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Abstract: The resistance loss and energy consumption when fluid flows through a tee in an HVAC
system are severe. To improve energy efficiency and reduce carbon emissions, a novel tee with a
U-shaped deflector is proposed, supported by experiments and numerical simulations. The resistance
reduction mechanism of the U-shaped deflector was analyzed according to the viscous dissipation
principle and the field synergy principle. The resistance reduction of the novel tee with different
deflector angles and a traditional tee were compared. The results show that the resistance loss of
the tee was mainly due to the flow separation and deformation of the fluid in the main branch. The
relationship between the local resistance coefficient and the diameter ratio of the main-branch pipe
was exponential, and the relationship between the local resistance coefficient and the diameter ratio of
the main straight pipe was linear. The total resistance loss reduction rate of the tee with the addition
of a 26◦ deflector was the highest, reaching 72.4%, the volume-weighted average synergy angle
increased by 1◦, and the viscous dissipation decreased by 21.7%. This study provides a reference for
the resistance reduction design of complex local components such as tees in HVAC systems.

Keywords: resistance loss; T-tee; field synergy; viscous dissipation; deflector; resistance reduction

1. Introduction

With the acceleration of global warming, people are increasingly concerned about car-
bon emissions. However, there is a relationship between energy consumption and carbon
emissions. Reducing energy consumption and improving energy efficiency are beneficial
for reducing carbon emissions [1,2]. Energy consumption in buildings accounts for 30% of
global energy consumption. Operational energy consumption is an important component
of energy consumption in buildings [3,4]. With the improvement of people’s living stan-
dards and indoor environment requirements, operational energy consumption in buildings’
heating, air-conditioning, ventilation (HVAC), and other systems has increased [5–7]. Ac-
cording to statistics, heating, air-conditioning, and ventilation (HVAC) systems account
for 40–60% of a building’s total energy consumption [8,9]. Local components are a nec-
essary part of the conveying system; the resistance loss of local components is the main
part of the conveying energy consumption [10]. The tee is a common local component in
pipeline transportation; the flow of water flows through the irregular boundary surface of
the component, and the flow pattern changes sharply, resulting in vortex. The collision,
friction, and rupture of the fluid vortex consume mechanical energy [11,12]. Therefore, it is
of great significance to analyze the resistance characteristics and study the resistance reduc-
tion of the tee to improve the energy efficiency and promote the energy-saving operation
of buildings.

Scholars both domestically and internationally have conducted extensive research
on the local resistance coefficient of tees, flow field characteristics, and methods for op-
timizing resistance reduction through experiments and numerical simulations [13–15].
Gardel et al. [16] experimentally investigated the local resistance coefficients of merge tees,
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taking into account the effects of branch angle and curvature, and derived a semi-empirical
expression for a merge tee. Miller [17] experimentally studied split-flow and merge tee
pipelines with different shapes, starting with the geometry and flow rate of the tee. The
variations in local resistance coefficient under different area ratios and flow velocity ratios
were obtained. Liu et al. [18] investigated the influence of chamfer ratios and split ratios
on the local resistance coefficient of tees, and analyzed the influence of chamfer radius on
the local resistance of split-flow and merge tees. Han et al. [19] investigated the effects of
blind tee length, end structure, and flow velocity on the flow characteristics of blind tees
in laminar flow, through numerical simulations. The above research mainly focuses on
the effects of flow rates, split ratios, and angle on the local resistance coefficient and flow
characteristics of tees. However, the relationship between the local resistance coefficient
and the pipe diameter ratio is still unclear and requires further study.

Zhang et al. [20] used numerical simulation to explore the drag reduction method of
inserting deflectors in parallel pipelines and explored the drag reduction mechanism based
on viscous dissipation. Gao et al. [21] studied the influence of changing the wall radian
of the tee on the resistance loss of the tee from the perspective of viscous dissipation and
verified the drag reduction effect through experiments. Yin et al. [22] used experiments
and numerical simulations based on viscous dissipation and eddy current strength and
analyzed the resistance loss of the tee after changing the radius of the inner and outer
corners of the branch pipe. Jing et al. [23] optimized the wall curvature of a tee based on the
gradient descent method, proposed a transitional tee, and studied the resistance reduction
rate of the transitional tee under different flow and area ratios. Most of the previous studies
have discussed only one optimization method. Thus, the resistance reduction effect of a
combination of multiple optimization methods remains to be studied.

Guo et al. [24] studied the interaction between the velocity field and the temperature
gradient field in the flow field. They pointed out that heat transfer can be enhanced by
reducing the angle between the velocity field and the temperature gradient field and
proposed the field synergy principle. At present, the field synergy principle is not only
widely used to enhance heat transfer, but also has been rapidly developed and applied
in the field of flow [25–29]. Chen et al. [30] found that flow resistance was related to
the synergy degree of velocity and velocity gradient, and established the field synergy
equation for fluid flow, which provides theoretical guidance for the study of flow resistance
reduction. Subsequently, other researchers conducted further research on the basis of
this research method. Yin et al. [31] proposed the synergistic principle of compressible
flow field and found that reducing the synergistic performance of the velocity vector and
density logarithmic gradient in microchannels could reduce fluid resistance. Yin et al. [32]
analyzed the resistance reduction mechanism of the deflector elbow based on the field
synergy principle and verified that the synergy of the velocity and pressure gradient could
be used to evaluate the resistance characteristics of local components. At present, research
on resistance reduction through field synergy is mainly aimed at elbows, micro-channels,
and other components. However, research on complex local components such as tees is
relatively lacking.

This study analyzed the resistance characteristics of a tee through experiments and
numerical simulations, obtaining the relationship between the local resistance coefficient
and pipe diameter ratio, and a novel tee with a U-shaped deflector is proposed. The
resistance reduction mechanisms of different forms of U-shaped deflectors were analyzed
through viscous dissipation and field synergy, and the resistance reduction effects of a
novel tee with different deflector angles were compared. This study provides a tech-
nical path for the study of resistance reduction in complex components such as tees in
HVAC systems.
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2. Numerical Simulation and Experiment
2.1. Numerical Simulation
2.1.1. Establishment of the Geometric Model

The geometric model of the horizontal T-tee is shown in Figure 1. The main pipe
diameter D is 40 mm, and the straight pipe diameter D is 40 mm. In order to obtain the flow
resistance under different pipe diameter ratios, five working conditions with branch pipe
diameters d of 15 mm, 20 mm, 25 mm, 32 mm, and 40 mm were studied. The calculation
area selected upstream 20D, downstream 20D, and branch 20d tube lengths that had almost
no effect on the flow in the tee. The calculated cross-sections of pressure and velocity are
shown in 0-0, 1-1, and 2-2 in Figure 1.
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Figure 1. Tee geometric model diagram.

2.1.2. Turbulent Flow Model

The realizable k-ε model can effectively consider the effect of secondary flow caused
by fluid deformation and well reflects the flow characteristics of fluid separation and
reflux [33]. Therefore, the realizable k-ε turbulence model was selected in this study.

The flow control equation is as follows:
The continuous equation is as follows:

∂uj

∂xj
= 0 (1)

The momentum equation is as follows:
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The turbulent kinetic energy (k) is as follows:
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The turbulence dissipation rate (ε) is as follows:
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The turbulent viscosity (µt) is as follows:

µt = ρCµ
k2

ε
(5)

where ui and uj are the velocities in the x and y directions, k is the turbulent kinetic energy,
ε is the turbulent dissipation rate, C1ε and C2ε are empirical constants, which are 1.44 and
1.92, respectively, and σk and σε are the Prandtl numbers corresponding to the turbulent
kinetic energy and turbulent dissipation rate, which are 1.0 and 1.3, respectively [20].

2.1.3. Meshing and Boundary Conditions

The irregular shape of the tee made the internal flow pattern uneven. The complex
flow was difficult to calculate in a single sub-region, so the computational region was
divided into four regions as shown in Figure 2. The inlet of the main pipe was the velocity
inlet, the inlet velocity was 0.5 m/s, and the straight pipe and the branch pipe were set to
free outflow. The SIMPLE algorithm was used to solve the pressure and velocity coupling.
The discrete formats of momentum, turbulent kinetic energy, and dissipation rate adopted
the second-order upwind format, and the wall function method was used to calculate the
flow in the side wall area. The normalized residual value of each parameter was 10−5.
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2.2. Experimental Research

The experimental tee device is shown in Figure 3. The diameter of the experimental
tube was 40 mm. The pump was started. After the constant pressure water tank (5)
overflowed, the flow regulation valve (7) was closed, the residual gas in the experimental
tee pipe was exhausted, and we waited for the liquid level of the pressure measuring pipe
1⃝~ 9⃝ to be flush. The flow rate was adjusted by opening the regulation valve (7) and

measured using the weighing method. Once the liquid level in the pressure measuring
tube had stabilized, the head heights of pressure measuring tubes 1⃝~ 9⃝ were measured
and recorded using a pressure gauge (12).
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2.3. Field Synergy Principle

Based on the synergy theory of the velocity field and temperature field, He [34]
analyzed the synergistic relationship between the velocity field and pressure gradient field
and found that the synergy of the velocity field and pressure gradient field is beneficial for
evaluating the resistance loss.

For incompressible fluids without external force, the momentum equation of the fluid
flow process is as follows:

ρ
→
U·∇

→
U = −∇P + µ∇2

→
U (6)

Multiplying both sides of Equation (6) by the velocity vector
→
U:

−
→
U·∇P =

(
ρ
→
U·∇

→
U − µ∇2

→
U
)
·
→
U (7)

the dot product equation of Equation (7) is as follows:

−|U||∇P| cos θ =
∣∣∣ρU·∇U − µ∇2U

∣∣∣|U| cos θ (8)

Integrating the entire flow field yields the following:
y

Ω − |U||∇P| cos θdV =
y

Ω

∣∣∣µ∇2U − ρU·∇U
∣∣∣|U| cos θdV (9)

According to (7) and (8), the synergistic relationship between the velocity field and
the pressure gradient field is as follows:

−
→
U·(∇P) = −|U||∇P| cos θ (10)

θ′ = arccos
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The volume-weighted average synergy angle θ is as follows:

θ =

t
Ω θ′dV

t
Ω dV

(12)

The cross-section average synergy angle θ′ is as follows:

θ′ =

s
Γ θ′dS
s

Γ dS
(13)

2.4. Determination of the Local Resistance Coefficient

As shown in Figure 1, the pressures of sections 0-0, 1-1, and 2-2 were P0, P1, and
P2, respectively; the pressure difference between the 0-0 and 1-1 sections of the main-
branch pipe was ∆P01, and the local resistance coefficient was ζ01. The pressure difference
between the 0-0 and 2-2 sections of the main straight pipe was ∆P02, and the local resistance
coefficient was ζ02. u0, u1, and u2 were the velocities of the main pipe, branch pipe, and
straight pipe, respectively.

According to the energy equation, the calculation formulas of the local resistance
coefficient of the tee are [22] as follows:

P0 +
1
2

ρu0
2 = P1 +

1
2

ρu1
2 + λ0

l0
D

ρ
u0

2

2
+ λ1

l1
d

ρ
u1

2

2
+ ∆P01 (14)

P0 +
1
2

ρu0
2 = P2 +

1
2

ρu2
2 + λ0

l0
D

ρ
u0

2

2
+ λ2

l2
D

ρ
u2

2

2
+ ∆P02 (15)

where ρ is 997 kg/m3. The resistance coefficient λ of different pipe sections was deter-
mined as follows: λ = 0.3164/Re0.25 (4 × 103 < Re < 1 × 105), λ = 0.0032 + 0.221Re−0.237

(1 × 105 < Re < 3 × 106).
Therefore, the local resistance coefficients of the two flow directions are as follows:

ζ01 =
∆P01
1
2 ρu02

(16)

ζ02 =
∆P02
1
2 ρu02

(17)

2.5. Grid Independence Assessment and Numerical Simulation Verification

The grid division of the calculation area was carried out from sparse to dense, and
the flow field in the tee under each grid section was calculated. The grid independence
assessment was carried out based on the local resistance coefficient ζ01. The calculation
results are shown in Figure 4. When the number of grids was greater than 1.54 million, ζ01
changed little, and the change rate was only 0.6%. Therefore, it is considered that the grid
met the requirements of grid independence, and the number of effective computational
grids was 1.54 million.

For comparison of the numerical simulation and experimental research, taking the
experiment detailed in Figure 3 as the calculation conditions, the above numerical simu-
lation settings were used for calculation, and the flow structure in the tee was obtained.
Nine measuring points were selected from the flow field results, as shown in Figure 5. The
main pipe section included measuring points 1, 2, and 9; the branch pipe section included
measuring points 3, 4, 5, and 6; and the straight pipe section included measuring points 7
and 8. The average head height of the pressure measuring tube at each measuring point
was measured five times. Comparing the numerical simulation results of the main branch
pipe and the main straight pipe with the experimental test values, the errors were found to
be less than 2%. The feasibility and accuracy of the numerical simulation were confirmed
by comparing the pressure values.
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Figure 5 shows that the static pressure drop at the main branch measuring points 2–3
in the tee branch was significantly greater than that at the main straight pipe measuring
points 2–7. This indicates that the resistance loss at the branch was primarily concentrated
in the main branch section, while the resistance loss of the main straight pipe was very
small, which was also reflected in the later local resistance coefficient.

3. Results and Discussion
3.1. Resistance Characteristics of the Split-Flow Tee
3.1.1. Local Resistance Coefficient of Split-Flow Tee

Numerical simulation of the water flow in the tee was carried out. The local resistance
coefficient ζ varied with the diameter ratio d/D and the split ratio q (the ratio of flow into
the branch pipe to the main pipe flow), as shown in Figure 6.
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pipe; (b) the main straight pipe.

Under the research conditions, the local resistance coefficient ζ01 ranged from 1.4 to
23.1, while the maximum ζ02 was only 0.34. This indicates that the resistance loss of the tee
was primarily caused by flow separation and deformation of the fluid in the main branch.

For a specific split ratio, the local resistance coefficients ζ01 and ζ02 decrease as the
diameter ratio d/D increases. When the split ratio is small, ζ02 becomes negative due to
the average kinetic energy increase caused by the fluid entering the straight pipe section
being sufficient to overcome the friction between the fluid and the wall as well as the wall
shear force.

When using the design manual for pipeline hydraulic calculations, it is common to
use a recommended value for the local resistance coefficient of the tee. However, this study
found that the local resistance coefficient was related not only to the split ratio, but also to
the pipe diameter ratio. Therefore, the flow field of a tee under various pipe diameter ratios
was simulated and the regression equation for the local resistance coefficient of the tee and
the pipe diameter ratio was derived, as shown in Table 1. The local resistance coefficient ζ02
of the main straight pipe had a linear relationship with the diameter ratio d/D. The larger
the split ratio q, the larger was the slope. However, the local resistance coefficient ζ01 of the
main branch pipe did not show a simple linear relationship with the diameter ratio d/D,
and this was found to be a power exponential relationship. The larger the split ratio q, the
greater was the absolute value of the negative index, and the more severe the influence on
ζ01. This law is also consistent with the results shown in Figure 6a.

Table 1. Regression equation for the diameter ratio d/D and local resistance coefficient ζ.

q The Regression Equation of d/D and ζ R2

0.2 ζ01 = 0.7149 × (d/D)−1.08967

ζ02 = −0.0462 × (d/D)−0.0072
0.8919
0.9973

0.4 ζ01 = 0.4479 × (d/D)−2.54005

ζ02 = −0.0755 × (d/D) + 0.0634
0.9781
0.9826

0.5 ζ01 = 0.4196 × (d/D)−2.98756

ζ02 = −0.0741 × (d/D) + 0.1068
0.9888
0.9860

0.6 ζ01 = 0.4298 × (d/D)−3.28741

ζ02 = −0.0597 × (d/D) + 0.1579
0.9937
0.9979

0.8 ζ01 = 0.5179 × (d/D)−3.63463

ζ02 = −0.0580 × (d/D) + 0.3034
0.9972
0.9748

0.9 ζ01 = 0.5649 × (d/D)−3.77819

ζ02 = −0.0435 × (d/D) + 0.3585
0.9984
0.9798
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3.1.2. Velocity Distribution of the Split-Flow Tee

The local resistance coefficient values, above, show that the resistance loss at the
branch of the tee was mainly reflected in the main branch pipe section. In order to explore
the flow mechanism of energy dissipation, the fluid flow field in the tee with a split ratio of
q = 0.5 was numerically simulated, and the corresponding velocity field variation law was
obtained. The cross-section and its velocity vector distribution are shown in Figure 7.
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The fluid at 1.5D from the main pipe to the branch pipe still maintained the axisym-
metric flow at the inlet, and the velocity gradient at the center line of the pipe was 0. The
flow pattern changed from the 1D distance between the main pipe and the branch pipe,
and the flow in the main pipe began to transfer to the branch pipe. The insertion of the tee
branch pipe disturbed the original axisymmetric internal flow, and the shear layer near
the branch pipe side became thinner. The position of the velocity gradient of 0 shifted
from the center of the main pipe to the outer wall of the branch pipe and the inner wall
of the straight pipe. Although the velocity distribution of the straight pipe section was
offset with the passage of the flow, the degree of offset and the velocity gradient were
small. The most significant change occurred at the branch pipe. Due to the combined action
of inertial and viscous forces, the branch pipe flow was extremely uneven, and a large
velocity gradient was generated in the boundary layer near the outer wall. This gradient
gradually decreased from the outside to the inside, and even caused reverse vortex flow
near the inner wall surface. It can be seen that in order to reduce the local resistance, it was
necessary to optimize a larger velocity gradient.

3.2. Resistance Reduction Optimization of Split-Flow Tee

The research described above showed that the pressure loss of the tee came from the
change in the internal flow field. Therefore, this study aimed to optimize the tee structure
based on the synergistic relationship between the velocity field and the pressure gradient
field, and then the resistance reduction effect was analyzed. Previous studies [22] have
shown that the local resistance can be effectively reduced when the fillet radius of the tee
is the same as the pipe diameter. In this study, the fillet radii R1 and R2 of the tee were
both 20 mm. Additionally, deflectors of varying lengths were added to the outer wall of the
branch pipe. Taking the L = 40 mm deflector as an example, the effect of the deflector angle
θ on the local resistance of the tee (DN40 × 40 × 20) was explored, as shown in Figure 8.
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3.2.1. Total Resistance Loss Coefficient of Split-Flow Tee

In order to comprehensively evaluate the local resistance coefficients of the two flows,
Costa [35] proposed defining the total local resistance loss coefficient K based on the flow
weight Q, which can be expressed as follows:

K = ζ01 (Q1/Q0) + ζ02 (Q2/Q0) (18)

The reduction degree of the local resistance loss of the tee was evaluated via the
reduction rate of the total local resistance loss η:

η = (K0 − K)/K0 (19)

K and η were calculated for the tees at six different deflector angles (18◦, 20◦, 22◦, 24◦,
26◦, 28◦) and compared with the traditional tee, respectively. As shown in Figure 9, when
θ = 18◦, the total resistance loss of the optimized tee increased by 136% compared with the
traditional tee. With the increase of the angle of the guide plate, when θ = 26◦, the total
resistance loss of the optimized tee reached its minimum value of 0.53 and its maximum
value of 72.4%. The resistance reduction effect of θ = 26◦ was the best.
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3.2.2. Field Synergy Analysis

Based on the velocity field and pressure field results presented above, the volume-
weighted average synergy angle of the traditional tee was calculated to be 129.8◦. The
volume-weighted average synergy angles θ of the six deflector angles in this study were
127◦, 130◦, 130.1◦, 130.5◦, 130.8◦, and 128.3◦, respectively, as shown in Figure 10. When
θ = 18◦ and θ = 28◦, the volume-weighted average synergy angle was smaller than that of
the traditional tee. At this deflector angle, the deflector not only failed to guide the fluid to
flow more adherently but also increased the eddy viscosity dissipation and did not have a
resistance reduction effect. When θ = 26◦, the maximum volume-weighted average synergy
angle θ was 130.7◦, which was 1◦ higher than that of the traditional tee.
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The volume-weighted average synergy for the best deflector angle θ = 26◦ was selected,
and the synergistic effects of the deflector setting on the entire velocity field and pressure
field were further explored. Twelve representative cross-sections were selected from the
tee flow field, as shown in Figure 11. The cross-section average synergy angle θ′ of the
optimized tee was compared with that of the traditional tee, and the results are shown
in Figure 12. The average synergy angles of the L0 and L1 circular sections in the main
pipe section of the tee were greater than 131◦, and the difference between the traditional
and optimized tees was very small. This indicates that the deflector had little effect
on the upstream flow. The section of straight pipe near the branch was impacted by
the branch pipe. In both the optimized tee and the traditional tee, the synergy angle
decreased suddenly, and the optimized tee was additionally affected by the deflector. The
straight pipe flow experienced greater disturbance and the synergy angle was smaller. With
the development of the flow pattern, the influence of the branch pipe and the deflector
attenuated, the synergy angle increased, and L6 reached a maximum. In the branch pipe
section where the local resistance was mainly reflected, the synergy angle of the optimized
tee in the T1 section was smaller than that of the traditional tee. The synergy angle of
the optimized tee in the T2–T4 section was higher than that of the traditional tee, with
an average increase of 36◦. The maximum difference reached 54◦, which appeared in the
circular T3 section.
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Throughout the field, the optimized tee was compared with the traditional tee synergy
angle cloud map, as shown in Figure 13. The high-synergy-angle area at the center of the op-
timized tee main pipe increased, and the local synergy angle at the branch decreased slightly
due to the addition of deflectors. However, it can be seen that the high-synergy-angle area
downstream of the straight pipe increased significantly; the setting of the deflector caused
a significant improvement in the synergy of the branch pipe flow. The synergy angle of
the original maximum-velocity-gradient region in the branch pipe increased significantly,
and the synergy of the overall velocity field and pressure gradient field of the branch
pipe increased. Based on this analysis, the optimized tee’s high-synergy-angle region was
significantly greater than the traditional tee, and the pressure work efficiency improved.
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3.2.3. Viscous Dissipation Analysis

Through comparing the viscous dissipation distributions of the optimized tee and
traditional tee, the resistance reduction effect was studied. As shown in Figure 14, when
the fluid passes through the traditional tee, the viscous dissipation of the main pipe and
the straight pipe is very small, and only a large viscous dissipation occurs at the wall of
the pipe section. A large viscous dissipation was generated on the inner wall of the branch
pipe, Φ = 19.89 W. Compared with the traditional tee, the optimized tee did not have any
significantly high viscous dissipation regions, except for the pipe wall and the deflector.
The deflector is equivalent to the wall surface for the fluid, so the energy dissipation near
the deflector was relatively large, and the viscous dissipation inside the branch pipe was
reduced, Φ = 15.57 W. After adding the deflector with θ = 26◦, the viscous dissipation of
the tee decreased by 21.7%.
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4. Conclusions

In this work, the resistance characteristics and resistance reduction of the tee were
analyzed through experiments and numerical simulations, and a novel tee with a U-shaped
deflector was obtained. The resistance reduction effect of the U-shaped deflector angles was
analyzed in detail based on the field synergy principle and the viscous dissipation principle.
The resistance loss of novel and traditional tees was compared. The main conclusions are
as follows:

(1) The local resistance of the tee was mainly reflected in the flow separation and defor-
mation of the fluid from the main pipe to the branch pipe. The relationship between
the local resistance coefficient of the main branch pipe and the diameter ratio was
exponential, ζ01 = α1(d/D)β1, the local resistance coefficient of the main straight pipe
was linear with the diameter ratio, ζ02 = α2 × (d/D) + β2, and the selection of α and β
related to the split ratio.

(2) The insertion of the tee branch disturbed the original axisymmetric flow. A large
velocity gradient was generated in the boundary layer near the outer wall of the
branch, and a reverse vortex flow even appeared near the inner wall. The velocity
distribution offset and velocity gradient of the straight pipe section were relatively
small. The non-uniform distribution of the velocity gradient in the tee provided a
reference for the determination and optimization of the resistance reduction region.

(3) After optimizing the wall of the tee and adding the guide plate, the resistance loss
of the tee was effectively reduced, and the synergy of the fluid velocity and pressure
gradient improved. The resistance reduction effect of the deflector with θ = 26◦ was the
best, the total local resistance loss coefficient K was 0.53, and the total local resistance
loss reduction rate η was the largest, at 72.4%. The maximum volume-weighted
average synergy angle was 130.7◦, which was 1◦ higher than that of the traditional
tee. The viscous dissipation Φ was 15.57 W, which was 21.7% lower than that of the
traditional tee.

(4) Further research is needed to investigate the impact of fluid types (such as petroleum
and carbon dioxide gas) on the resistance of novel tee valves.
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