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Abstract: Ultra-high-performance concrete (UHPC) is a recently developed material which has at-
tracted considerable attention in the field of civil engineering because of its outstanding characteristics.
One of the key factors in concrete design is the compressive strength (CS) of UHPC. As one of the most
potent tools in artificial intelligence (AI), machine learning (ML) can accurately predict concrete’s
mechanical properties. Hyperparameter tuning is crucial in ensuring the prediction model’s reliability.
However, it is a complex work. The purpose of this study is to optimize the CS prediction method
for UHPC. Three ML methods, random forest (RF), support vector machine (SVM), and k-nearest
neighbor (KNN), are selected to predict the CS of UHPC. Among them, the RF model demonstrates
superior predictive accuracy, with the testing dataset R2 of 0.8506. In addition, three meta-heuristic
optimization algorithms, particle swarm optimization (PSO), beetle antenna search (BAS), and snake
optimization (SO), are utilized to optimize the prediction model hyperparameters. The R2 values for
the testing dataset of SO-RF, PSO-RF, and BAS-RF are 0.9147, 0.8529, and 0.8607, respectively. The
results indicate that SO-RF exhibits the highest predictive performance. Furthermore, the importance
of input parameters is evaluated, and the findings prove the feasibility of the SO-RF model. This
research enriches the prediction method of the CS of UHPC.

Keywords: ultra-high-performance concrete; compressive strength; machine learning; hyperparameter
tuning; meta-heuristic optimization

1. Introduction

Ultra-high-performance concrete (UHPC) is an innovative engineering material which
arises with the requirement of higher bearing capacities and longer service lives for struc-
tures. UHPC is characterized by ultra-high CS, high toughness, and ultra-high durabil-
ity, with the CS typically exceeding 120 MPa [1]. The excellent performance of UHPC
is achieved by optimizing particle size distribution, an ultra-low water-to-binder ratio,
and adding superplasticizers and fibers [2]. Using supplementary cementitious materi-
als (SCMs) like fly ash, ground granulated blast furnace slag, silica fume, and limestone
powder, decreases cement usage and enhances both the economic and environmental
characteristics of UHPC [3]. However, various mix parameters may require hundreds of
trials to achieve an optimized UHPC mix proportion. It is a time-consuming and labor-
intensive task. In recent years, the effective collection and storage of large amounts of
data has led to the rapid development of artificial intelligence (AI) technology. Using AI
technology to optimize the mix proportion of UHPC can help free researchers from heavy
trial-and-error work.
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Machine learning (ML) is an essential branch of AI technology, and it can learn from a
large number of existing data samples, discover rules of complexity influenced by various
factors, and quantify the impact of different factors on predicting future developments [4–6].
In recent years, researchers have gradually applied artificial neural network (ANN), sup-
port vector machine (SVM), random forest (RF), decision tree, multiple regression, k-nearest
neighbor (KNN), and other ML methods in civil engineering for structural optimization
design, structural health monitoring, material performance prediction, and mix proportion
optimization [4,5,7], specifically in predicting and optimizing concrete’s mechanical proper-
ties. Yeh [8,9] developed an ANN model to predict high-strength concrete’s CS and applied
the prediction model to predict fly ash concrete’s CS and working performance. Gupta [10]
also predicted the CS of high-strength concrete using the SVM algorithm, achieving a high
prediction accuracy of 0.996. Topcu [11,12] investigated the potential of using ANN and
fuzzy analysis to predict the CS of recycled aggregate concrete. The findings revealed
that both methods provide high prediction accuracy, with R2 values of 0.9972 and 0.9986
for ANN and fuzzy analysis, respectively. In addition, they indicate that ML approaches
offer notable benefits for predicting material properties and designing novel materials. In
contrast, it can reduce the number of tests, save time and resources, improve efficiency, and
be beneficial for mining data potential research values.

UHPC is usually mixed with various SCMs, the components are complex, and tradi-
tional concrete CS prediction methods, e.g., the maturity degree technique, are not suitable
for CS prediction of UHPC due to low prediction accuracy. Numerous ML models have
been created to predict the CS of UHPC. Abellán-García [13] developed a four-layer per-
ceptron approach to predict the 28-day CS of UHPC using different combinations of SCMs.
Kumar et al. [14] applied six distinct ML algorithms to predict the CS of UHPC, and the
results showed that the extra tree regressor model was the most accurate one. In addition,
ML methods are also used to predict other performances of UHPC. Soroush et al. [15]
proposed an auto-tune learning framework to forecast the CS of UHPC, flexural strength,
workability, and porosity. Cesario et al. [16] ensembled RF and KNN techniques to create
Performance Density Diagrams that can guide the mix proportion optimization of UHPC.
Current research indicates that ML methods can improve prediction accuracy by effectively
handling large input variables.

Tuning the hyperparameters of the prediction model is required for ML to predict
concrete performance, and reasonable optimization and adjustment of the hyperparameters
will improve the prediction accuracy. Commonly used parameter tuning methods in
optimization include traditional mathematical model methods, grid search, random search,
and other algorithms. Traditional mathematical model methods may struggle with high-
dimensional problems [17]. Grid search requires significant computing power and time
to optimize a wide range of targets [18], while random searches may get stuck in local
optima. In contrast, meta-heuristic optimization algorithms offer more efficient target
optimization capabilities [19] which is effective for hyperparameter tuning. Presently,
only a few scholars have investigated the hyperparameter optimization of ML algorithms
in the field of concrete material property prediction. Zhang et al. [20] utilized the BAS
algorithm to optimize the hyperparameters of the RF model for predicting the CS of light-
weight aggregate concrete. They found that the optimized model resulted in an improved
prediction accuracy, with a correlation coefficient R of 0.9735. Yu et al. [21] proposed an
improved cat swarm optimization algorithm to optimize the hyperparameters of the SVM
model for predicting the CS of high-strength concrete. Their study showed that after
optimization, the model’s determination coefficient R2 significantly increased to 0.9369.

Machine learning models have demonstrated the capability to predict the material
features of concrete. However, there exists a research gap in predicting the CS of UHPC and
optimizing the parameters of the prediction model. The following are the primary reasons:
(1) challenges in data collection due to insufficient research on UHPC material properties;
(2) the composition of UHPC materials is complex; (3) hyperparameter optimization is a
complex problem, and different algorithms require distinct optimization strategies.
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In order to enhance the accuracy of predicting the CS of UHPC and facilitate the
investigation of other mechanical properties, this study establishes a database by collecting
and constructing information from previous studies on UHPC mix proportion and its
corresponding CS. Collecting all kinds of UHPC mix proportions seems to be impossible,
this study mainly focuses on the steel fiber reinforced UHPC. The accurate UHPC CS
prediction model is optimized by selecting appropriate ML methods and hyperparameter
tuning algorithms based on the constructed database. Integrating parameter optimization
and regression prediction into one model can realize the automatic optimization of hy-
perparameters to ensure the reliability of the prediction model. Additionally, the model
analyzes and clarifies the significance of various parameters that affect the CS of UHPC.

2. Methodology

The workflow of the dataset construction, prediction model selection, hyperparameter
tuning, and importance analysis of input parameters in this study is schematically estab-
lished in Figure 1, involving mainly four steps: (1) preparing the mix proportion dataset
of UHPC; (2) choosing the optimal prediction model for the CS of UHPC among three
traditional ML models (RF, SVM, and KNN); (3) performing hyperparameter tuning using
the current most popular meta-heuristic algorithms (PSO, BAS, and SO); (4) comparing and
evaluating the impact of the input variables on the CS of UHPC. The Python platform is
applied to implement ML model prediction and optimization of meta-heuristic algorithms.
The following flowchart describes the complete process of predicting the CS of UHPC
based on ML optimized by meta-heuristic algorithm (Figure 1).
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2.1. Regression Prediction Algorithm
2.1.1. Random Forest (RF)

The RF method is an integrated algorithm based on the decision tree and bagging
algorithms [22]. The repeated random sampling method with placement is adopted to
obtain multiple sub-sample sets from the training set samples, and each sub-sample set
is utilized for training the decision tree model, respectively. The decision tree divides the
internal nodes by randomly selecting features and multiple sorted decision trees form an RF.
Finally, the output is derived by synthesizing each decision tree’s results. Compared to the
simple decision tree algorithm, introducing randomness reduces the risk of overfitting and
improves the ability of anti-noise. RF algorithm does not require high data normalization,
and it applies to discrete and continuous data so there is no need to normalize the dataset.
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Figure 2 depicts the schematic diagram of an RF, whereas Equation (1) describes the
results of RF regression prediction.

H(x) =
1
K ∑K

i=1 (hi(x, θK)) (1)

where H(x) is the regression prediction results of an RF; hi is the regression prediction
results of the single decision tree; θK is an independent distributed random variable deter-
mining the development direction of a decision tree; K represents the number of decision
trees in an RF model.
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2.1.2. Support Vector Machine (SVM)

The SVM is a supervised ML model derived from the statistical learning theory
proposed by Vapnik in 1964 [23] and is used for classification and regression prediction.
In support vector regression (SVR), the curve required for fitting data is referred to as a
hyperplane, and the data points closest to the hyperplane on both sides are known as the
support vectors. Figure 3 depicts the schematic diagram of SVR. The objective of the SVR is
to identify a hyperplane function with a sufficiently smooth curve so that the error between
all sample data and the function is less than the threshold error tolerance ε [24]. The set
loss function penalizes other data for a given tolerance value ε. The smooth hyperplane
function of this curve, fitted by SVR, can be expressed as:

f (x) =< w, x > +b (2)

where w is the weight vector; < w, x > is the point product of the weight vector and
support vector in real number; b is bias.

The minimum Euclidean norm of the weight vector w must be determined to obtain a
sufficiently smooth hyperplane. The objective function can be described as follows:

R =
1
2

∥∥∥w2
∥∥∥+ C∑N

i=1 (δi + δ′i) (3)

The constraints can be identified by:
yi − ⟨w, xi⟩ − b ≤ ε + δi
⟨w, xi⟩+ b − yi ≤ ε + δ′i
δi, δ′i ≥ 0 i = 1, 2, 3 . . . k

(4)

where ε is threshold error tolerance; δi or δ′i is relaxation factor, when all data and hyperplane
errors are less than ε, relaxation factors are set to 0. The C is the penalty coefficient.
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Using a nonlinear mapping function, the input data is converted into a feature space
with higher dimensions and then searches for hyperplane functions in this feature space
are performed. The Gaussian kernel function is the most commonly utilized nonlinear
mapping function. The above-constrained optimization problem is reformulated as a dual
problem using Lagrange multipliers, and the final predicted value can be determined by:

y = ∑N
i=1

(
λi + λ′

i
)
k(xi, x) + b (5)

k(xi, x) = exp

[
−∥xi − x∥2

2σ2

]
(6)

where λi or λ′
i is the Lagrange multiplier; σ is the smoothness parameter.

2.1.3. K-Nearest Neighbor (KNN)

KNN is a commonly used supervised ML algorithm, suitable for both classifying and
predicting regression. The KNN regression principle is simple, the learning effect is suitable
for large amounts of data, and the influence of data noise is minimal. The utilized principle
for regression prediction is that for a target sample point to be predicted, K samples closest
to the target sample point are selected, and the mean value is the predicted value of the
target sample point. Figure 4 shows the principles of the KNN.
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2.2. Parameter Tuning Algorithm
2.2.1. Particle Swarm Optimization (PSO)

PSO is a meta-heuristic algorithm, proposed by Eberhart and Kennedy in 1995, in-
spired by bird predation [25]. When birds hunt in a random area, their searching strategy
for food is to search the area around the birds closest to the food. Throughout the entire
search process, birds communicate their distance from the food to one another to inform
fellow birds of their position and estimate if they have discovered the best solution. Simul-
taneously, they also share details regarding the best solution with the entire bird group.
Finally, the entire bird group can gather around the food source. Hence, they have found
the optimal solution.

In each iteration, the particle is a bird in the flock. It is updated by tracking the
particle’s optimal fitness value in its path (Pbest) and the optimal fitness value of the group
(Gbest). The position and velocity of the particle swarm after iterative updating can be
expressed as:

Vk+1
i = ωVk

i + c1r1

(
Pk

i − Xk
i

)
+ c2r2

(
Pk

g − Xk
i

)
(7)

Xk+1
i = Xk

i + Vk+1
i (8)

where Vk+1
i and Vk

i are the velocity of particles after k + 1 and k iterations, respectively, Xk+1
i

and Xk
i are the position of particle individual after k + 1 and k iteration, respectively, Pk

i and
Pk

g is the extremum of individual particle and particle swarm after k-iteration, respectively,
ω is inertia weight, and c1 or c2 is learning coefficient, r1 or r2 is random number between
(0, 1).

2.2.2. Beetle Antenna Search (BAS)

The BAS algorithm was first proposed by Jiang et al. in 2017, and was applied to
optimization problems by Deepak [26]. Inspired by the feeding methods of beetles, such
as longicorns in nature, a single search algorithm was designed and implemented. In the
foraging process, the beetle relies on its two antennae to detect variations in food odor
concentration. After moving to the side with a strong odor, the beetle senses the food odor
strength again and finally finds food after multiple attempts.

The BAS algorithm parameters include step, eta, d0, and k. Among them, step and d0
are constants which reflect the characteristics of the longicorn beetle used for searching.
For beetles with large tentacle spacing, the initial step is longer, and the corresponding
step length for each iteration is also larger, so the search is fast but rough. The initial step
size of beetles with small tentacle spacing is small, the corresponding step size of each
iteration is small, and the search is slow but detailed. The eta represents the change in the
proportion of the longicorn beetle’s step size in each iteration. The step length expression
for t iterations is shown in Equation (9):

δt = step etat−1 (9)

where δt is step size for t iterations, step is initial step size; eta is step size change ratio; k is
the number of optimization target variables.

The iterative expression is shown in Equation (10):

xt = xt−1 + δt
→
b sign( f (xr)− f (xl)) (10)

where xt is the position of the beetle after t iteration;
→
b is the normalized random unit

vector; f (x) is the odor concentration felt by the left or right tentacles of the beetle
after t − 1 iterations.
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2.2.3. Snake Optimization (SO)

The snake optimization (SO) algorithm is the latest achievement of the meta-heuristic
optimization method, proposed by Hashim and Hussien in 2022 [27]. Although the SO
algorithm is relatively complex, it has performed well in practice. This algorithm mimics
the behavior and pattern of snakes in the natural world during predation and reproduction.
Food conditions and ambient temperature affect snakes’ feeding and mating reproduction.
Snakes focus on finding food and do not mate when food is scarce, regardless of the
temperature. When the food is sufficient, the snake will only eat if it cannot reach the
temperature suitable for mating. When the temperature is suitable for mating, snakes will
mate and lay eggs after searching for a mate. Therefore, according to this snake habit, the
SO algorithm model is divided into search and development. The development stage is
more complex and can be divided into three modes: feeding, fighting, and mating.

The process begins by initializing the population, defining the initial position, pop-
ulation temperature, and food quantity, and dividing the male and female population
according to a 1:1 ratio. The initial position, temperature, and food quantity are defined as:

Xi = Xmin + r × (Xmax + Xmin) (11)

Temp = exp(
−t
T
) (12)

Q = c1 × exp(
t − T

T
) (13)

where Xi is the initial position of the ith snake; Xmin and Xmax are the snake’s position
boundary, which is the upper and lower limits of the target to be optimized; r is a random
number between (0, 1); Temp and Q is the snake’s ambient temperature and food quantity,
respectively, t and T is the iterations and maximum iterations; c1 is constant and equals 0.5
by default.

In the search stage, snakes will search for food at any position when food is scarce. At
this time, the positions of male and female snakes can be expressed as follows:

Xm
i (t + 1) = Xm

rand(t)± c2 × exp(
− f m

rand
f m
i

)× (r × (Xmax − Xmin) + Xmin) (14)

X f
i (t + 1) = X f

rand(t)± c2 × exp(
− f f

rand

f f
i

)× (r × (Xmax − Xmin) + Xmin) (15)

where Xm
i and X f

i is the position of the ith male and female snakes, respectively, Xm
rand and

X f
rand is the random position of male and female snakes, respectively, c2 is constant equals

0.5 by default. The f m
rand and f f

rand is the fitness value of the ith male and female snakes,

respectively, where the position of Xm
rand and X f

rand; f m
i and f f

i is the fitness value of the ith
male and female snakes, respectively.

In the development stage, the snake eats or mates when there is enough food. Based
on the snake’s behavior under different ambient temperature conditions, it can be divided
into three modes: eating, combat, and mating.

The feeding mode is the snake’s behavior under the Temp > 0.6. The snake will move
toward the food position. At this time, the position of the snake group can be expressed as:

Xi,j(t + 1) = X f ood ± c3 × Temp × r ×
(

X f ood − Xi,j(t)
)

(16)

where Xi,j is the position of individual male or female snakes; X f ood is the best individual
position; c3 is constant equals 2 by default.
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When Temp < 0.6, snakes will be in combat or mating mode. The position of the
battle-mode snake is shown as follows:

Xm
i (t + 1) = Xm

i (t)± c3 × exp(
− f f

best
fi

)× r ×
(

X f
best − Xm

i (t)
)

(17)

X f
i (t + 1) = X f

i (t)± c3 × exp(
− f m

best
fi

)× r ×
(

Xm
best − X f

i (t)
)

(18)

where Xm
best and X f

best are the position of the best individual in the male and female snake

populations, respectively, f m
best and f f

best are the fitness value of the best individual in the
male and female snake populations, respectively, fi is the fitness value of the whole snake
group.

In the mating mode, male and female snakes will mate and lay eggs to create a new
snake, replacing the worst individual in the female or male group. The snake’s position in
this mode is:

Xm
i (t + 1) = Xm

i (t)± c3 × exp

(
− f f

i
f m
i

)
× r ×

(
Q × X f

i (t)− Xm
i (t)

)
(19)

X f
i (t + 1) = X f

i (t)± c3 × exp(
− f m

best
fi

)× r ×
(

Xm
best − X f

i (t)
)

(20)

2.3. Evaluation Method

Evaluating the model prediction accuracy is usually necessary for the regression
prediction model. The selected evaluation indicators of model prediction accuracy in this
study are coefficient of determination (R2) and root mean square error (RMSE). The value
of R2 ranges from 0 to 1, representing the accuracy of the prediction model. The closer the
R2 value to 1, the higher the model prediction accuracy. The calculation of R2 is shown in
Equation (21). RMSE represents the error between the predicted and actual model values,
ranging from 0 to +∞. The smaller the RMSE value, the higher the prediction accuracy of
the model. The RMSE calculation is shown in Equation (22):

R2 = 1 − ∑n
i (yi − y′i)

2

∑n
i (yi − y)2 (21)

RMSE =

√
1
n∑n

i=1 (y
′ − y)2 (22)

where yi and y′i is the actual value and predictive value of the ith data, respectively, y is the
average of actual values.

3. Data Collation and Data Construction

The accuracy of ML in predicting the CS of UHPC depends on the availability of
sufficient high-quality data. This is also a crucial requirement for successfully applying
all AI techniques. It is not easy to search and sort out the UHPC mix proportion and
corresponding CS data since UHPC material is new and has been applied recently. This
study established a dataset with 727 groups of UHPC mix proportions after integrating
the research on the UHPC mechanical properties [5,28–56]. All data are shown in the
Supplementary Materials. These data consist of 12 input characteristic parameters, includ-
ing cement (C), silica fume (SF), slag (S), fly ash (FA), limestone powder (LP), nano silica
(NS), water-to-binder ratio (w/b), quartz powder (QP), sand (Sa), steel fiber (Fi), superplas-
ticizer (SP), and age (Ag). Table 1 illustrates the data characteristics, and Figure 5 shows
the data distribution. The dataset is randomly divided into training and testing datasets,
with 70% for training and 30% for testing.
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Table 1. Statistical description of the dataset.

Variable C
(kg·m−3)

SF
(kg·m−3)

S
(kg·m−3)

FA
(kg·m−3)

LP
(kg·m−3)

NS
(kg·m−3) w/b

Maximum 1600 433.7 375 356 1058.2 47.5 0.27
Minimum 325.3 0 0 0 0 0 0.1
Average 777.34 150.04 16.30 29.91 39.91 3.65 0.19
Median 784 178 0 0 0 0 0.2

Standard deviation 198.76 100.65 62.85 70.63 135.55 8.13 0.03

Variable QP
(kg·m−3)

Sa
(kg·m−3)

Fi
(kg·m−3)

SP
(kg·m−3)

Ag
(d)

CS
(MPa)

Maximum 750 1700 430 88.09 180 230
Minimum 0 0 0 0 1 28.51
Average 28.11 1063.01 58.09 31.17 28.77 122.85
Median 0 1079 0 30.52 28 123.05

Standard deviation 79.11 273.99 74.93 13.82 30.95 33.89
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Machine learning models require input variables to be as independent as possible 
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with a high correlation and reduce data redundancy, which in turn improves the predic-
tion accuracy of the model. The correlation of the input parameters was analyzed using 
the correlation heat map to clarify whether the selected input variables were reasonable. 
The correlation matrix of the input parameters is obtained by calculating the Pearson cor-
relation coefficient R. When |R| exceeds 0.7, it indicates multicollinearity among the input 
parameters, posing a risk of redundant selection [57]. The correlation analysis of the da-
taset’s parameters is visually represented in Figure 6, showing no |R| value exceeding 
0.7, which demonstrates that there are no potential issues with the repeated selection of 
input variables. 

Figure 5. Histogram distributions of parameters in the dataset: (a) cement; (b) silica fume; (c) slag;
(d) fly ash; (e) limestone powder; (f) nano silica; (g) w/b; (h) quartz powder; (i) sand; (j) fiber;
(k) superplasticizer; (l) age; (m) compressive strength (CS).

Machine learning models require input variables to be as independent as possible
when making predictions, thus we use Pearson correlation analysis to eliminate variables
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with a high correlation and reduce data redundancy, which in turn improves the predic-
tion accuracy of the model. The correlation of the input parameters was analyzed using
the correlation heat map to clarify whether the selected input variables were reasonable.
The correlation matrix of the input parameters is obtained by calculating the Pearson
correlation coefficient R. When |R| exceeds 0.7, it indicates multicollinearity among the
input parameters, posing a risk of redundant selection [57]. The correlation analysis of the
dataset’s parameters is visually represented in Figure 6, showing no |R| value exceeding
0.7, which demonstrates that there are no potential issues with the repeated selection of
input variables.
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4. Results and Discussions
4.1. Comparison between the Primary Prediction Algorithm Results

The RF, SVR, and KNN algorithms were employed to predict the CS of UHPC. The
prediction results of the training and testing sets are displayed in Table 2 and Figure 7. It
illustrates that the RF model has the best prediction for the training set, with R2 and RMSE
values of 0.9813 and 0.0234, respectively. The prediction accuracy of the KNN ranks second,
with R2 and RMSE values of 0.8018 and 0.4518, respectively. The prediction accuracy of the
SVR is the lowest, with R2 and RMSE values of 0.7995 and 0.0765, respectively. It can be
observed from the testing set that the RF still performed the best in prediction accuracy,
with R2 and RMSE values of 0.8506 and 0.0632, respectively. The SVR ranked second
among others. The lowest prediction accuracy was achieved by the KNN, with R2 and
RMSE values of 0.6797 and 0.5485, respectively. Previous research [20,58,59] has proven
that random forest (RF), as an integrated algorithm, has good performance in regression
and classification tasks. The RF algorithm is suitable for predicting mechanical properties
based on the concrete mix proportion. The main reason for this is that the randomness
of the random forest in the selection process of each decision tree node is very suitable
for more discrete data such as the concrete mix proportion. Therefore, RF can show good
prediction accuracy and robustness.



Buildings 2024, 14, 1209 12 of 21

Table 2. Basic prediction algorithm results.

Training Data Testing Data

R2 RMSE R2 RMSE

RF 0.9813 0.0234 0.8506 0.0632
SVR 0.7995 0.0765 0.7252 0.0857
KNN 0.8018 0.4508 0.6797 0.5485
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Figure 7. Predicted results of RF, SVR, and KNN (a) training data; (b) testing data.

The deviation of the prediction performance between the training and the testing set
demonstrates that the three algorithms have different degrees of overfitting. Overfitting is
a common problem in ML, characterized by good prediction performance in the training
set while displaying poor prediction performance in the testing set. Hence, when the model
suffers from overfitting issues, the model’s generalization and performance become poor.
Therefore, the model’s overfitting degree can be observed from the difference between the
evaluation indices of the training and testing sets. Figure 8 shows the overfitting of the RF,
SVR, and KNN models. From Figure 8, it demonstrates that SVR has the lowest overfitting
degree and RF has the highest.
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Although the RF model’s evaluation result is the best, the overfitting degree is the
highest, indicating that the RF model should be selected for parameter optimization to
reduce its overfitting degree and improve its prediction accuracy.

4.2. Comparison of Results after Parameter Tuning

The PSO, BAS, and SO are selected to tune the parameters of the RF model to obtain
a better prediction performance. Set the value range of the two hyperparameters of the
random forest step size and decision tree, use the RMSE value of the prediction model as
the objective function, and iterate to find the hyperparameters that can make the prediction
model have higher accuracy.

Figure 9 depicts the optimization process of the RF model using the three optimization
algorithms. It reveals that the PSO achieves convergence first, followed by BAS. However,
the rapid convergence of both algorithms can obscure their ability to search for the optimal
value in local areas. Therefore, the final fitness results indicate that although SO converges
slowly, it can be improved in the later stages of operation to escape local optima. As a
result, the SO algorithm yields the best optimization effect.
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Figure 10 shows the evaluation results of the prediction performance for the combined
algorithms, SO-RF, PSO-RF, and BAS-RF. Table 3 lists the results of the RF model after
optimization. From Table 3 and Figure 10, we observe that the SO-RF model exhibits the
best prediction performance, the R2 and RMSE values of the training set are 0.9869 and
0.0204, respectively, and the R2 and RMSE values of the testing set are 0.9141 and 0.0579,
respectively. Figure 11 depicts the improvement in the prediction performance compared
to the original RF model. Figure 11 demonstrates that the prediction performance of the
training set and testing set increases to different degrees, indicating that the optimization
algorithm’s effect is different. In this regard, the R2 and RMSE of the testing set for the
SO-RF model are improved by 7.47% and 8.39%, respectively, which are the highest among
the three optimization models, indicating that the SO algorithm is the best to enhance the
RF model’s prediction performance. Figure 12 highlights the overfitting issues in the RF
model, optimized by three optimization algorithms. It exhibits that the SO-RF model has
the lowest degree of overfitting, indicating that the SO algorithm optimizes the RF model
and effectively avoids the overfitting problem.
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Table 3. Results of the RF model after optimization.

Training Data Testing Data

R2 RMSE R2 RMSE

SO-RF 0.9869 0.0204 0.9141 0.0579
PSO-RF 0.9815 0.0232 0.8529 0.0627
BAS-RF 0.9843 0.0225 0.8607 0.0602
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Figures 13 and 14 compare the predicted and tested CS of UHPC values in the training
and the testing sets, respectively. From Figures 13 and 14, it can be illustrated that the
predicted value aligns well with the tested value. Although there are random errors for
individual items, it would not affect the overall trend of superior prediction capacity of the
SO-RF model. In other words, the SO-RF model can be utilized to predict the CS of UHPC
with various mix proportions and ages, and can also be applied to investigate the impact of
the amount of each concrete component on the mechanical properties of UHPC.
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4.3. Importance Analysis and Partial Dependence Plot Analysis of Input Parameters

Clarifying the importance of input parameters is essential to neglecting factors with
little influence, reducing dimensions, and improving the model’s training speed. Simultane-
ously, screening out the input parameters with high importance is beneficial to improving
the model’s prediction performance and enhancing the model’s interpretability.

Figure 15 depicts the importance of the input variables derived from the trained
SO-RF model using SHapley Additive exPlanation (SHAP) analysis. From Figure 15, we
found that the most influential parameters on CS predictions were the age (Ag), steel fiber
(Fi), sand (Sa), cement (C), silica fume (SF), and water-to-binder ratio (w/b), respectively.
The influence of age on CS showed a significant positive correlation, meaning that with
the increase in age, the compressive strength of UHPC increases greatly, which may be
attributed to the progress of cement hydration. Then, followed by Fi and Sa. The addition
of steel fiber in UHPC could increase its CS by restricting the development of internal
cracks [60]. The sand content plays a crucial role in shaping the pore structure of cement
mortar [61]. A rise in sand content leads to a decrease in the overall porosity of cement
mortar, which results in improving the CS of UHPC. Additionally, the parameters C and
w/b also significantly influenced the CS of UHPC. This is primarily because the extent
of cement hydration impacts the ultimate CS of UHPC. Regarding silica fume, although
the content of SF is not high compared to cement, it still has a significant impact on the
CS of UHPC. This is mainly due to its high pozzolanic activity and fine filler effect [62].
Other input parameters such as slag (S) and limestone powder (LP) had minimal influence
on the CS.
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4.4. Partial Dependence Plot Analysis of the Important Input Parameters

Partial dependence plot analysis can provide a quantitative measure of the influence
of specific input parameters on output parameters [63]. In order to improve the robustness
of the interpretation results, the data used for the partial dependence plots analysis are 100
randomly selected data from the training set. In conjunction with the evaluation results of
the importance of input parameters obtained from Section 4.3, we selected the top six input
parameters for partial dependence analysis. The results of this analysis are presented in
Figure 16. Each thin blue line in Figure 16 is the individual conditional expectation (ICE)
curve of an input variable, while the thick blue line represents the average trend line of all
ICE curves.
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As illustrated in Figure 16a, the CS of UHPC shows a significant positive correlation
with age. From 0–14 days, notable increases in CS with age are observed, followed by a
steady increase until the age exceeds 75 days. Then, the CS tends to be stable. This agrees
well with the experimental results obtained by Xu et al. [64]. Figure 16b indicates that the
CS can be enhanced with the increase in steel fiber contents. A fiber content higher than
80 kg/m3 is recommended to achieve a more stable high strength. Figure 16c shows that
there is an optimized sand content of 700–850 kg/m3 for obtaining higher CS of UHPC.
When the density of UHPC remains relatively stable, a higher proportion of sand may
reduce the dosage of cementitious materials, which is detrimental to improving the CS of
UHPC. From Figure 16d, it can be observed that the impact of increasing cement content
on CS is more significant within the 0–850 kg/m3 range when compared to values above
850 kg/m3. The limited effect of higher cement content on CS may be attributed to the
incomplete hydration in the low w/b environment, resulting in the minimal enhancement
of the CS of UHPC. Additionally, Figure 16e demonstrates that an increase in silica fume
content up to 50 kg/m3 significantly affects the CS. However, when the silica fume content
exceeds 200 kg/m3, the effect on the CS diminishes. Figure 16f illustrates a negative
correlation between the w/b and the CS of UHPC. The lower the w/b, the higher the CS.
However, a w/b between 0.16 and 0.2 is recommended for preparing UHPC.
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Figure 16 shows the variation in CS, resulting from changes in the important com-
ponents of the mix proportion of UHPC. Thus, the preliminary design of the UHPC mix
proportion can be achieved by utilizing the findings from partial dependence plots (PDP).

5. Conclusions

This study proposes an optimized machine learning model, utilizing the meta-heuristic
optimization algorithm to predict the CS of UHPC. A model with a better prediction
performance is obtained. With the help of the existing UHPC mix proportion data, an
accurate CS prediction is achieved using 12 input parameters, and the input parameters’
importance is evaluated and analyzed. The following conclusions can be drawn:

1. The RF model was used to predict the CS of the UHPC, and the R2 of the testing set
was 0.85. However, there were some overfitting issues observed. The RF model has
the potential to improve the prediction performance.

2. It is necessary to tune the hyperparameters of the prediction model. The model’s
prediction performance can be improved to varying degrees by using different meta-
heuristic algorithms to optimize the prediction model’s hyperparameters. The SO
algorithm’s optimization improvement is the most obvious, in which the R2 and
RMSE were enhanced by 7.47% and 8.39%, respectively.

3. The SO algorithm realizes the RF model’s optimization, reduces the overfitting degree
of the RF model, and improves its prediction performance. The R2 of the training and
testing sets was 0.9869 and 0.9141, respectively, which shows that the SO-RF model
proposed in this paper has the best prediction performance and can achieve accurate
UHPC CS prediction.

4. Based on the parameters’ importance, obtained from the SO-RF model analysis, age
has the greatest impact on the CS of UHPC, followed by the amount of silica fume.
These observations are consistent with the existing research results.

5. Partial dependence plots analysis highlighted the influence of the parameters on the
predicted CS of UHPC and provided a reference for the mix proportion design of
UHPC.

This study may have limitations due to its small dataset size and insufficient consid-
eration of factors such as curing conditions and aggregate size range. In the future, it is
possible to increase the data volume in the database, which will further enhance the predic-
tive performance of the model. At the same time, predictive models can be developed to
estimate other performance factors of UHPC, including bending strength, flowability poros-
ity, and early shrinkage. Additionally, these metaheuristic optimization algorithms can be
utilized to optimize UHPC mix proportions based on the desired compressive strength.
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