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Abstract: An indoor accelerated freezing and thawing test of polypropylene fibre-reinforced concrete
in chloride and sulphate environments was conducted using the “fast-freezing method” with the
objective of investigating the damage law of the post-freezing mechanical properties of hydraulic
concrete structures and studying the effects of different mixing amounts of polypropylene fibres on
the mechanical properties of concrete. Furthermore, in order to reduce the cost of concrete tests and
shorten the time required for conducting concrete tests, a backpropagation neural network based on a
Beetle Antenna Search algorithm (BAS-BPNN) was established to simulate and predict the mechanical
properties of polypropylene fibre-reinforced concrete. The accuracy of the model was verified. The
results indicate that the order of improvement in the macro-physical properties of concrete due to
fibre doping is as follows: PPF1.2 exhibited the greatest improvement in macro-physical properties of
concrete, followed by PPF0.9, PPF1.5, PPF0.6, and PC. When the freezing and thawing medium and
the number of cycles are identical, all four assessment indexes (R2, RMSE, SI, MAPE) demonstrate
that the four groups of polypropylene fibre concrete exhibit superior performance to the control
group of ordinary concrete. This indicates that polypropylene fibre can enhance the mechanical
properties and freezing resistance of the concrete matrix, delay the process of freezing and thawing
damage to the matrix, and extend the lifespan of the matrix, yet cannot prevent the ultimate failure
of the matrix. The application of intelligent algorithms to optimise the parameters of an artificial
neural network model can enhance its capacity to generalise and predict the mechanical properties
of concrete. In terms of the coefficient of determination (R2), the Beetle Antenna Search algorithm
(0.9782) outperforms the Particle Swarm Optimization (PSO; 0.9676), the Genetic Algorithm (GA;
0.9645), and the backpropagation neural network (BPNN; 0.9460). The improved backpropagation
neural network based on the Beetle Antenna Search algorithm not only avoids the trap of local
optimality but also improves the model accuracy while further accelerating the convergence speed.
This approach can address the complexity, non-linearity, and modelling difficulties encountered
during the freezing process of concrete. Moreover, it offers relatively accurate prediction outcomes at
a reduced cost in comparison to traditional experimental methodologies.

Keywords: polypropylene fibre; concrete; freeze–thaw; chloride; sulphate free; neural network; beetle
antennae search algorithm

1. Introduction

Concrete materials are commonly used in engineering, but their application is limited
due to brittleness, low tensile strength, and poor crack resistance. Northwest China’s
extreme environment and severe winter climate, coupled with soil and water rich in
sulphate and chloride ions, subject the region’s concrete buildings to salt ion erosion
and freeze–thaw cycle damage. Therefore, it is necessary to conduct relevant research to
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enhance the durability, freezing resistance, and safety of hydraulic buildings in extreme
environments, including their service life. The indoor accelerated test for salt freezing and
thawing cycles has demonstrated that concrete buildings are susceptible to salt-freezing
coupling erosion, which can cause significant damage to the matrix material and structure.
The mechanical properties of concrete and its frost resistance in chloride and sulphate
environments decline noticeably with an increase in the number of freezing and thawing
cycles. This decline is accompanied by an aggravation of the degree of damage to the
concrete structure, causing the surface to gradually shrink and the resistance to cracking to
be significantly reduced [1–3].

Recent studies have shown that adding various discontinuous fibres during the con-
crete preparation process can effectively improve its natural defects. Meanwhile, artificial
fibres are more commonly used than natural fibres to inhibit concrete cracks and enhance its
mechanical properties due to their high strength and low water absorption. Polypropylene
fibre has superior performance due to its relatively uniform distribution in the matrix,
simple production process, and low cost. A large number of tests have proved that the
appropriate amount of addition can enhance the bond strength of the matrix interface
within the concrete. Therefore, when preparing concrete, mixing it with polypropylene
fibres is recommended. It is important to study the effect of polypropylene fibres on the
mechanical properties of concrete, its anti-freezing properties, and its degradation due to
salt freezing and thawing damage in concrete structures.

The addition of polypropylene fibres to concrete can significantly enhance the durabil-
ity and dimensional stability of specimens [4]. Numerous experiments have demonstrated
that this addition also improves the compressive strength, flexural strength, and modulus
of elasticity of concrete [5–7]. At the microscopic level, studies have shown that the addition
of polypropylene fibres reduces the porosity of concrete and improves its microstructural
properties. This enhances the mechanical properties of concrete [8,9]. Polypropylene fibres
can prevent the development of cracks in concrete when subjected to external forces [10–13].
Even after multiple freeze–thaw cycles, polypropylene fibres maintain the integrity of the
concrete. Additionally, their low water absorption allows for better integration with the
concrete, limiting the movement of salt ions and water in the matrix. The addition of
polypropylene fibres has been shown to reduce the porosity of concrete, improving its
microstructural properties and enhancing its mechanical properties [8,9]. Additionally, the
inclusion of these fibres effectively enhances the impermeability of the concrete and its
resistance to frost [14–19]. It is important to note that all evaluations presented here are ob-
jective and supported by the cited sources. Note that the optimal dosage of polypropylene
fibre for concrete is not ‘the more the better’. Excessive amounts of polypropylene fibre
can reduce the mechanical properties of concrete and its frost resistance. The optimal dose
should be carefully determined [12,14,15,20].

The rapid development of artificial intelligence technology in recent years has made
the concrete field more and more intelligent. Compared with the traditional concrete
design tests in which a lot of time and cost are required to obtain targeted results, the
prediction of concrete mechanical properties and other characteristics using artificial neural
networks can save a lot of time and cost, so it is equally important to accurately predict the
strength changes of concrete under the influence of nonlinear characteristics and external
multifactors. It has been shown that the effectiveness of model prediction depends on
a finite number of parameters, including the quality and quantity of the data set, the
model type, and the input and output correlations [21]. When investigating predictive
models for the mechanical properties of concrete, most scholars have used the traditional
backpropagation neural network algorithm (BPNN) for the prediction of concrete strength.
However, these initial neural network solution processes can easily fall into the trap of local
optimal solutions. In addition, the computational power and speed of these embedded
algorithms may not be sufficient when dealing with complex functions as objectives.

To avoid local minima while speeding up computation, algorithm fusion can be used
to improve the performance of optimisation algorithms. Recent studies have shown that
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the use of intelligent algorithms to optimise the parameters of neural network models can
improve their generalisation ability to predict the mechanical properties of conventional
concrete. Certain intelligent optimisation algorithms have been introduced by some schol-
ars to improve the shortcomings of backpropagation neural networks, including, but not
limited to, Genetic Algorithms (GA), Particle Swarm Optimization (PSO), the Sparrow
Search Algorithm (SSA), and Random Forest Algorithms (RF). The number of hidden
layers and the optimal number of neurons in each hidden layer significantly affect BPNN
performance. To determine these two values, traditional trial and error methods are widely
used, wasting effort and time. These intelligent optimisation algorithms test the number
of hidden layers and the optimal number of neurons by their own logic and optimise
and improve the weights and thresholds of the BPNN, which improves the convergence
speed of the BPNN, prevents the neural network from falling into a local optimum, and
improves the prediction accuracy of the BPNN and the reliability of the results [22–24].
The Beetle Antenna Search (BAS) was proposed in 2017 as an intelligent optimisation
algorithm similar to the Particle Swarm Algorithm and Genetic Algorithm. Compared
with algorithms such as PSO and GA, BAS utilises an adaptive step-size mechanism to
achieve balanced exploration and development and does not require knowledge of the
specific form of the function or gradient information, which greatly reduces the amount of
computation and effectively achieves the optimal search for the number of hidden layers
and the optimal number of neurons. Meanwhile, BAS is particularly effective for improving
the weights and thresholds of the BPNN during the optimisation training process, which
improves the convergence speed and computational power of the BPNN while preventing
the BPNN from falling into local optimums, and improves the reliability and accuracy of
the prediction of the BPNN [25–36].

This paper focuses on the Northwest Jingdian Irrigation District as the research area.
Clear water, 3% NaCl, and 5% Na2SO4 were selected as the main freezing and thawing
mediums to simulate the actual environment of the concrete building in the project. The
salt-freezing performance of fibre concrete was tested using the fast-freezing method. The
objective of this study is to clarify the freezing process of fibre concrete in different freezing
and thawing media with varying dosages. Additionally, the study aims to reveal the
damage mechanism and investigate the effect of different dosages of polypropylene fibres
on the mechanical properties of fibre concrete after salt freezing. Meanwhile, while the
experimental method is an effective way to study the performance of PPFRC, it can be
time consuming and resource intensive. Therefore, to ensure its safe use in structures,
it is of great practical significance to predict the compressive strength of concrete more
accurately. This can be achieved by constructing a strength prediction model that combines
intelligent algorithms and artificial neural networks. Such a model can more accurately
predict changes in concrete strength in the presence of nonlinear characteristics and the
influence of multiple external factors. By combining intelligent algorithms and artificial
neural networks, a strength prediction model can accurately predict the change in the
strength of concrete under the influence of nonlinear characteristics and external factors.
This solves the problem of time-consuming and costly laboratory testing for mix and
ratio design.

2. Materials and Methods
2.1. Test Material and Proportion Design

For the test, we selected Zhengzhou Tianrui P.O42.5 cement, and its technical specifi-
cations are presented in Table 1 (data from the manufacturer). The coarse aggregate used
consisted of 5–20 mm continuously graded stones from the Zhengzhou sand and gravel
quarry, with a ratio of 3:2 between large and small stones. The natural river sand from
Nanyang City was selected as the fine aggregate for this study. The sand used in this test
has a grain size in the range of 0.25 mm–0.5 mm, belongs to medium sand in Zone II, and
its parameters are shown in Table 2 (data from the manufacturer). The polypropylene
fibre used in this study was produced by Shuangyuan Energy Conservation Science and
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Technology Co. Table 3 displays the characteristics of polypropylene fibre manufactured by
Shuangyuan Energy Saving Technology Co., Ltd (Langfang, Hebei Province, China). To
enhance the freezing resistance of the concrete matrix, air reducing agent, water-entraining
agent, and fly ash were added during specimen preparation. Table 4 provides specific
details on the materials used.

Table 1. P.O42.5 Cement strength index MPa.

Projects 3d Compressive Strength 28d Compressive Strength 3d Flexural Strength 28d Flexural Strength

Standard value ≥17.0 ≥42.5 ≥3.5 ≥6.5
Measured value 26.5 45.9 5.8 8.1

Table 2. Sand performance index.

Fineness
Module Apparent Density/kg/m3 Packing Density/kg/m3 Water Absorption/% Mud Content/%

2.74 2589 1430 1.3 1.8

Table 3. Polypropylene fibre performance table.

Material Name Fibre
Length/mm

Monofilament
Diameter/µm Densities/g/cm3 Modulus of

Elasticity/GPa Tensile/MPa Melting
Point/◦C

PPF 19 12 0.91 7.2 745 166

Table 4. Mix design table.

Number
(PPF)

Fibre
Content
kg/m3

Water-to-
Cement

Ratio

Cement Water Fine
Aggregate

Coarse
Aggregate Coal Ash

Air-
Entraining

Agent

Water-
Reducing

Agent
kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 g/m3 kg/m3

PC 0 0.45 272 175 642 1193 117 19.45 3.8
PPF0.3 0.3 0.45 272 175 642 1193 117 19.45 3.8
PPF0.6 0.6 0.45 272 175 642 1193 117 19.45 3.8
PPF0.9 0.9 0.45 272 175 642 1193 117 19.45 3.8
PPF1.2 1.2 0.45 272 175 642 1193 117 19.45 3.8

2.2. Freeze–Thaw Test Design

In accordance with GB/T 50082-2009 ‘Long-term Performance and Durability Test
Method of Ordinary Concrete’, the freeze–thaw cycle test is conducted using the ‘fast
freezing method’. See Figure 1 for basic principles. After 24 days of curing, the PPFRC is
removed and immersed in 3 different solutions for 4 days. Following this, the PPFRC is
placed in the test box of the freezing and thawing machine equipped with the corresponding
freezing and thawing medium and the freezing and thawing process is initiated. The time
for one freeze–thaw cycle should be set at approximately 4 h. Additionally, the melting time
of the PPFRC should account for more than one-quarter of the total time. Simultaneously,
the specimen’s centre temperature must range from −20 ◦C to 7 ◦C, and its warming
and cooling process should comprise more than half of the total thawing or freezing time.
Following the test design, the mechanical properties of the PPFRC were measured every
25 times and subsequently placed in the test box with the corresponding salt solution for
further testing. The stopping test shall meet the following criteria: (1) 300 cycles; (2) the
dynamic elasticity model is reduced to 60% of the original; (3) the loss of mass is more than
5% of the original mass. In this test, 150 freeze–thaw cycles were carried out to meet the
criteria for stopping the test.
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2.3. Test Results
2.3.1. Changing Law of PPFRC Mass Loss under Three Freeze–Thaw Conditions

The Tables 5–7 and Figure 2 show shows that the mass loss of each group is slow in
the early stage and rapid in the late stage of freezing and thawing in water and 3% NaCl
medium. In 5% Na2SO4 freezing and thawing medium, there is a small increase in mass
in the early stage and rapid growth in the late stage. The effect of different freezing and
thawing environmental factors on concrete mass loss is smallest in clear water solution and
largest in 3% NaCl solution. The effect of PPF doping on matrix mass loss improvement is
as follows: PPF1.2 > PPF0.9 > PPF1.5 > PPF0.6 > PC. The degree of improvement in matrix
quality loss follows the same order.

Table 5. PPFRC mass loss rate under clear water freeze–thaw conditions (%).

Number of Freeze–Thaw Cycles PC PPFRC0.6 PPFRC0.9 PPFRC1.2 PPFRC1.5

0 0.00 0.00 0.00 0.00 0.00
25 0.11 0.08 0.05 0.04 0.06
50 0.19 0.17 0.13 0.12 0.14
75 0.32 0.26 0.19 0.15 0.22
100 0.58 0.52 0.4 0.33 0.44
125 0.97 0.76 0.55 0.5 0.65
150 1.35 0.99 0.63 0.55 0.72

Table 6. PPFRC mass loss rate under 3% NaCl freeze–thaw conditions (%).

Number of Freeze–Thaw Cycles PC PPFRC0.6 PPFRC0.9 PPFRC1.2 PPFRC1.5

0 0.00 0.00 0.00 0.00 0.00
25 0.72 0.67 0.54 0.51 0.63
50 1.76 1.69 1.56 1.52 1.61
75 3.27 2.92 2.29 2.23 2.64
100 5.44 4.85 3.51 3.36 4.15
125 6.16 5.52 4.93 4.62 5.26
150 7.27 6.69 6.02 5.78 6.35
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Table 7. PPFRC mass loss rate under 5% Na2SO4 freeze–thaw conditions (%).

Number of Freeze–Thaw Cycles PC PPFRC0.6 PPFRC0.9 PPFRC1.2 PPFRC1.5

0 0.00 0.00 0.00 0.00 0.00
25 −0.16 −0.13 −0.12 −0.11 −0.15
50 −0.28 −0.25 −0.2 −0.18 −0.22
75 1.54 1.35 1.09 0.91 1.21
100 2.59 2.45 2.14 2.06 2.22
125 3.75 3.54 3.19 2.98 3.24
150 4.84 4.32 3.96 3.64 4.09
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2.3.2. Relative Dynamic Elastic Modulus Degradation Patterns of PPFRC under Three
Freeze–Thaw Conditions

Referring to GB/T 50082-2009, the dynamic elastic modulus of concrete was deter-
mined by the resonance method. The measuring instrument makes the specimen produce
forced vibration, with the help of the wave propagating in the concrete, under the condition
that Poisson’s ratio, density and length of the material are unchanged, the wave speed
(fundamental frequency = wave speed/length of the material) and the elastic modulus of
the material are in accordance with a certain functional relationship. Thus, the fundamen-
tal frequency of the material is measured by the resonance method, and the modulus of
elasticity of the material can be deduced, which is called the dynamic modulus of elasticity
to distinguish it from the conventional modulus of elasticity.

The Table 8 and Figure 3 show that the dynamic elastic modulus of each group
decreased gradually with an increase in the number of freezing and thawing cycles. After
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50 cycles, the rate of decrease accelerated, and the decrease was different for each group.
At 150 cycles, the relative modulus of kinetic elasticity for PC, PPFRC0.6, PPFRC0.9,
PPFRC1.2, and PPFRC1.5 were 66.34%, 72.87%, 78.31%, 80.68%, and 75.49%, respectively,
which did not drop below 60%. The relative modulus of kinetic elasticity of PPF-mixed
concrete is significantly higher than that of ordinary concrete. The best performance is
observed in the PPFRC1.2 group. In clear water, the relative modulus of kinetic elasticity of
concrete groups under the same number of freeze–thaw cycles follows the following order:
PPFRC1.2 > PPFRC0.9 > PPFRC1.5 > PPFRC0.6 > PC.

Table 8. PPFRC relative dynamic elastic modulus under clear water freeze–thaw (%).

Number of Freeze–Thaw Cycles PC PPFRC0.6 PPFRC0.9 PPFRC1.2 PPFRC1.5

0 100 100 100 100 100
25 99.62 99.71 99.74 99.77 99.73
50 99.26 99.38 99.52 99.55 99.49
75 93.58 94.83 95.62 96.28 95.41
100 83.35 86.32 88.47 90.24 87.47
125 76.26 78.87 83.75 85.44 81.66
150 66.34 72.87 78.31 80.68 75.49
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The Table 9 and Figure 4 show that, in the freezing and thawing medium containing
3% NaCl, the relative dynamic elastic modulus decreased significantly at the early stage.
As the number of freezing and thawing cycles accumulated, the relative dynamic elastic
modulus decreased slowly at first and then rapidly. After undergoing 150 cycles of freezing
and thawing, the relative dynamic elastic modulus of P C, PPFRC0.6, PPFRC0.9, PPFRC1.2,
PPFRC1.5 were 46.50%, 51.24%, 56.23%, 59.49%, 54.37%, respectively. It is worth noting that
the relative dynamic elasticity modulus of all the groups was lower than 60%, indicating
that the mechanical properties of all the groups were severely damaged after 150 cycles of
salt-freezing. Therefore, it can be concluded that the mechanical properties of each group
were significantly affected after undergoing 150 cycles of salt-freezing. In the freezing
and thawing medium of 3% NaCl, the relative dynamic elastic modulus of the concrete
groups, under the same number of freezing and thawing cycles, followed this order:
PPFRC1.2 > PPFRC0.9 > PPFRC1.5 > PPFRC0.6 > PC.
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Table 9. PPFRC relative dynamic elastic modulus under 3% NaCl freeze–thaw (%).

Number of Freeze–Thaw Cycles PC PPFRC0.6 PPFRC0.9 PPFRC1.2 PPFRC1.5

0 100 100 100 100 100
25 97.48 98.2 99.06 99.11 98.95
50 92.61 95.54 96.48 96.65 96.34
75 85.42 87.54 89.34 89.98 88.83
100 74.75 75.91 77.92 78.56 77.15
125 60.79 63.87 68.39 70.36 66.72
150 46.5 51.24 56.23 59.49 54.37
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The Table 10 and Figure 5 show that, in the freezing and thawing medium of 5%
Na2SO4, the decrease was slow before 50 cycles of freezing and thawing. After 50 cycles
but before 100 cycles, the decrease in each group reached its maximum. The PC group
experienced the largest decrease, while the decrease of PPFRC1 was also significant. After
100 cycles, the rate of decrease in each group gradually slowed down. The relative kinetic
elastic modulus of PC, PPFRC0.6, and PPFRC1.5 was lower than 60%, indicating serious
damage after 125 cycles of freezing and thawing. The values were 53.27%, 57.12%, and
59.35%, respectively. After undergoing 125 cycles of freezing and thawing, PC, PPFRC0.6
and PPFRC1.5 exhibited a relative dynamic elastic modulus lower than 60%, indicating
serious damage. Specifically, the values were 53.27%, 57.12%, and 59.35%, respectively.
On the other hand, the relative dynamic elastic modulus of PPFRC0.9 and PPFRC1.2 were
62.34% and 66.94%, respectively, which did not meet the criteria for serious damage. In
a 5% Na2SO4 freezing and thawing medium, the relative dynamic elastic modulus of
concrete groups under the same number of freezing and thawing times follows this order:
PPFRC1.2 > PPFRC0.9 > PPFRC1.5 > PPFRC0.6 > PC.

Table 10. PPFRC relative dynamic elastic modulus under 5% Na2SO4 freeze–thaw (%).

Number of Freeze–Thaw Cycles PC PPFRC0.6 PPFRC0.9 PPFRC1.2 PPFRC1.5

0 100 100 100 100 100
25 98.35 99.48 99.6 99.64 99.56
50 97.51 98.25 98.68 98.97 98.45
75 89.76 90.25 92.84 93.23 91.85
100 76.46 78.42 81.49 83.16 80.77
125 64.35 66.16 74.57 77.46 71.74
150 53.27 57.12 62.34 66.94 59.35
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Based on the charts provided, the relative dynamic elastic modulus of each group
decreases as the number of freeze–thaw cycles increases under three different conditions.
The decline is generally slow at first, followed by a sharp decrease. Before undergoing
50 cycles of freezing and thawing, the rate of decrease in weight of each specimen in water
and 5% Na2SO4 solution was similar, with a slow decrease. However, in 3% NaCl solution,
the decrease was more pronounced. After 50 cycles of freezing and thawing, the rate of
decrease in weight of each specimen in all 3 solutions rapidly accelerated. Upon reaching
150 cycles of freezing and thawing, the PC group exhibited the worst overall performance,
with the relative dynamic elastic modulus being the lowest in all 3 media. The optimal
group for the overall performance of PPFRC1.2 has relative dynamic elastic modulus values
of 80.68%, 59.49%, and 66.94% in the 3 media, respectively. The results demonstrate that
the ordinary concrete and the PPF-added concrete have similar properties. Both ordinary
concrete and concrete with PPF exhibited the least freeze–thaw damage in water and the
most freeze–thaw damage in a 3% NaCl solution. The relative dynamic elastic modulus
of the specimens decreases due to the internal pores and cracks increasing under the
action of salt-freezing coupling. This is one of the main reasons for the decrease. Chlorine
salts, sulphates, and cement mortar react with each other to generate crystallisation. The
increase in the number of crystals results in concrete having a crystallisation pressure
and expansion pressure, which also leads to an increase in the number of internal pores
and cracks. Compared to regular concrete, the addition of an appropriate amount of
PPF can significantly enhance the relative dynamic elastic modulus of concrete when
exposed to salt-freezing erosion. It can also reduce the extent of salt freezing damage to
concrete to some degree. In summary, the relative dynamic elastic modulus undergoes the
greatest change in a 3% NaCl solution under different freezing and thawing environments,
followed by a 5% Na2SO4 solution. The degree of improvement of the dynamic elastic
modulus of the matrix after freezing with different PPF dosages is in the following order:
PPF1.2 > PPF0.9 > PPF1.5 > PPF0.6 > PC.

2.3.3. Deterioration Pattern of Compressive Strength of PPFRC under Three
Freeze–Thaw Conditions

Table 11 shows that the addition of PPF to PC can significantly enhance its matrix
strength. At a fibre dosage of 0.6 kg/m3, the effect on concrete strength is not significant.
However, at a dosage of 1.2 kg/m3, the strength of concrete is optimised, resulting in a
16.14% increase in strength and a compressive strength increase of 7.15 MPa. At a dosage
of 1.5 kg/m3, the rate of increase in compressive strength is lower, but the baseline strength
is still higher than that of the compressive strength of the PC and PPFRC0.6 group. At a
dosage of 1.5 kg/m3, the rate of increase in compressive strength of the concrete decreased.
However, the baseline strength remained higher than that of the PC and PPFRC0.6 groups.
It can be concluded that the average compressive strength of plain concrete can be increased
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to a certain extent by adding an appropriate amount of PPF. However, excessive amounts
will lead to a decrease in concrete strength.

Table 11. Effect of PP dosing on initial concrete strength.

Number Doping
Level/(kg/m3)

Average Compressive
Strength/(MPa) Strength Increase/%

PC 0 44.37 0
PPFRC0.6 0.6 46.43 4.64
PPFRC0.9 0.9 48.26 8.77
PPFRC1.2 1.2 51.52 16.14
PPFRC1.5 1.5 47.71 7.53

The Table 12 and Figure 6 show that the compressive strengths of the four PPFRC
groups in clear water freezing and thawing media increased at different rates compared to
the PC group. Additionally, the compressive strengths showed a slower rate of decrease
initially, followed by a faster rate of decrease as the number of freezing and thawing times
accumulated. Prior to undergoing 75 cycles of freezing and thawing, the PPFRC1.2 group
exhibited the slowest decrease in compressive strength. Subsequently, the compressive
strength of each group decreased at an accelerated rate. The PC group displayed the largest
decrease, while the PPFRC1.2 group exhibited the smallest decrease. The PPFRC1.5 group
demonstrated lower strength compared to the PPFRC0.9 group. The decreasing trends
were similar across all groups. In the medium of freshwater freezing and thawing, the
compressive strengths of the concrete groups, under the same number of freezing and
thawing cycles, follow this order: PPFRC1.2 > PPFRC0.9 > PPFRC1.5 > PPFRC0.6 > PC.

Table 12. PPFRC compressive strength under clear water freeze–thaw conditions (MPa).

Number PC PPFRC0.6 PPFRC0.9 PPFRC1.2 PPFRC1.5

0 44.35 46.44 48.7 51.83 47.69
25 43.61 45.82 48.53 51.75 47.32
50 42.54 45.05 47.98 51.32 46.66
75 40.71 43.67 47.03 50.54 45.55

100 37.92 40.61 44.87 48.61 43.46
125 34.18 37.16 41.97 45.29 41.23
150 30.66 33.85 37.72 40.67 36.51
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The Table 13 and Figure 7 show that, in the freezing and thawing medium containing
3% NaCl, each group exhibited a more pronounced decreasing trend in the early stage.
Before undergoing 50 cycles of freezing and thawing, the PC group and PPFRC0.6 group
exhibited a faster decrease in compressive strength. PPFRC0.9, PPFRC1.2, and PPFRC1.5
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exhibited a slower decrease, with a similar decreasing trend. After 50 cycles of freezing
and thawing, the compressive strength of each group gradually decreased at a faster
rate. The PC group exhibited the largest decrease, followed by PPFRC0. The decreasing
rate of PC was the smallest, while that of PPFRC1.2 was the largest. At 150 cycles of
freezing and thawing, the compressive strength of PC, PPFRC0.6, PPFRC0.9, PPFRC1.2,
and PPFRC1.5 decreased to 48.91%, 58.13%, 65.56%, 66.44%, and 62.12% of their initial
strength, respectively. The salt-freezing and thawing damages in the specimens of PC
and PPFRC0.6 groups were severe, with obvious aggregate bare. The salt freeze–thaw
damage was severe in the PC and PPFRC0.6 groups, resulting in significant aggregate
exposure and slagging. In contrast, the damage was less severe in the remaining three
groups. The compressive strengths of the concrete groups with the same number of
freezing and thawing times in the 3% NaCl freezing and thawing medium were as follows:
PPFRC1.2 > PPFRC0.9 > PPFRC1.5 > PPFRC0.6 > PC

Table 13. PPFRC compressive strength under 3% NaCl freeze–thaw conditions (MPa).

Number PC PPFRC0.6 PPFRC0.9 PPFRC1.2 PPFRC1.5

0 44.31 46.43 47.98 51.13 47.6
25 43.37 45.64 47.39 50.59 46.93
50 40.53 43.02 45.88 49.33 45.19
75 35.69 38.81 42.18 45.95 41.31

100 30.15 33.67 37.86 41.34 36.41
125 25.51 30.22 34.49 37.96 32.55
150 21.67 26.99 31.39 33.91 29.57
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The Table 14 and Figure 8 show that, In the freeze–thaw medium of 5% Na2SO4, the
groups exhibited a slow decrease in their phase compressive strength in the early stage.
However, with an increasing number of freeze–thaw cycles, the decrease rate showed a
slow-to-rapid situation. After 150 cycles of freezing and thawing, the compressive strengths
of PC, PPFRC0.6, PPFRC0.9, PPFRC1.2, and PPFRC1.5 were reduced to 63.33%, 70.06%,
73.66%, 74.92%, and 70.96% of their initial strengths, respectively. The order of magnitude
of compressive strength exhibited by concrete specimens mixed with different contents of
polypropylene fibres in 5% sodium sulphate freezing and thawing medium at the same
number of freeze–thaw cycles is as follows:

PPFRC1.2 > PPFRC0.9 > PPFRC1.5 > PPFRC0.6 > PC.
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Table 14. PPFRC compressive strength under 5% Na2SO4 freeze–thaw conditions (MPa).

Number PC PPFRC0.6 PPFRC0.9 PPFRC1.2 PPFRC1.5

0 44.45 46.43 48.1 51.6 47.83
25 43.62 46.03 47.81 51.12 47.35
50 42.51 45.15 47.08 50.18 46.65
75 39.48 42.02 45.48 48.74 44.49

100 35.21 39.06 42.41 45.66 41.47
125 31.36 35.75 39.16 42.46 38.35
150 28.15 32.53 35.43 38.66 33.94
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Some studies have shown that when fibre is added to concrete, fibre can easily, quickly
and evenly disperse in concrete to produce a restraining effect on concrete. At the same
time, fibre itself has a certain strength, which can disperse the stress of part of concrete,
prevent the occurrence and development of primary cracks in concrete, and improve the
crack resistance of concrete to improve its mechanical properties and freeze–thaw resistance,
thus extending the service life of the concrete.

In this test, the mechanical properties and frost resistance of polypropylene fibre
concrete with a fibre yield of 1.2 kg/m3 are the best. The possible reason is that when the
fibre content is less than 1.2 kg/m3, the constraint of polypropylene fibre on the cement
slurry is small, resulting in the limited improvement of the compressive capacity of the
sample; while when the fibre content is greater than 1.2 kg/m3, too many fibres will
agglomerate, resulting in the increase of the weak interface of the concrete, and the damage
may first occur in the freeze–thaw process. When the damage effect of the weak interface is
greater than the reinforcement effect of the fibre, the mechanical properties of the concrete
are reduced. The content of 1.2 kg/m3 polypropylene fibre makes the fibre in the maximum
constraint of the cement slurry at the same time as possible not to agglomerate, thus
enhancing the mechanical properties of concrete and frost resistance.

3. PPFRC Strength Prediction Model
3.1. Predictive Modelling Fundamentals

(1) Principle of the BPNN model

A BPNN is a neural network structure that uses the backpropagation algorithm. When
the input data reaches the output layer, the network calculates the root mean square error
between the predicted value and the input value. If this error is greater than the set value,
it is transmitted in the reverse direction. During this process, the weighted value and
threshold are gradually adjusted until the error reaches the design value, at which point
the network stops running. The test’s BPNN model utilises a network structure with a
single hidden layer. It takes five input values: fibre volume doping, volume fraction of
three types of freeze–thaw medium doping, and the number of freeze–thaw times. The
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output value is the compressive strength. The number of neurons in the hidden layer is
determined by the Formula (1) to establish the range.

Nh =
NS

(a ∗ (Ni + No))
(1)

where: Nh is the number of neurons; Ns is the number of training samples; Ni and No are the
number of input and output layers, respectively; ‘a’ is a self-taken arbitrary value ranging
from 2 to 10; the number of neurons in the hidden layer ranges from 1 to 9, and the number
of neurons is preferred through several trials and combined with the evaluation index, and
the preferred number of neurons is determined to be 8, therefore, the BPNN model is used
in the present study. The basic principle and composition of the BPNN model in this study
are shown in Figure 9.
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(2) Principle of BAS

The BAS algorithm is a recent proposal for optimizing multi-objective functions. It
has the advantages of small computational requirements, fast convergence, and global
optimality search. The formula for updating the spatial coordinates and position of tensors
is provided below.

xl = x + d0 ∗
→
b
2

f (xl) < f (xr) (2)

xr = x − d0 ∗
→
b
2

f (xl) > f (xr) (3)

xt+1 = xt − δt ∗
→
b ∗ sign( f (xrt)− f (xlt)) (4)

where: x is the coordinates of the centre of mass; xl is the coordinates of the left whisker;
xr is the coordinates of the right whisker; d0 is the difference between the distances of the
left and right whiskers; xt, xt+1 are the coordinates of the centre of mass in the t th and
t + 1 st iteration; 6t is the value of the step factor after t times of turnover; sign ( ) is the
sign function.

3.2. Establishment of BAS-BP Model and Evaluation Indicators

The stand-alone backpropagation neural network (BPNN) is limited by the initial set
values of the parameters and is prone to local optimization rather than global optimization.
To improve the global optimization capability of the BPNN, the Bat Algorithm (BAS) is
introduced. The weights and biases of the BPNN model are randomly initialized, and
then the weights and thresholds are introduced as the initial positions of the BAS. When
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the termination condition is satisfied, an optimal position is obtained for the BAS. The
initial weights and thresholds are reformatted to achieve the optimal position. The BPNN
model is then trained using the classical optimization algorithm, which has been debugged
beforehand. Finally, the BAS-BP prediction model is constructed.

A model was created to forecast the compressive strength of PPFRC under varying
numbers of freeze–thaw cycles. The model’s performance was quantitatively evaluated
using four statistical parameters: root mean square error (RMSE), the dispersion index (SI),
mean absolute percentage error (MAPE), and coefficient of determination (R2).

RMSE =

√√√√ 1
N

N

∑
t=1

(observedt − predictedt)
2 (5)

SI = RMSE/observedt (6)

MAPE =
N

∑
t=1

∣∣∣∣ observedt − predictedt

observedt

∣∣∣∣ ∗ 100%
N

(7)

R2 = 1 −


N
∑

t=1
(observedt − predictedt)

2

N
∑

t=1
predicted2

t

 (8)

The model’s performance can be classified into four levels based on the SI value,
where N is the number of samples, observed is the actual value, and predicted is the predicted
value. These levels are excellent (SI < 0.1), good (0.1 < SI < 0.2), fair (0.2 < SI < 0.3), and
poor (SI > 0.3). Models with high performance have RMSE, SI, and MAPE values close to 0,
and an R2 value close to 1.

In order to provide a comprehensive assessment of the predictive performance of the
proposed model, a composite performance metric is used as shown in the following equation:

precision =

(
ntr

nall

RMSEtr + SItr + MAPEtr

R2
tr

)
+

(
ntst

nall

RMSEtst + SItst + MAPEtst

R2
tst

)
(9)

where the subscripts tr, tst, and all represent model training, testing and all data, respectively.
Based on this, all models can be ranked from worst to best according to the precision

value. Obviously, the model with better overall performance should have the lowest
precision value. Meanwhile, in order to verify whether the BAS-BP prediction model is
better than other intelligent algorithm models used for predicting concrete strength, the
Genetic Algorithm (GA) and Particle Swarm Algorithm (PSO) are added to optimise the
prediction model of the BPNN, and, finally, the prediction accuracy is compared with the
BAS-BP model.

4. Evaluation of Prediction Model Accuracy

Table 15 displays the performance metrics of the four developed models. As all R2

values are greater than 0.900, the models demonstrate strong agreement with the actual
results. The table shows that the BPNN prediction models improved by the BAS and
PSO algorithms had a better fit, while the GA-BP model showed little improvement. The
BAS-BP model had the fastest convergence rate, leading to the conclusion that it is the most
effective overall. This suggests that the model can be applied to predict the strength of the
PPFRC under salt freezing. Figure 10 displays the prediction results of the BAS-BP test set
and its adaptation curve, respectively. The three optimised BPNN models exhibit superior
performance compared to the conventional BPNN model. This suggests that enhancing the
initial weights and biases in the intelligent algorithm can enhance the performance of the
BPNN models. The SI values of all models are below 0.1, with BAS-BP having the lowest
SI value. All three improved BPNN models demonstrate superior performance compared
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to the independent BPNN model. This further confirms the effectiveness of the swarm
intelligence algorithm in enhancing the prediction accuracy of the BPNN model.

Table 15. Comparison of performance indicators of all prediction models.

Performance Index Dataset BPNN BAS-BP GA-BP PSO-BP

RMSE
Training 1.3074 0.8778 1.0029 0.9954
Testing 2.0202 1.2091 1.8707 1.6799

All 1.5596 0.9906 1.3288 1.2445

SI
Training 0.0310 0.0212 0.0241 0.0246
Testing 0.0489 0.0287 0.0440 0.0395

All 0.0372 0.0236 0.0317 0.0297

MAPE
Training 0.0234 0.0153 0.0188 0.0167
Testing 0.0411 0.0271 0.0375 0.0346

All 0.0288 0.0189 0.0245 0.0222

R2
Training 0.9601 0.9812 0.9798 0.9749
Testing 0.9204 0.9741 0.9356 0.9571

All 0.9460 0.9782 0.9645 0.9676

CPU-time/s 2 28 83 45
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In order to further confirm the performance of the proposed BAS-BP models, Figure 11
shows the fitting relationships between the experimental and predicted results of all models.
According to the fitting results and the distribution of confidence intervals, the BAS-BP
model has smaller residual variations and the confidence intervals tend to be more similar to
the fitted line than the other models, which indicates that the BAS algorithm can effectively
improve the prediction accuracy, and the prediction performance of the selected models
can be ranked as BAS-BP > PSO-BP > GA-BP > BPNN.
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Figure 12 and Table 16 show the precision values for the four developed models.
Among all the models, the standalone BPNN model has the worst overall performance and
the largest precision value, while the BAS-BP model shows the best overall performance,
with the precision values of BAS-BP, GA-BP, and PSO-BP being 47.12%, 6.4%, and 23.01%
lower than those of the standalone BPNN model, which is consistent with the conclusions
of the SI-based analyses. This is consistent with the conclusion of the SI-based analysis.
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Table 16. Precision value of the development model.

Models BPNN BAS-BP GA-BP PSO-BP

Precision 1.7863 1.0665 1.4371 1.3419

In conclusion, this study demonstrates that the implementation of intelligent algo-
rithms to optimize the parameters of the artificial neural network model can enhance its
generalization ability in predicting the mechanical properties of concrete. This approach
effectively addresses the issues of complexity, non-linearity, and modelling difficulties en-
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countered in the freezing process of concrete. Furthermore, it provides relatively accurate
predictions at a lower cost than traditional experimental methods.

5. Conclusions

1. When the freezing and thawing medium and the number of cycles are the same, all
four groups of PFRC perform better than the PC control group in all four evaluation
indices. This suggests that polypropylene fibre can improve the mechanical properties
and freezing resistance of the concrete matrix, delay the process of freezing and
thawing damage of the matrix, and increase the life of the matrix, but can not prevent
the final failure of the matrix. The conclusions obtained from the summary reasoning
of the results of this test are similar to those described in the literature cited in
the paper, the appropriate amount of polypropylene fibres can help to enhance the
mechanical properties and frost resistance of the concrete specimens, too little fibre
content has limited enhancement of the mechanical properties of the specimens, and
too much fibre content also reduces the mechanical properties of the specimens. Based
on the evaluation indexes of the four groups of PPF-doped specimens, it can be
concluded that the PPFRC1.2 group exhibited the best performance. The order of
improvement in the macro-physical properties of concrete due to fibre doping is as
follows: PPF1.2 > PPF0.9 > PPF1.5 > PPF0.6 > PC.

2. As the number of freezing and thawing cycles increases, the apparent degree of con-
crete damage and mass loss gradually increase, while the dynamic elastic modulus
and compressive strength gradually decrease. It is important to note that the amount
of fibre mixing remains constant throughout the process. The relative dynamic elastic
modulus and compressive strength of the specimens under different freeze–thaw en-
vironments decreased to the extent that 3% NaCl solution environment > 5% Na2SO4
solution environment > clear water environment. In the PPFRC1.2 group, following
50 cycles of freezing and thawing in water, a 3% NaCl solution and a 5% Na2SO4 solu-
tion, the dynamic modulus of elasticity was reduced to 99.55%, 96.65%, and 98.97%
of the original, respectively, while the compressive strength was reduced to 99.02%,
96.48%, and 97.25% of the original, respectively. Following 100 cycles of freezing and
thawing, the dynamic modulus of elasticity decreased to 90.24%, 78.56%, and 83.16%
of its original value, while the compressive strength decreased to 93.79%, 80.85%, and
88.49% of its original value, respectively.

3. Among the prediction models constructed using artificial neural networks, the RMSE
and R2 values of the BP and BAS-BP models are 1.6405 and 0.9235, and 0.9635 and
0.9733, respectively. The BAS-BP model demonstrates better overall performance in
terms of prediction result fitting and performance index comparison. The comparison
of overall performance between the BPNN model and the BAS-BP model is further
confirmed by the addition of two intelligent algorithms to improve performance. The
comparison of overall performance between the BPNN model improved by adding
two intelligent algorithms and the BAS-BP model further confirms the superiority and
stability of the proposed BAS-BP model. Simultaneously, the proposed BAS-BP model
achieves superior performance compared to the traditional BPNN model, enhancing
its generalisation ability and applicability. It effectively addresses the issue of the
traditional model being prone to local optima and lacking the capacity to handle
non-linearities.
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