(40%, 60%] 50%
(60%, 100%] 80%

Subject Assigned Number School Level Assigned Number Rural/Urban Assigned Number

English language 1 Historically under
performance 1 Rural 1

Math 2 All group 2 Urban 2
Science 3

2.2. ML Models

More than 33,000 educational records were input into the ML models. Unless otherwise
stated, the split ratio was 76–24% for train-test sets. After the model was trained, this study
applied this model to make predictions on the data in unknown areas (see Figure 1).
The authors trained the ML via Anaconda 3 and Jupyter 6.3.0 platform. The python
coding library was based on scikit-learn (sklearn), keras, pandas, and matplotlib. Five
ML methods were compared: decision tree (Somvanshi et al. 2016), random forest (Liu
et al. 2012), logistic regression (Rymarczyk et al. 2019), support vector machine (Somvanshi
et al. 2016), and neural network (Jung and Kim 2016; Qi et al. 2019). ML methods were
based on previous studies with default settings in the sklearn module (Chen and Ding 2022;
Pedregosa et al. 2011).

The neural network consisted of 100 hidden layers, each with 100 nodes. The max-
imum number of iterations was 50. The activation function was the rectified linear unit
(relu). The solver for the neural network algorithm was adam optimization (“adam”). The
python coding for training, testing, and prediction was also attached to the supplemental
information (Pomerat et al. 2019). ML coding was attached to supplemental material Table
S1. The tuning process followed the random search method (Table S2) and tuning result
was attached to Table S8.

Four Pennsylvania heatmaps were drawn by RStudio: county population, total offense
cases, percentage of advanced students (real situation), and percentage of advanced stu-
dents (neural network prediction). The RStudio coding was based on packages of tidyverse,
readr, and maps. The color bar followed terrain.colors, and heat.colors. R coding for the
heatmap was attached in the Supplemental Material Tables S3–S7.

For this study, Dell Inspiron 15 TGL 3000 with Intel CoreTM i7-1165G7 CPU and
16 GHz 3200 MHz memory was used unless otherwise stated. The total calculation time to
run the coding was around 1–2 h for each round. The computing power of the computer
significantly affected performance. High-performance computing was required when
running the coding (Correa-Baena et al. 2018).



Soc. Sci. 2023, 12, 118 5 of 13

3. Results
3.1. Educational Data Analysis

The correlation heatmap was shown in Figure 2. From the correlation heatmap, we
found that the population density, total offense cases, and crime rates had a strong positive
correlation with each other. A higher population in the county normally implied higher
density (+0.85), more total offense cases (+0.90), and a higher crime rate (+0.79).
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Figure 2. Heatmap analysis showing the relationship between “Area”, “Population”, “Density”,
“Total offences”, “Crime rate”, “Rural or urban”, “Grade”, “School level”, “Sample size”, “Subject”,
“Percentage of advanced students”, and “Percentage of below-basic students”. The darker the color,
the stronger the positive correlation between the two data sets. The lighter the color, the stronger the
negative correlation between the two data sets. The red circles visually represent the focal points of
this paper’s target analysis, namely the relationships between “Percentage of advanced students”,
“Percentage of below basic students”, “Population”, and “Crime rate”.

Based on the heatmap, the main factors affecting academic performance (using the
percentage of advanced students) were population (−0.16), density (−0.26), total offense
cases (−0.26), crime rate (−0.29), rural and urban (−0.024), grade (−0.25), school level
(+0.29). The lower population, lower density, lower offense cases, and lower crime rate led
to a higher percentage of advanced students.

On the contrary, the higher population, higher density, higher offense cases, and higher
crime rate led to a higher percentage of below-basic students. The study environment had
a significant impact on the overall academic performance.
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Feature importance (Figure S1) results showed that the most important factor affecting
the data is the sample size (+0.458), grade (+0.126), crime rate (+0.124), subject (+0.097),
and population (+0.051). The sample size was the most important factor affecting the
calculation since more students had a greater impact on prediction outcomes. The crime
rate and population were among the top five important factors affecting the prediction
result. In the following analysis, we examined the academic impact of the crime rate and
population in detail.

When we evaluated how the county population affects academic performance, the au-
thors found the large county population (1 M~1.58 M, red box and red arrow in Figure 3) led
to a lower percentage of advanced students and a higher percentage of below-basic students.
The larger county population suggested a lower academic performance. On the contrary, a
smaller county population helped to improve students’ overall academic performance.
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Figure 3. Analysis of the relationship between county population and academic performance;
(a) percentage of advanced students; (b) percentage of below basic students. The red arrows indicate
the highest population in the county, which are the groups specifically analyzed.

When the authors evaluated how a safe environment affected academic performance,
the authors found the high crime rate (16–30 cases per 1000, red box and red arrow in
Figure 4) led to a lower percentage of advanced students and a higher percentage of below-
basic students. In summary, a higher crime rate led to lower academic performance. On
the other side, safe environments led to higher academic performance.

The school level significantly affected academic performance (Figure 5a). In the his-
torically underperforming schools, most of the classes only had around 2% of advanced
students. In all other schools, most of the classes had around 4% of advanced students.
Especially, all other schools had roughly twice as many excellent classes (more than 50%
advanced students) as historically underperforming schools. Although historically un-
derperforming schools also had some excellent classes and some good students, a higher
school level significantly improved the overall academic performance. Rural schools had
better overall academic performances compared to urban schools. Most rural schools had
around 8% of the advanced students (red dashed line in Figure 5b), while most urban
schools had only 2% of the advanced students (blue dashed line in Figure 5a).
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3.2. Academic Performance (Prediction versus Reality)

The authors evaluated five ML prediction methods, including decision tree, random
forest, logistic regression, support vector machine, and neural network. Among all methods,
the decision tree, random forest, logistic regression, and support vector machine achieved
testing accuracy of 48%, 54%, 50%, and 51%, respectively (Table 3). The neural network
achieved the highest 60% testing accuracy. As a result, this paper utilized the neural
network method for the next step of the analysis.

When the authors applied the ML models, the prediction versus reality results were
shown in Figure 6.
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Table 3. Comparison of ML prediction method.

Method Classifier Training Accuracy Testing Accuracy

Decision tree DecisionTreeClassifier 94% 48%
Random forest RandomForestClassifier 94% 54%

Logistic regression LogisticRegression 48% 50%
Support vector

machine SupportVectorClassifier 59% 51%

Neural network MLPClassifier 61% 60%
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In the decision tree, of 8129 classes, 3904 classes were correctly predicted (48% of the
total data, bold in Figure 6). For the prediction that was not completely correct, 3454 classes
were predicted in the neighborhood group (42% of the total data). Ten percent of the
predictions were far from the real situation.

In random forest, 4362 classes (54%) were correctly predicted. For the prediction that
was not completely correct, 3198 classes (39%) were predicted in the neighborhood group.
Seven percent of the predictions were far from the real situation.

In logistic regression, 4052 classes (50%) were correctly predicted. For the prediction
that was not completely correct, 2984 classes (37%) were predicted in the neighborhood
group. Thirteen percent of the predictions were far from the real situation.

In the support vector machine, 4162 classes (51%) were correctly predicted. For
the prediction that was not completely correct, 2953 classes (36%) were predicted in the
neighborhood group. 13% of the predictions were far from the real situation.

The most precise prediction in this paper came from neural networks: 4857 classes (60%)
were correctly predicted. For the prediction that was not completely correct, 2896 classes (36%)
were predicted in the neighborhood group. Only 4% of the predictions were far from the real
situation. Moreover, neural networks can predict well for all groups (both good academic
performance and bad academic performance). In sum, compared with other ML models, the
neural network shows good prediction stability and accuracy.

When the authors compared the real percentage of advanced students versus neural
network prediction (Figure 7c versus Figure 7d), the authors found there are only minor
differences between the prediction and reality, and, as a result, the authors suggested that
neural network was an accurate prediction method. The authors found that the neural
network prediction can find the impacts of the county population (Figure 7a) and crime rate
(Figure 7b). For example, the population and crime rate are high in Philadelphia county, the
neural network obtained this information and predicted a significantly lower percentage of
advanced students in Philadelphia county (Figure 7d): neural network prediction matched
the real situation (Figure 7c) well.
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4. Discussion
4.1. Academic Performance in Pennsylvania Schools

Some areas characterized by an inferior environment for learning (e.g., the city or
county with a high population density and a considerable crime rate) could be harmful to
many students, classes, and schools. The results could be explained by the less-educated
people, drug abuse, poor security, gun issues, violence, and offenses. On the other hand,
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well-educated people moved to a small county and created a positive learning atmosphere,
better living conditions, and a supportive learning environment there, and the schools
received good average academic performance. Despite this randomness of population
quality within an area, the overall impact of an environment on academic performance
is still recognizable. The results indicate that even with good education conditions (e.g.,
qualified teachers), large counties in Pennsylvania may not see a significant improvement
in students’ academic performance.

The reason may possibly be due to the fact that the areas with a high population
density have an uneven demographic composition, varied population quality, less-educated
parents, and the instabilities and uncertainties of potential offenders. Conversely, a small
county with a healthy and harmonious cultural environment could contribute to raising
students’ academic performance in Pennsylvania schools. This could be due to the fact
that these localities with well-educated people are safer and quieter and provide a healthy
educational environment.

4.2. Advantages and Limitations of the ML Model

To predict academic performance, previous research normally used statistical models
(e.g., Mplus or SPSS) to establish the relationships between such performance and SES, after
which these were used in forecasting (Chang et al. 2020; Chen et al. 2021; Claver et al. 2020;
Paulick et al. 2013). An example of the findings is the possibility that high income reduces
parental stress, which may lead to a more stable study environment and improved academic
performance (Owens 2018). The accuracy of classical methods hinges on the researchers’
experience. By contrast, the current study introduced an ML model, which is simply a
‘black box’ that connects input (SES data) and output (academic performance) without
considering relationships. The accuracy of this approach depends on data quality and
quantity (Chen and Ding 2022). Through the ML method adopted in this work, academic
performance in Pennsylvania’s schools was successfully predicted.

The ML model is also encumbered with certain limitations, among which is its in-
effectiveness in addressing the ‘Black Swan’ effect (Lorey et al. 2011). Most ML models
generate results on the basis of data that were previously loaded into a computer program.
If certain factors cannot be covered by a dataset, an ML model typically provides poor
feedback. In our study, for example, for a school located in a high-density area with its
surrounding environment suffering from a high crime rate, the ML model points to low
academic performance. However, if this institution inputs an excellent teaching team
and financial resources, it may achieve high academic performance. Moreover, there are
some unaccountable factors that could not be explained by the datasets, which could cause
miscalculations in an ML model.

4.3. Future Improvement of the ML Model

The future of ML models generally lies in two development directions: big data
and novel algorithms. Considering that this is a relative feasibility analysis, it used only
33,870 records that span population, crime, and educational data (Considine and Zappalà
2002; Ginsburg and Bronstein 1993; Kurdek and Ronald 1988). In future research, if more re-
lated factors (e.g., family, economic, and transportation situations) can be considered in ML
models, the authors believe such representations will generate more accurate predictions.
At the same time, if data quantity can be improved (e.g., >100,000 records), more data can be
used to support predictions. The availability of more data often relies on high-performance
computing (Elsebakhi et al. 2015; Fox et al. 2019). If scientists in the future have access to
better computers, they can also calculate more complex factors and larger amounts of data.

Algorithms are another component that can enhance ML models. In this study, five
well-developed ML methods were compared: a decision tree, random forest, logistic
regression, support vector machine, and neural networks. A neural network is one of the
best models. The models recommended by the authors, including classification (Kotsiantis
et al. 2006), KNN (Duivesteijn and Feelders 2008; Samworth 2012), linear discriminant
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analysis (Izenman 2013; Xanthopoulos et al. 2013), K-means (Li et al. 2020; Likas et al. 2003),
hidden Markov (Manogaran et al. 2018), and hierarchical planning (Mohr et al. 2018), can
be explored by other researchers. These novel methods may also reduce computational
requirements and increase predictive accuracy.

5. Conclusions

On the basis of big data (covering the Pennsylvania population, crime, and educa-
tion data), this research demonstrated the feasibility of using ML models to predict class
academic performance. To this end, the authors used an ML model that achieves fast and
precise predictions: 60% of the predictions are accurate, 36% are highly close to reality, and
only 4% exhibit substantial deviation from reality. This study confirmed that ML models
are accurate and effective instruments. With ML models as grounding, the authors found
that well-educated people in small counties that have lower crime rates could contribute to
higher academic performance among Pennsylvania schools. Finally, SES exerts a significant
impact on the rural–urban performance gap. The ML models are expected to provide
assistance and guidance (e.g., decision making on issues that may affect performance,
such as education budgets, hiring standards and practices, and teacher–student ratios) to
education policymakers in the region in the future.
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Şara, Nicolae-Bogdan, Rasmus Halland, Christian Igel, and Stephen Alstrup. 2015. High-school dropout prediction using machine

learning: A Danish large-scale study. Paper presented at 23rd European Symposium on Artificial Neural Networks, Bruges,
Belgium, April 22–24; pp. 319–24.

Sekeroglu, Boran, Kamil Dimililer, and Kubra Tuncal. 2019. Student performance prediction and classification using machine learning
algorithms. Paper presented at 2019 8th International Conference on Educational and Information Technology, Cambridge, UK,
March 2–4, pp. 7–11.

Shakhovska, Natalya, Olena Vovk, Roman Hasko, and Yuriy Kryvenchuk. 2017. The method of big data processing for distance
educational system. In Advances in Intelligent Systems and Computing II. Berlin/Heidelberg: Springer, pp. 461–73.

Somvanshi, Madan, Pranjali Chavan, Shital Tambade, and Swati Shinde. 2016. A review of machine learning techniques using decision
tree and support vector machine. Paper presented at 2016 International Conference on Computing Communication Control and
automation (ICCUBEA), Pune, India, August 12–13, pp. 1–7.

Willms, Douglas, Thomas Smith, Yanhong Zhang, and Lucia Tramonte. 2006. Raising and levelling the learning bar in central and
Eastern Europe. Prospects 36: 411–18. [CrossRef]

Xanthopoulos, Petros, Panos Pardalos, and Theodore Trafalis. 2013. Linear discriminant analysis. In Robust Data Mining.
Berlin/Heidelberg: Springer, pp. 27–33.

Yousafzai, Bashir Khan, Maqsood Hayat, and Sher Afzal. 2020. Application of machine learning and data mining in predicting the
performance of intermediate and secondary education level student. Education and Information Technologies 25: 4677–97. [CrossRef]

Zhou, Lina, Shimei Pan, Jianwu Wang, and Athanasios Vasilakos. 2017. Machine learning on big data: Opportunities and challenges.
Neurocomputing 237: 350–61. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s11277-017-5044-z
http://doi.org/10.5334/dsj-2019-014
http://doi.org/10.7758/rsf.2019.5.2.06
http://doi.org/10.1007/s10994-018-5735-z
http://doi.org/10.1007/s10734-020-00520-7
http://doi.org/10.1177/0038040717741180
http://doi.org/10.1016/j.cedpsych.2012.10.003
http://doi.org/10.1007/s10639-019-09946-8
http://doi.org/10.1016/j.eng.2019.04.012
http://doi.org/10.2139/ssrn.2051358
http://doi.org/10.3390/s19153400
http://doi.org/10.1214/12-AOS1049
http://doi.org/10.1007/s11125-006-9008-4
http://doi.org/10.1007/s10639-020-10189-1
http://doi.org/10.1016/j.neucom.2017.01.026

	Introduction 
	Materials and Methods 
	Data Collection 
	ML Models 

	Results 
	Educational Data Analysis 
	Academic Performance (Prediction versus Reality) 

	Discussion 
	Academic Performance in Pennsylvania Schools 
	Advantages and Limitations of the ML Model 
	Future Improvement of the ML Model 

	Conclusions 
	References

