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Abstract: Structures of Uniform Response are special earthquake resistant frames in which 

members of similar groups such as beams, columns and braces of similar nature share the 

same demand-capacity ratios regardless of their location within the group. The fundamental 

idea behind this presentation is that seismic structural response is largely a function of design 

and construction, rather than analysis. Both strength and stiffness are induced rather  

than investigated. Failure mechanisms and stability conditions are enforced rather than 

tested. Structures of Uniform Response are expected to sustain relatively large inelastic 

displacements during major earthquakes. A simple technique has been proposed to control 

and address the gradual softening of such structures due to local/partial instabilities and 

formation of plastic hinges. In structures of uniform response, the magnitude and shape of 

distribution of lateral forces affects the distribution of story stiffness in proportion with 

story moments, therefore affecting the dynamic behavior of the system as a whole. Simple 

closed form formulae describing the nonlinear behavior of moment frames of uniform 

response have been proposed. While the scope of this contribution is limited to moment 

frames, the proposed method can successfully be extended to all types of recognized 

earthquake resisting systems. 

Keywords: earthquake resistant frames; structural instability; plastic analysis; stiffness 

degradation; sequential hinging; energy equivalency; drift control; period analysis 
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Notation 

f magnification factor H total building height T period of vibration 
i, j integer coordinates I beam moment of inertia U internal energy 
h story height J column moment of inertia V shear force 
h  height from base K sub frame stiffness W sub frame weight  
m number of stories L span length Q total weight  
n number of bays M beam moment  local displacement 
s order of occurrence N column moment  total displacement 
C numerical constant P joint load  drift ratio 
E modulus of elasticity PM  beam plastic moment  joint rotation 
F external force PN  column plastic moment   

Indexes, superscripts and the remaining symbols are defined, as they first appear in  

the text. 

 

1. Introduction 

The purpose of this paper is to introduce the performance of Structures of Uniform Response (SUR) 

under lateral loading. SUR are special frameworks in which members of similar groups such as beams, 

columns and braces of similar physical characteristics e.g., length, end conditions etc., share the same 

demand-capacity ratios regardless of their location and numbers within the group. In other words, 

selected groups of members develop identical levels of stress and strain under similar loading conditions. 

Results of inelastic static, push-over and dynamic time-history analyses [1,2], have shown that 

Performance Based Plastic Design methods can successfully be applied to almost all types of code 

recognized earthquake resisting systems. The performance of SUR as earthquake resisting systems is 

directly supported by these findings. In introducing SUR the paper also presents a new analytic 

Performance-Based Elastic-Plastic Design method for earthquake resisting moment frames, with the 

ability to control their response during all phases of seismic loading, starting from zero to first yield, 

followed by progressive plasticity up to and including incipient collapse [3,4]. 

As far as it can be ascertained, the proposed drift increment and moment redistribution Equations 

are the only ones of their kind that can analytically estimate lateral displacements and element moments 

of such frames throughout both elastic as well as plastic ranges of loading. The step-by-step procedure 

presented in this work is particularly suitable for manual as well as spreadsheet computations. Most 

importantly, the proposed formulations help engineers gain insight into structural behavior of earthquake 

resistant SUR. All SUR formulations yield mathematically admissible initial designs within which 

member sizes can be modified for any reason, especially for meeting target objectives, optimizing 

material and construction costs without violating the prescribed performance conditions. The 

performance of SUR in the elastic and elastic–partially plastic stages satisfy all conditions of lower 

bound solutions and tends towards uniqueness as plasticity propagates through selected groups of 

members of the framework. SUR are generally more economical in the elastic range; and become 

lighter in total weight as the number of plastic hinges increase within the framework. Uniqueness 
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implies that any upgrading of any member property can only enhance the performance of the structure 

beyond its targeted projections.  

The methodology leading to SUR also provides a wealth of technical information that may not be 

readily available through traditional methods of approach. SUR in general and Moment Frames of 

Uniform Response (MFUR) in particular can be formulated to address the following target objectives: 

 A prescribed drift ratio at any given loading or performance stage. 

 A prescribed carrying capacity corresponding to any drift ratio or performance stage, including 

maximum allowable lateral displacement at incipient collapse. 

 Predetermined sequences of formations of plastic hinges before collapse. 

 Damage control in terms of the number of plastic hinges at any loading or response stage 

compared with number of plastic hinges at zero loading, at first yield or at incipient collapse. 

 Reduction of the total weight of the structure to a theoretical minimum. 

 The possibility to further enhance or the performance of the structure using moment control 

technologies such as brackets, haunches, end flange plates and/or proprietary devices. 

1.1. Basic Design Objectives 

The mathematical formulation of MFUR is based on the implementation of the following design 

objectives that: 

1. The ideal inter-story drift ratio remains constant along the height of the structure, and that 

lateral displacements remain a linear function of the height during all phases of loading.  

2. The plastic hinges are prevented from forming within columns, except at base line. Whenever 

possible, base line plastic hinges should form within the grade beams. Global mechanism is 

reached if the concept of strong-column weak-beam is considered. 

3. For minimum weight MFUR, the demand-capacity ratios of all members are as close to unity  

as possible.  

1.2. Basic Design Assumptions 

The methodology expounded in this presentation is based on the following design assumptions: 

1.  Axial, shear and panel zone deformations are not coupled with flexural displacements and can 

be temporarily ignored for the purposes of this study. 

2.  Groups of similar members simultaneously resist similar types of loading or combinations of 

loading, e.g., flexural, axial, torsional, etc. 

3.  The shape of code specified distribution of earthquake forces remains constant during all 

loading phases. The shape could be triangular or determined by any rational analysis. 

4.  Initial design is based on the fundamental period of vibration of the un-degraded structure.  

5.  The effects of plastic hinge offsets from column center lines can be ignored. 

6.  The possible benefits of strain hardening and yield over-strength can be ignored. 

7.  Code level gravity loads have little or no effect on the ultimate carrying capacity of moment 

frames designed for moderate to severe earthquakes. However the columns should be designed in 



Buildings 2012, 2 110 

 

 

such a way as to resist gravity forces together with effects induced by plastic hinging of  

the beams. 

8.  The design earthquake loads act monotonically throughout the history of loading of  

the structure. 

9.  The frames are two dimensional and are constructed out of ductile materials and connection 

failure is prevented under all loading conditions. 

10. The columns remain effectively elastic during all phases of loading. 

Traditional design methods for earthquake resistant moment frames begin with approximate 

member Properties for initial sizing, and entail several cycles of analysis before a satisfactory solution is 

established. The proposed procedure begins with an optimized Performance-Based Elastic-Plastic design 

approach that already has the code prescribed criteria built into its basic algorithm. Optimization in this 

context implies providing as much capacity as demand imposed on or attracted by each member of  

the frame. Several simple examples have been provided to illustrate the applications of the proposed 

procedures. While the scope of the present work is limited to moment frames, the proposed method 

can successfully be extended to all types of recognized lateral load resisting systems. 

2. Methodology 

In MFUR selected groups of beams and columns share the same drift and demand-capacity ratios. 

The most fundamental step in generating a MFUR is to select the properties of its constituent 

elements in such a way as to achieve geometrically similar inter story drift profiles prescribed for the 

entire structure during all phases of loading. In other words, the most ideal lateral deformation profile 

for any frame is that in which the code prescribed story level displacements fall along the same straight 

line i.e., 

issisissis hh   ,,  (1a)

where, Hsmssi /,,  . sm,  is the maximum roof or thm  level lateral displacement at ths  

response stage. Symbol s  signifies increment at ths consecutive iteration.  

Equation (1a) indicates that points of inflexion should occur at column mid-heights. By the same 

token, the most ideal design drift function is that where the code prescribed inter story rotations remain 

the same, i.e., 

smi
i

sssis Hh
h ,, )/( 



   (1b)

Theoretically there can be as many loading or response stages as there are beams, i.e., nms .max . 

However, ns .max  or ms .max  offer more practical options for design purposes. Rotation Ysm  1,  

may be construed as the initial target drift corresponding to initial target displacement Ysm  1,  at 

first yield. The line diagram of a regular MFUR together with its idealized design displacement 

profiles, subjected to a generalized distribution of lateral forces, is presented in Figure 1. The design 

conditions (1a) and (1b) imply equal incremental joint rotations for all members of the frame i.e., 

sGssiGs .,.    (1c)
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Figure 1. Laterally Loaded Moment Frames of Uniform Response (MFUR) with Linearly Varying 

Drift Profiles. 

 
(1a) (1b) (1c) 

The global equilibrium of the structure in terms of beam stiffness and global frame rotation sG,  at 

any stage “s” can be expressed as: 

 
   


m

i

n

j

m

i

n

j
jisGssjiBs

m

i
isisi

m

i
sis kEMhFhV

0 1 0 1
,,,,.

1
,

1
, 122   

(2a)

Where, siV , , jiji LIk ,, )/( , sjiBM ,,.  and siI ,  are the story level shear force, relative stiffness, end 

moments and moment of inertia of beam “i,j” respectively. Equation (2a) directly yields the global 

rotation of the structure as;  


 


m

i

n

j
ji

m

i
isissGs kEhV

0 1
,

1
,. 12/  (2b)

Similarly, the racking equilibrium Equation of any representative floor in terms of its beam 

stifnesses may be expressed as: 





n

j
jisBs

n

j
sjiBs

A
sis kEMM

1
,,

1
,,., 122   (2c)

The quantities 2/)(2/)( 1,1,,1,,   isiisi
R

si
R
si

A
si hVhVMMM  and A

siM ,2 are defined as the average 

and total racking moment acting on thi level beams at ths response stage respectively. 

2/1,1,1,1 hVMM s
R

s
A
s  , and 2/,,, msm

R
sm

A
sm hVMM   correspond to average racking moments of grade 

and roof level beams respectively. isi
R
si hVM ,,   is defined as the thi story raking moment at 

ths response stage. Equation (2c) in turn directly yields the floor level rotations as: 





n

j
ji

A
sissBs kEM

1
,,, 12/  (2d)

However, since siBssiGs ,.,.   , then equating the global rotation Equation (2b), and floor level 

rotation, Equation (2d), gives: 





n

j
ji

A
sis kM

1
,, / 

 


m

i

n

j
ji

m

i
isis khV

0 1
,

1
, /  (3a)
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Substituting for  
 


m

i

m

i

A
sisisis MhV

1 0
,,  and expanding the right hand side of Equation (3a), it gives: 

  
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(3b)

Equation (3b) can be satisfied only if the following mathematical conditions are met: 





n

j
ji

A
sis kM

1
,, / ../

1
,1,1 




n

j
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ss kM … 
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1
,2, /2 … 




n

j
jm

A
sms kM

1
,, /  (3c)

In physical terms, the condition of uniform drift requires that the sum of the stiffnesses of beams of 

each floor be selected in proportion with the average racking moments of that floor, i.e.,  


 
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,
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,  (3d)

Equation (3d) also describes a state of uniform demand-capacity for the beams of the structure.  

In practical terms, uniform demand-capacity implies providing as much capacity as demand imposed 

on or attracted by each member of the frame. Since equal joint rotations also imply zero moments at 

column mid-points, then the racking equilibrium of the frame in terms of column moments of any 

representative floor “m” or “i” may be expressed as;  





n

j
jmsCs

n

j
sjmCs

R
smsmsms kEMMhV

0
,.

0
,,.,, 122   (4a)

or 





n

j
jisCs

n

j
sjiCs

R
sisisis kEMMhV

0
,.

0
,,.,, 122   (4b)

Where, jiji hJk ,, )/( , sjiCM ,,. , and jiJ , are the relative stiffness, end moments and moment of inertia 

of column “i,j” respectively. Equation (4b) yields the floor level rotations as: 





n

j
ji

R
sissCs kEM

0
,,, 12/  (4c)

sC.  is the drift component of the thi level floor, due to deformations of the columns of the same level. 

Comparing the two sides of Equations (4a) and (4c) yields the conditions of uniform response or 

demand-capacity for the columns of the subject frame as: 


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,  (4d)

Equations (3d) and (4d) together fulfill the condition of compatible drift angles along the height of 

the frame and verify the statement of the methodology of MFUR presented at the beginning of this 

section. The applications of the proposed approach are elaborated through parametric examples in the 

forthcoming sections. 
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3. Story Level Elastic-Plastic Displacement Response 

The total drift of any story in terms of its racking moments at any response stage may be  

computed as;  

siBssiCssis ,.,.,    (5a)

or 




n

j
ji

R
sissis kEM

0
,,, 12/ 




n

j
ji

A
sis kEM

1
,, 12/  (5b)

In the absence of gravity loads, the force-deformation relationship or the drift increment Equation 

(5b) may be expanded to include the effects of member plasticity and story level axial forces, [5,6] i.e., 
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(5c)

However, since drift increment is a function of stiffness degradation as well as sequence of 
formation of plastic hinges, it becomes necessary to relate beam stiffness factors jik , to their sequence 

of formation of plastic hinges or response stage “s”, by means of subscript ”r”, rather than their 

location “j”. This is achieved by replacing jik , with sik ,  and 


n

j
jik

1
, with 



n

r
rik

1
,  and incorporating the 

symbol 1s
r  and j  in Equation (5c) in order to include the effects of formation or prevention of 

formation of plastic hinges at the ends of beams “ si, ”.i.e., 
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  (5d)

Equation (5d) now represents both the elastic as well as plastic deformations of the subject moment 

frame within a single, seamless expression, where by definition, the smaller the subscript “s” the 

stiffer the beam it represents. 01 s
r  for P

siBsiB MM ,.,.   and implies structural damage and/or loss of 

stiffness with respect to beam ".," si 11 s
r  for P

siBsiB MM ,.,.  . In mathematical terms, 11 s
r  for 

,1 sr  and 01 s
r  for .1 sr  Similarly the symbol j  has been introduced to relate column 

stifnesses jik ,  to effects of formation of plastic hinges in the adjoining beams “i,j” and “i,j-1. 0j  

for P
jiBjiB MM ,.,.   and P

jiBjiB MM 1,.1,.   , otherwise .1j ]/)(1[
0

,.,,. 



n

j
siCRjisiCR PPf  is the force 

magnification function. 


n

j
jiP

0
,  and isisiCR hKP ,,.   are the total axial load and the critical axial load of 

level “i” at ths  response stage respectively. In reality, since the drift ratio is constant, it would be 
sufficient to compute ssiss   ,  for the simplest representative level, i.e., the roof, where, 

01,1   msm hV . Equation (5d) reduces to: 
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smK , is the stiffness of the thm  level framework at ths  response stage. 

3.1. Demonstrative Example I 

Consider the lateral displacements of the four bay (n = 4), three story (m = 3) moment frame of 
Figure (2a), subjected to a uniform distribution of lateral forces FFi  and axial joint forces 

2/4,0, PPP ii   for all “i” and PP ji , for all other “i,j”. 

Figure 2. Example I, Moment Frame Loading and Racking Moment. 

 
(2a) (2b) 

The cross section and moment of resistance of beams and columns of each level are required to be 

constant, e.g., II j ,3 and PP
j MM ,3 for all “j”. JJJ  4,30,3 and iji JJ 2,  for all other “j”. The 

primary purpose of this exercise is to generate a MFUR by computing the quantities ,iI iJ  and P
iM in 

terms of their corresponding values ,3I  and PM3 (at roof level) respectively. The distribution of story 

level racking moments R
siM ,  is shown in Figure (2b). The total racking moments A

siM ,2  can now be 

computed as 4.5 hFs , 7.0 hFs , 3.5 hFs  and 1.0 hFs for the grade, 1st, 2nd and roof level beams 

respectively. Since iI  is uniform for each level and the quantity LL
r
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as a result, Equation (3d) reduces to ,)/( 31,31, IMMI A
s

A
sii  i.e., ,5.4)/5.4( 110 IIhFhFI   

,7]/)5.25.4[( 1111 IIhFhFhFI   ,5.3]/)0.15.2[( 1112 IIhFhFhFI   and .3 II  By the same token, 
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
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sii JMMJ )/( 1,1,   then: 

,5.4)/5.4( 111 JJhFhFJ  JJhFhFJ 5.2)/5.2( 112  .3 JJ   The third level (roof) drift of the newly 

generated MFUR at s = 1 can now be expressed as: 
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Assuming that the design decisions; ,1,4,1,
P
i

P
i

P
i MNN   P

ji
P

ji MN ,, 2  for all other “j” an ii IJ 2.1 d 

satisfy the Strong column-weak beam requirements, then for ,80.0,3. jCRf  L = h, 101 s
r  and 

11,3 FV s  , Equation (6a) becomes;  
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hF

EI

hF

s
s

1

1
2

1
2

1
1

0451.0

0381.3

1

6.9

1

8.012 
 



 


  (6b)

Therefore; ,/0677.05.1 3
111,1 EIhFh sssi     EIhFh sssi /1241.075.2 3

111,2     and  

./1693.075.3 3
111,3 EIhFh sssi     Finally, if the target drift 1s  is not to exceed ,Y  where 

the subscript Y signifies first yield, i.e., YFF 1  then, the design representative moment of inertia 

becomes ./0451.0 2 EhFII YYY    

4. Story Level Elastic-Plastic Moment Response 

The elastic-plastic displacement response of the moment frame, Equation (5c), is directly 

influenced by the redistribution of forces in the members of the structure. For instance, if the 

magnitude of the end moments of beam “i,j” at ths  response stage is given by; sBssisiBs EkM .,,. 6  , 

then by substituting for sBs . from Equation (2d) gives: 







 n

r
ri

s
rsiCR

si
A
sis

siBs

kf

kM
M

1
,

1
,.

,,
,.

2 
 

(7a)

and 

sjiBssjiBssjiCr MMN ,,.,1,.,,.    (7b)

as the Moment Redistribution or Plasticity Progression equations of the beams and columns of the 

subject frame at any given response stage respectively. At ultimate loading or incipient collapse the 

quantities A
sisisisi MVF ,,,, ,,,  and siBM ,.  become AP

i
P

i
P

i
P
i MVF ,,, and P

siM ,  respectively.  

The ultimate carrying capacity of regular moment frames is usually computed using the virtual 

work method of plastic analysis, [7] which eventually results in static equilibrium Equations that 
involve the global overturning moments OM  of the system at incipient collapse, e.g., considering the 

plastic collapse of the moment frame of Figure (3d), through formation of plastic hinges at beam ends 

only, and conforming to a uniform virtual side sway of inclination θ = 1, it gives: 


 


m

i

n

j

P
ji

P
O

m

i
i

P
ii

m

i

P
i

m

i

RP
i MMhFhVM

0 1
,

110
2  (8a)

For the particular conditions of Example I, the long hand solution of Equation (8a) gives;  

[3.75 + 2.75 + 1.5] hF P  = 2[1.0 + 3.5 + 7.0 + 4.5] PnM or hnMF PP /4  as the ultimate load 

carrying capacity of the subject moment frame. However in case of MFUR, the racking equilibrium 

Equation of any story, Equation (2c), can also be used to achieve the same results, i.e.,  

)......1...(22 ,,1,
1

, mijii
P
i

n

j

P
ji

AP
i uuuMMM  


 (8b)
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)......1...(22 ,,1,
1

, mijii
P
m

n

j

P
jm

AP
m uuuMMM  


 (8c)

Where, P
iM is the plastic moment of resistance of the stiffest beam of the thi level framing. Since the  

pre-assigned uniformity ratios jmjij uuu ,,,0 ......  are constant for all “i”, then dividing Equations (8a) 

and (8b) by each other, reaffirms the condition of uniform strength at incipient collapse, i.e., 

P
m

AP
m

AP
i

P
i MMMM )/(  (8d)

Figure 3. Progression of Plasticity in Moment Frame of Uniform Response. 

 

Equation (8d) can be used to compute the plastic moments of resistance of beams of any level “i” in 

terms of plastic moments of resistance of the uppermost level beams. For the MFUR of the preceding 

example this gives; ,5.40
PP MM   ,71

PP MM   PP MM 5.32   and .3
PP MM   Substituting 

2/hFM PAP
m   and nu

n

j
ji 


)1(

1
,  in Equation (8c) yields; PP nMhF 22/  or ,/4 hnMF PP   a 

result already established using Equation (8a) above. This result implies that: 

The ultimate load carrying capacity of an ( )nm MFUR with moment resisting grade beams 

under lateral loading of apex value PF is .4/ nhFM PP   

In physical terms, the plastic failure load of MFUR with moment resisting grade beams is 

independent of the number of stories and the distribution profile of the lateral forces. Equation (7a) can 

now be used to establish the first, r = 1, increment of loading that causes formation of the first set of 

plastic hinges in the beams of the stiffest bay of the structure. Since the plastic hinges of the beams of 

any bay “j” form simultaneously, it would suffice to first study the distribution of moments of any 

level “i” and then extend the results to beams of other bays by simple proportioning as indicated by 

Equation (8d), i.e.,  







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(9a)

2
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Substituting for hFhFhVM mmsmmsm
A

sm 1,11,11,11,1 2/   , P
smB MM  1,.1 and 10111  

r
s
r   

in Equation (9a) after some rearrangement, it gives the amount of force needed to produce the first set 

of plastic hinges in the stiffest beam of the thm level: 





n

r
rmmCR

mm

p

m kf
hk

M
F

1
,1,.

1,
1,1

4
 (9b)

Now bearing in mind that by virtue of Equation (7a) moments generated in the thx  beam (x > s) of 

any level can be expressed in terms of the maximum moments of the stiffest beam of that level i.e., 
P
ismxsmxsmBs MkkM )/( ,,,.    and that the sequence of formation of the plastic hinges of any level is 

the same as the sequence of decreasing values of stiffnesses of the beams of the same floor, then the 

plastic moment of resistance of the stiffest element s = 1 and moment of resistance of the next stiffest 

element s = 2 can be computed as PM and Pp
smsm MMkk  )/( 1,2, respectively. Therefore, the 

balance of bending moment needed to elevate the moment of resistance of beam s = 2 to pM can be 

computed as ,)]/(1[ 1,2,
p

smsm Mkk   whence the amount of additional force required to generate 

plastic hinges at the ends of the next stiffest beam may be generalized as: 









n
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rm

s
r

sm

sm
smCR

msm
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sms k
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1
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,
, )1(

4   (9c)

Since the sum of the incremental forces smsF ,  should add up to the ultimate load PP
m FF  ,then 

summing both sides of Equation (9c) over all “n” iterations gives: 









n

r
rm

s
r

sm

sm
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s
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1
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1 ,
,

1
)1(

4   (9d)

Substituting for ,)
11

(
1

,
1

1,,1
nk

kk

n

r
rm

s
r

smsm

n

s
 






  




n

s

PP
msms FFF

1
,  and 1,. smCRf  in Equation 

(9d) leads to the previously established solution; hnMF PP /4 .  

Equations (5e) and (9c) indicate that each stage of propagation of plastic hinges characterized by  

s = 1, 2…, n may be construed as a target design point or a state of stable damage with respect to fully 

elastic or fully plastic conditions of the structure. The final stage also represents a minimum weight, 

unique [8] state of plastic design since it satisfies the prescribed yield criteria, and static equilibrium as 

well as the selected boundary support conditions at incipient collapse. This implies that the proposed 

scheme also provides an envelope of several initial designs within which member sizes could be 

rearranged for any purpose while observing the prescribed performance conditions. 

4.1. Demonstrative Example II 

Use Equations (9c) and (5e) to study the nonlinear behavior of the MFUR of the previous example 
and compute the total internal energy of the system in terms of the drift function .  Given; 

,/1,3 LIk s   ,/8.02,3 LIk s   ,/6667.03,3 LIk s   ,/5714.04,3 LIk s   J = 1.2I, 4.max  ns , 

ss FV ,3,3  , h = L and .0, jiP  Hence from Equation (9c): 
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



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
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1
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1

1,3
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3,3
,3 )1(
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s

s
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ss k
k

k

hk

M
F   (10a)

In other words: 

./1524.12]5714.06667.08.00.1)[0000.01(00.1)/4(1,31 hMhMF PP   

./0381.2]5714.06667.08.00.0)[8000.01(25.1)/4(2,32 hMhMF PP   

./2376.1]5714.06667.00.00.0)[8334.01(50.1)/4(3,33 hMhMF PP   

./5717.0]5714.00000.00.00.0)[8571.01(75.1)/4(4,34 hMhMF PP   

(10b)

Therefore, ,/1524.121 hMF p ,/1905.142 hMF p hMF p /4281.153  , and as expected 





n

s

PP
ss hMFFF

1
,34 /16 , reconfirms the validity of the failure load formula ./4 hnMF PP   

It is instructive to note that because of the particular sequence of formation of plastic hinges, all 
columns remain intact up to and including completion of stage two, i.e., 1j  for s = 1 and s = 2. 

After culmination of stage two, first columns j = 0 and j = 1 together at the beginning of s = 3, next 

columns j = 2 at the end of s = 3, then columns j = 3 and j = 4 after culmination of s = 4 lose their 

stiffness, due to formation of plastic hinges at their adjoining beam ends. Equation (5e) for drift 

increment becomes: 
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  (11a)

Or in numerical terms: 
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(11b)

Therefore; ),/(4388.01 EILM P
Y   ),/(5398.02 EILM P )/(6403.03 EILM P  and 

)./(7336.04 EILM PP  The combined numerical results of groups of Equations (10b) and (11b), 

are presented in Figure (4) as the nonlinear load-displacement relationship of the subject MFUR. 

Equations (5c) and (9e) together provide useful design information that neither elastic nor plastic 

methods of analysis can offer on their own, for instance the maximum lateral displacement of the 

example frame at first yield and incipient collapse can be estimated as: 

EILFhhEIFhLY 72.9/75.3)16/(4388.0 2
1,3.    
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and 

EILFhhEIFhLP 82.5/75.3)16/(7336.0 2
4,3   

respectively. Furthermore, it was demonstrated that the sequences of formations of plastic hinges could 

be controlled by selecting the relative stiffness of groups of similar beams in accordance with certain 

target decisions. 

Figure 4. Load-Displacement relationship, Demonstrative Example II. 

 

5. Energy Computations For MFUR 

The total accumulative internal energy of any stable structural system due to elastic-plastic 

deformations of its constituent elements at any response stage can be computed as: 

2/)(
1

,,1,
1


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



m

i
rirriri

s

r
s FFU   (12a)

However, since in MFUR the drift ratio s  is constant, it would suffice to compute the internal 

energy of any representative level, such as that of the thm level, and then compute the rest by simple 

proportioning. The energy Equation corresponding to level “m” may be computed as: 

2/)(
1

,,1,
1

,,  
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

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s

r
rmrrmrm

s

r
rmsm FFUU   (12b)

Furthermore, since the ratio of internal energies of any two stories is the same as the ratio of 

average racking moments of the same two stories, i.e., sm
A

sm
A
sisi UMMU ,,,, )/( , then the total energy 

of the system may be expressed as: 


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,,, )/()/(  (12c)

Recalling that the sum of the average racking moments is equal to the sum of the story racking 

moments as well as the global overturning moment, i.e., ,,
1

,
1

, sO

n

i

R
si

m

i

A
si MMM  


 then Equation (12c) 

reduces to its most practical form: 

sO
R

amsms MMUU ,,, )/(  (12d)

Equation (12d) implies that: 
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The ratio of total internal energy of MFUR to that of anyone of its levels, such as the roof, is 

equal to the ratio of the global overturning moment to the overturning moment of that (roof) Level. 

A proof of the validity of this statement is presented in Appendix I. The energy quantity 4,mU   

for the preceding example can be worked out via Equation (12b) or as the total area under the  

force-displacement (push-over) curve of Figure 4, i.e., 4,mU 6.9512 ]/)[( 2 EILM P . Equation (12d) 

can then be used to compute the total internal energy of the entire system as; 

4U mUFhFh )/8( 55.6096 ]/)[( 2 EILM P , or in terms of ultimate values; P 4  and PFF 4 at 

incipient collapse as; .7057.4)167386.0/6096.55(4
PPPP hFhFU   4U  can also be looked upon 

as an indication of the capacity of the structure to absorb external energy.  

5.1.1. Stiffness Degradation  

An understanding of the rate and sequence of degradation of story level stiffnesses sisK , , is a priori 

to estimating the momentary periods, ssT , of vibrations of the system at any response stage “s”. 

Progressive plasticity tends to degrade the global stiffness and modify the dynamic characteristics of 

statically indeterminate structures under monotonically increasing lateral forces. The effects of 

stiffness degradation are more pronounced in MFUR since many members of similar characteristics 

either, fail, become inactive or develop plastic hinges simultaneously. The natural period of vibration 

of each stage of global loss of stiffness increases with advancing stages of loading until the structure 

ceases to resist external forces. As the rate of degradation of global stiffness is a function of increasing 

number of plastic hinges, Equations (5d) and (5e) may be rearranged to assess the gradual loss of 

global stiffness in terms of sequential formation of plastic hinges.  

To demonstrate the use of Equations (5d) and (5e), consider the long hand stiffness analysis of the 

3rd story of the MFUR of example I for all four stages of response. The results of this rather 
cumbersome exercise for 1,. smCRf  may be summarized as; 1,3K 070.27 K , 2,3K 017.20 K , 

31.123,3 K 0K  and 04,3 80.7 KK  , where ./ 2
0 LhEIK  However, since in MFUR the distribution of 

story level stiffness is also a function of the story level shears, it would be reasonable to seek a simpler 

method of computing for the story level stiffnesses in terms of shear force ratios at different stages of 

loading, i.e., 

)/()/()/( ,,,, imsmsisssmsis hhVVKK   (13a)

A derivation of Equation (13a) is presented in the Appendix II. This Equation implies that: 

The ratio of stiffness of any two floors of an MFUR is proportional to the ratio of shear forces of 

the two levels multiplied by the inverse ratio of their heights. 

The use of Equation (13) can be demonstrated by the following simple computations: 

01,1,1 40.55)5.1/)(/3( KKhhFFK m  , 01,2 32.44)25.1/)(/2( KKhhFFK m  , etc. 

To further illustrate the applications of the proposed solutions consider the deterioration of the story 

level stiffnesses of the example frame at all four stages of loading. Since changes in the global drift 

angle are influenced directly by degradation of story level stiffnesses, then the story level stiffness of 
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any response stage can be associated with the drift angle of the same stage. Therefore, the results of 
group of Equations (11b) can be used to compute all siK , by simple, numerical proportioning e.g., 

         1,3K 070.27 K  02,3 17.20 KK   3,3K 031.12 K  4,3K 080.7 K   

         1,2K 032.44 K  02,2 27.32 KK   3,2K 070.19 K  4,2K 048.12 K   

         1,1K 040.55 K  02,1 34.40 KK   3,1K 062.24 K  4,1K 060.15 K  
(13b)

This set of numbers complete the stiffness degradation matrix of the subject example frame. 

5.1.2. Period Analysis  

The dynamically induced seismic forces of MFUR are highly sensitive to variations in the 

fundamental period of vibrations as well as the shape and magnitude of the pre-assigned drift profile. 

Both of these issues are briefly discussed in this section. The period analysis presented herein is based 

on the following basic assumptions: 

1. The normalized displacement function Hhisi /,  remains unchanged throughout the loading 

history of the structure. In other words, loss of stiffness changes only the magnitude of lateral 
displacements, but not the deformed shape iss h   of the system. 

2. The lateral displacement profile of the frame is a function of the single variable s  for all stages 

of loading, i.e., all displacement profiles isssis h ,  follow the same linear shape function as 

their normalized displacement function ./, Hhissi   

3. Dominant mode shapes remain unchanged during formation of plastic hinges and that the 

coupling of modes in the inelastic range can be neglected. 

4. The first mode of the first un-degraded stage is the most dominant mode of all response stages and 

that the first mode of each stage is the dominant mode of that stage. 

The fundamental period of vibrations of any stable MFUR corresponding to any particular response 

stage can be expressed as:   ssssss KMTT /2 , where, the generalized stiffness and mass of 

the s th response stage are defined as: 
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Observing that the normalized displacement function is independent of sequence of formation of 

plastic hinges, and that the term 


 
m

i
ihMM

1

2  and the ratio )/()/(
1

,, i

m

i
sissmsm hVVh 


  are constant 

for all “s”, then sT can be expressed in terms of the single variable, smK , , i.e.,  
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sms KMCT ,/  (14c)

Where, C is a numerical constant. Equation (14c) indicates that MFUR can be treated as single degree 

of freedom (SDOF) systems for all “s”, and all practical purposes. Since both C and M  are 
independent of “s”, once the fundamental period of vibrations of the un-degraded structure, 1T , is 

determined the corresponding values for each degraded stage can be worked out through  

simple proportioning,  

)/( ,1,1 smms KKTT   (14d)

To demonstrate the applications of Equations (14b) and (14d), consider the variations of 

fundamental period of vibrations of the example frame with respect to changes in the global stiffness 

of the structure. Equation (14b) gives: 
 

 
Equation (14d) can now be used to determine ,2T  3T  and 4T  as: 

,17.117.20/70.27 112 TTT   113 50.131.12/70.27 TTT    

and 

.89.180.7/70.27 114 TTT   

The elongation of the natural period of vibrations is associated with the loss of global stiffness. 

Degradation of the stiffness reduces the rate of change of demand as well as the reserve capacity of the 

remaining (intact) structure. As the reserve capacity and the rate of change of demand diminish, the 

structure becomes softer until it fails through a collapse mechanism. 

5.1.3. Energy Equivalency 

Since by virtue of ( mmm hH //   ), the global stiffness of the structure is in direct proportion  

with each story level stiffness, and that by definition, Equation (1a), the lateral displacements are a 
function of the single variable s  for all “s” then MFUR may be looked upon as SDOF systems for all 

practical purposes. 

In short; MFUR may be treated as statically determinate, SDOF structures. 

This implies that Equation (12d) can be used in conjunction with Housner’s [9] equal energy 

concept for SDOF structures in order to formulate the demand-capacity relationship of the subject 

frame in terms of its seismic shears and the corresponding internal energy generated within the 

structure at any response stage “s”, i.e., 
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aS and 2/)12(  RS   are the spectral acceleration and the energy equivalency factors 

respectively [10]. 1,, /  smsmS  and Rμ are defined as the period dependant ductility and ductility 

reduction factors respectively. If the quantity sU is interpreted as the seismic capacity of the structure, 

then the right hand side of Equation (15), may be looked upon as the seismic demand or equivalent 

total dynamic input energy of the system.  

5.2. Demonstrative Example III 

Compute the base shear of the moment frame of example I subjected to seismically induced lateral 

forces of uniform intensity F at first yield, s = 1, and at incipient collapse, s = 4, in terms of the 

following design data;  

Prescribed design drift ratios 01.0Y  and 02.0p  radians, total structural self weigh Q = 3W 

and un- medium degraded range fundamental period of vibrations, aDs SST /11  , where, 1DS  is the 

site specific design spectral response acceleration parameter. Substituting for the corresponding 
quantities and the total internal energies YYY hFUU 00.41  at first yield and 

PPP hFUU 7057.44   at incipient collapse in Equation (15), and bearing in mind that FV 3 ,  

it gives: 
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respectively. 

6. Conclusions 

It was shown that SUR in general and MFUR in particular are ideally suited for Performance Based 

Elastic-Plastic Design. A number of new, closed form formulae for understanding the response of 

MFUR were presented. The proposed methodology lends itself well to controlling the sequential 

response of MFUR due to monotonically increasing lateral forces. MFUR approach results in Unique 

Minimum Weight solutions for lateral force resisting moment frames designed to perform as intended 

at any prescribed response stage. Because of their predetermined characteristics, MFUR can be treated 

as statically determinate, SDOF structures ideally suited for energy equivalency analysis. It was 

demonstrated through simple parametric examples that the proposed procedures provide useful design 

information that neither elastic nor plastic methods of analysis can offer on their own. Furthermore, it 

was shown that the sequences of formations of plastic hinges could be controlled by selecting the 

relative stiffness of groups of similar beams in accordance with predetermined performance objectives. 

The more significant theoretical aspects of MFUR were summarized in the following statements: 

 In MFUR selected groups of beams and columns share the same drift and Demand-capacity 

ratios. 
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 The ultimate load carrying capacity of an ( )nm MFUR with moment resisting grade beams 

under lateral loading of apex value PF is .4/ nhFM PP   

 The ratio of total internal energy of MFUR to that of anyone of its levels, such as the roof, is 

equal to the ratio of the global overturning moment to the overturning moment of that (roof) level. 

 The ratio of stiffness of any two floors of an MFUR is proportional to the ratio of shear forces 

of the two levels multiplied by the inverse ratio of their heights.  

 MFUR may be treated as statically determinate, SDOF structures. 

Most importantly, the proposed formulations may help engineers gain insight into structural 

behavior of lateral load resisting SUR and lend themselves well to manual as well as  

spreadsheet computations.  

In closing it should be emphasized that the presented approach may be used for the preliminary 

economical performance based design of lateral force resisting moment frames. The final design may 

need to be checked and verified using an appropriate inelastic dynamic or static analysis. 
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Appendix I 

In order to verify the validity of the total internal energy expression, O
R
mm MMUU )/( , consider 

the ratio of internal energy of any level “i” to that of the roof level “m”, i.e., 

)/()/()/( 2
immimi KKVVUU   (16a)
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However, since the drift ratio is constant, i.e., mi   , then )./)(/()/( miimim hhVVKK  Substituting 

for )/( im KK in Equation (16a), it gives )./()/()/( R
m

R
immiimi MMhFhVUU   The total internal 

energy of the system may also be computed as the sum of internal energies of the “m” individual 

levels, i.e., 
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11
)/()/(  (16b)

Appendix II 

The local Force- displacement relationship of any story level “i” can be expressed in terms of its local 
drift angle as sisiisisi KVh ,,,, / , and for the roof level as smsmismsm KVh ,,,, /  . Observing that 

by definition, smsi ,,   , then the division ( )/ ,, smsi   gives; )./()/( immimi hVhVKK   
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