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Abstract: In recent years, one of the most promising areas in modern concrete science and the tech-
nology of reinforced concrete structures is the technology of vibro-centrifugation of concrete, which
makes it possible to obtain reinforced concrete elements with a variatropic structure. However, this
area is poorly studied and there is a serious deficiency in both scientific and practical terms, expressed
in the absence of a systematic knowledge of the life cycle management processes of vibro-centrifuged
variatropic concrete. Artificial intelligence methods are seen as one of the most promising methods
for improving the process of managing the life cycle of such concrete in reinforced concrete structures.
The purpose of the study is to develop and compare machine learning algorithms based on ridge
regression, decision tree and extreme gradient boosting (XGBoost) for predicting the compressive
strength of vibro-centrifuged variatropic concrete using a database of experimental values obtained
under laboratory conditions. As a result of laboratory tests, a dataset of 664 samples was generated,
describing the influence of aggressive environmental factors (freezing–thawing, chloride content,
sulfate content and number of wetting–drying cycles) on the final strength characteristics of con-
crete. The use of analytical techniques to extract additional knowledge from data contributed to
improving the resulting predictive properties of machine learning models. As a result, the average
absolute percentage error (MAPE) for the best XGBoost algorithm was 2.72%, mean absolute error
(MAE) = 1.134627, mean squared error (MSE) = 4.801390, root-mean-square error (RMSE) = 2.191208
and R2 = 0.93, which allows to conclude that it is possible to use “smart” algorithms to improve
the life cycle management process of vibro-centrifuged variatropic concrete, by reducing the time
required for the compressive strength assessment of new structures.

Keywords: vibro-centrifuged concrete; compressive strength prediction; machine learning; feature
engineering; ridge regression; decision tree; XGBoost
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1. Introduction

Modern construction requires new approaches to constructive, technological and
design solutions in the erection of buildings and structures of different degrees of responsi-
bility. At the same time, a new culture of construction processes comes to the fore, which
consists of ensuring high-quality support over the entire life cycle of construction projects.
It should be understood that, like many decades ago, the main type of structural element is
reinforced concrete structures [1]. At the same time, reinforced concrete structures imply a
variety of different solutions in terms of new materials, new technologies and new design
solutions. Thus, it is advisable to apply, in construction processes, new knowledge obtained
in the course of scientific research, as well as during pilot industrial testing of the most
effective technologies, design solutions and materials [2]. Lately, the technology of vibro-
centrifugation, specifically of concrete, has emerged as one of the most promising areas in
modern concrete science and technology, allowing for reinforced concrete elements with a
variatropic structure. Quite a lot of relevant and interesting scientific works are devoted to
this issue from the points of view of materials [3–5], design solutions [6,7] and forecasting
methods [8–10]. However, this area is poorly studied and there is a serious deficiency
in both scientific and practical terms, which is expressed in the absence of systematic
knowledge about the life cycle management processes of vibro-centrifuged variatropic
concrete. Artificial intelligence methods seem to be one of the most promising methods
for improving the process of managing the life cycle of such concrete in vibro-centrifuged
reinforced concrete structures.

When predicting the physical and mechanical properties of concrete, machine learn-
ing methods demonstrate a high prediction quality, which is comparable to traditional
methods [11–13]. Linear machine learning models, characterized by their simplicity and
good interpretability, are especially valued when solving practical industrial problems
where the cost of error is high [14,15]. Researchers in [16] demonstrated the performance
of multiple linear regression (MLR) and polynomial regression (PR) using the Konstanz
Information Miner (KNIME) analytical platform. These methods achieved coefficient of
determination values R2 = 0.589 and 0.745, respectively, on a small dataset (202 observations
with 26 attributes). Another study [17] established a linear regression mathematical model
to predict the 28-day compressive strength of concrete using accelerated boiling water
curing method. The 28-day strength value predicted by the model equation agrees well
with the observed 28-day wet concrete strength obtained using the Student’s t-test statistic
at the 5% significance level. Other works [18,19] confirmed the feasibility of using linear
models when analyzing the strength characteristics of concrete at different ages, taking
into account a variety of both external and internal factors. Metric methods, based on
the assumption that the properties of an object can be learned by having an idea of its
neighbors, have almost no learning phase (lazy learning), but at the same time they have
good predictive ability [20,21]. Different works [22–24] showed models using one of the
most famous metric algorithms—the k-nearest neighbors (KNN) method. The coefficient of
determination, R2, which is used to evaluate the performance of regression-based machine
learning models, in the presented models obtained values from 0.92–0.99. This algorithm
is recommended for the design and development of various concretes with improved
characteristics [25]. Analysis of the strength characteristics of various concretes in practice
often requires engineers to use a lot of time and conduct expensive experiments. Tree
structures and boosting are innovative methods that reduce costs and reduce risks. Deter-
mining the compressive strength of concrete using ground granulated blast furnace slag
is a difficult task because of the complex calculation involved in determining the mixture
composition [26]. The results in [27] show that the random forest (RF) algorithm is an
excellent forecaster with a root mean square error (RMSE) and mean absolute error of
4.9585 and 3.9423, respectively. Positive experiences in using this class of machine learning
methods are a growing trend [28–30]. In predicting the strength of concrete, the ensemble
regression tree algorithms [31] and extreme gradient boosting (XGBoost) [32] demonstrated
high accuracy. Artificial neural networks are capable of capturing hidden nonlinear rela-
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tionships in data, which is an important property when trying to predict the concrete’s
strength [33–35]. Deep neural networks also have high prediction accuracy; the correlation
coefficient between real and predicted values when used in [36] is 0.9882, and the relative
error was up to 1%. Hybrid models are a combination of different approaches and methods
for solving problems [37,38], combining the advantages of different models and algorithms
to achieve a more efficient and accurate solution to the problem. This class has many
potential benefits for the construction industry [39,40]. In their study [41], the researchers
used an RF model and a bagging algorithm together to predict concrete’s compressive
strength. The article [42] examines the combination of support vector regression (SVR)
with an enhanced particle swarm algorithm and genetic algorithm through hybridization
testing. The combination of least squares support vector regression (LSSVR) and grey wolf
optimization (GWO) in a hybrid AI model effectively predicts foam concrete compression
with a correlation coefficient of 0.991 and MAPE of 3.54% [43].

An analysis of the scientific literature suggests the need to expand the theoretical
justification and practically confirm, using real experimental data, the feasibility of using
machine learning methods to analyze the strength characteristics of concrete that is hetero-
geneous in cross-section. Consideration of the results of various machine learning methods
to improve the process of managing the life cycle of vibro-centrifuged variatropic concrete
will allow the selection of the most promising, fast and reliable technologies. In the course
of analyzing the scientific literature, we selected the three most well-known models from
different classes, which differ in the principle of their operation. One of the tasks of the
study was to assess the impact of the feature engineering process on the accuracy of models
that are different in nature. Their introduction into the process of assessing the quality
of structures and products made from the concrete material in question will reduce the
research time. The scientific novelties of the study are as follows:

- The expansion of theoretical knowledge about the applications of machine learning
methods in predicting the strength of vibro-centrifuged variatropic (heterogeneous in
cross section) concrete, considering the influence of environmental conditions;

- A description of the possibility of practical use of the developed methods to optimize
the production process of vibro-centrifuged variatropic concrete;

- Recommendations for participants in the construction industry on the implementation
of intelligent models in order to achieve an economic effect by improving the process
of monitoring the physical and mechanical properties of the concrete in question
under the influence of aggressive environmental factors.

The main new results of the work are the formation of a dataset during laboratory tests
with its subsequent in-depth analysis, as well as increasing the accuracy of the proposed
intelligent models using modern approaches.

The purpose of this work is to improve the process of managing the life cycle of vibro-
centrifuged variatropic concrete through machine learning methods, namely, predicting
compressive strength using the extended linear regression method—ridge regression—
and algorithms based on decision tree and XGBoost tree structures. The research plan is
as follows:

(1) Application of existing experience in theoretical analysis and practical implementa-
tion of machine learning methods in the life cycle management of vibro-centrifuged
variatropic concrete;

(2) Justification of the need to expand the stack of technologies to determine the physi-
cal and mechanical properties of vibro-centrifuged variatropic concrete by creating
regression models based on machine learning methods;

(3) Testing of samples made of vibro-centrifuged variatropic concrete under laboratory
conditions, with the subsequent formation of a dataset for the training, optimization
and testing of regression models;

(4) Analysis of the data obtained, identifying the main statistical characteristics and
determining dependencies;



Buildings 2024, 14, 1198 4 of 22

(5) Creating an expanded dataset by adding new features at the feature engineering stage;
(6) Description and implementation of the ridge regression method on original dataset

and feature-engineered dataset;
(7) Description and implementation of the decision tree and XGBoost method on original

dataset and feature-engineered dataset;
(8) Description and implementation of the XGBoost method on original dataset and

feature-engineered dataset;
(9) Comparative analysis of the results of all models based on the values of the main

metrics to assess the quality of the forecast when solving a regression problem;
(10) Determination of prospects and features of implementation of developed forecasting

methods into practice;
(11) Determining the possibility of “learning transfer” by adapting the results obtained to

other types of concrete.

2. Materials and Methods
2.1. Materials

The following materials were utilized for the study:

(1) Portland cement CEM I 52.5N, produced at the Serebryakovcement enterprise (Mikhailovka,
Russia); a compressive strength at 28 days of age of at least 56.0 MPa and a specific
surface area of 3400 cm2/g.

(2) The Kagalnitsky quarry in Kagalnik, Russia provided river sand with a fineness
modulus of 1.43 and a bulk density of 1400 kg/m3.

(3) Crushed sandstone, mined in the Sokolovsky quarry (Novoshakhtinsk, Russia); grain
dimensions were from 5 to 20 mm.

2.2. Composition, Manufacturing Parameters and Properties of Vibro-Centrifuged
Variatropic Concrete

The concrete mixture was prepared using the following proportions:

- cement—375 kg/m3;
- water—185 L/m3;
- sand—694 kg/m3;
- crushed stone—1113 kg/m3.

The concrete was molded and compacted in a laboratory centrifuge equipped on the
support and drive shafts with steel ribs 5 mm high and 20 mm long, located at a distance of
300 mm from each other, providing high-frequency vibrations when the mold moved. The
shafts rotated at a speed of 156 rad/s, and the molding time was 12 min. After molding,
the samples were kept in the molds for 24 h, then removed from the molds and hardened
under natural conditions until they reached 28 days of age. The manufactured ring-section
elements were sawed on a stone-cutting machine into samples of standard sizes and shapes
and were exposed to cycles of freezing and thawing, wetting and drying, and chloride and
sulfate attacks [44–47].

The finished concrete had the following characteristics: slump of the fresh concrete
cone—from 3 to 4 cm; compressive strength—58.2 ± 3.26 MPa.

2.3. Description and Analysis of the Dataset

Figure 1 provides a visualization of the research process. After data collection, an initial
data analysis (EDA) phase was carried out (Figure 1), which involved examining the data
to identify anomalies, deviations, missing values and possible relationships between them.
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Figure 1. Visualization of the research process.

After analyzing the existing data set, an “original dataset” was formed, and it was
suggested that conducting an additional, deeper and more complex analysis, including the
use of statistical methods and analytical techniques to extract additional knowledge from
the data, would help improve the final predictive properties of the models. Thus, using
various techniques at the feature engineering stage, an expanded dataset was obtained
(hereinafter referred to as “feature-engineered dataset”), which was subsequently adapted
for each model using the feature selection method. The next stages of the research are the
implementation of machine learning models, subsequent assessment of their quality, and
summing up.

As a result of laboratory tests to determine the compressive strength of vibro-centrifuged
variatropic concrete, a dataset was generated that describes the impact of aggressive envi-
ronmental factors on the final characteristics [44–47].

In a series of experiments, strength measurements (Y, in MPa) were obtained for
664 samples of vibro-centrifuged variatropic concrete while fixing the following characteristics:

X1—number of freezing–thawing cycles;
X2—chloride content, mg/dm3;
X3—sulfate content, mg/dm3;
X4—number of moistening–drying cycles.

All of the above factors directly affect the strength of the building material under
study [10,48,49]. From the point of view of construction, these parameters are sufficient to
assess strength under the influence of an aggressive environment, since the data obtained
have undergone mathematical statistical processing and the number of tests performed
corresponds to the methods of regulatory and technical documents and, moreover, exceeds
the standard quantity. It should be noted here that regulatory methods in construction
themselves imply the possibility of projecting the results of a certain sample of tests onto the
results of an entire large batch of building products and structures. Reliable and accurate
strength predictions for new samples of variatropic concrete under similar operating
conditions, without laboratory testing, will speed up construction processes.
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3. Results and Discussion
3.1. Creation of Feature-Engineered Dataset and Feature Selection

In this study, the following information technologies and libraries were used for further
processing of the resulting dataset: high-level language Python 3.10.11, Sklearn 1.3.2 and
Optuna 3.5.0 (Preferred Networks, Inc., Tokyo, Japan) for hyperparameter optimization of
intelligent models. A framework for automated search for optimal hyperparameters for
machine learning models, Optuna, compared to the traditional GridSearch method, offers
a more effective optimization method, due to the speed of operation, in the case of a large
search space [50,51].

An important step in preparing data for submission to a regression model is the
analysis of all attributes of the dataset, identifying the boundaries of values, and also
determining correlations. Table 1 presents the description of the data (Std is standard
deviation, Min is minimum value, Max is maximum value).

Table 1. Data description.

Number of
Freeze–Thaw Cycles

Chloride Content
(mg/dm3)

Sulfate Content
(mg/dm3)

Number
of Wet–Dry Cycles

Compressive
Strength (MPa)

Mean 124.38 774.85 621.37 249.98 41.51
Std. 71.92 72.15 80.03 148.64 8.59
Min 1.00 650.00 450.00 1.00 28.50
25% 61.00 715.75 562.75 120.75 33.90
50% 120.00 768.50 626.00 236.50 40.35
75% 188.00 837.25 690.00 377.25 48.53
Max 250.00 900.00 750.00 500.00 63.20

Figure 2 shows the correlation matrix, wherein we can observe a strong negative
correlation between the attack factors (X1. . .X4) and the predicted compressive strength
column (Y).

Figure 2. Correlation matrix.
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It is also worth noting the presence of multicollinearity. Today, a number of researchers
are of the opinion that it is necessary to combat multicollinearity only if it leads to significant
problems, for example, to the deliberate inadequacy of the results obtained [52]. Figure 3
allows you to understand how data are distributed within a dataset and identify the main
features of their distribution.

The graph shows the dependencies that are actually noted by researchers when work-
ing with concrete: with an increase in the degree of exposure to aggressive environmental
factors, we observe a decrease in the strength characteristics of the concrete under study. It
can also be noted in the figure that, in the “sulfate content” column, the statistical distribu-
tion is shifted towards larger values. The “compressive strength” column has more data
in the range of 20–40 MPa. This dataset is saved and designated “original dataset” and
will subsequently be fed as an input data to the model during machine learning. Points
that differ from the total mass in Figure 3 are measured under different conditions and are
not outliers.

When conducting a more in-depth analysis of the original dataset (advanced data
analysis), the t-SNE (t-distributed Stochastic Neighbor Embedding) dimensionality re-
duction method was used [53]. Its principle is based on reducing the difference between
the data distribution in the original space and the reduced-dimensional space using the
Kullback–Leibler distance.

The Kullback–Leibler minimization formula (KL-divergence) works in such a way
that the distribution in the low-dimensional space is as close as possible to the distribution
in the original space, as follows:

KL(P∥Q ) = ∑
i

P(i) log
(

P(i)
Q(i)

)
(1)

where P is the probability distribution in high-dimensional space and Q is the probability
distribution in low-dimensional space.

After using the t-SNE algorithm to reduce the dimension of space to two coordinates,
clusters were discovered that were characterized by close values of the target variable (Figure 4).

The graph axes (Figure 4) represent a display of the influence of all parameters while
preserving metric properties in a new low-dimensional space. Figure 4 shows the distribu-
tion of strength versus input parameters. Thanks to the t-SNE algorithm, the conclusion is
formulated that the data form a cluster structure; the characteristics of the clusters were
subsequently used to generate features.

The elbow method [54] was employed to find the optimal number of clusters. To
implement this approach, it is necessary to plot the average intra-cluster distance depending
on the number of clusters and select the bend of the curve as the number of clusters used.
Figure 5 shows how the average distance according to the Euclidean metric changes for
each instance of the dataset to the center of the cluster in which it is located.

The optimal number of clusters is at the inflection of the graph (the red dot indicates
the “elbow”), since it minimizes the distance between instances of the cluster and its centers
but is not redundant. In this way, the clusters are generalized in the best possible way.
Using this graph, it was determined that the optimal number of clusters was seven.

The final visualization of clusters using t-SNE is presented in Figure 6, where the
centers of the seven selected clusters are marked with asterisks.
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Figure 3. Data characteristics distribution of input and output variables: blue dots are experimental
data; light blue dots are predicted values; blue line is probability distribution density.
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Figure 4. Clusters in the data.

Figure 5. Determining the optimal number of clusters.

According to the figure, cluster No. 1 contains specimens with maximum strength
values, while cluster No. 7 contains specimens with minimal strength.

Next, based on information about the belonging of each object to a specific cluster,
various descriptive characteristics (features) were formed, which add information content
and detail to the understanding of the essence of the data (Table 2).
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Figure 6. Result of cluster analysis.

Table 2. Additional features based on knowledge about the cluster.

No Parameter Feature Characteristics

1 X5 Cluster Cluster number

2 X6 Cluster_mean (Cluster_q50) Average target value in the cluster

3 X7 Cluster_std Standard deviation of target in cluster

4 X8 Cluster_q95 95th percentile of target values in the cluster

5 X9 Cluster_q75 75th percentile of target values in the cluster

6 X10 Cluster_q25 25th percentile of target values in the cluster

7 X11 Cluster_q5 5th percentile of target values in the cluster

8 X12 Cluster_median Median of target values in a cluster

9 X13 Cluster_max Maximum target value in the cluster

10 X14 Cluster_min Minimum target value in the cluster

11 X15 Cluster_neighbours Average of the nearest neighbors to our point in 4th space

To select the features that are most significant and can have a significant impact on the
process of predicting the final strength value of vibro-centrifuged variatropic concrete, the
sequential feature selection algorithm was used.

Initially, all 15 features were taken for analysis (the original X1–X4 and the new
X5–X15), and then we removed from the dataset one of the features, the absence of which
improves the accuracy of the model in cross-validation. The algorithm converges iteratively
when removing a certain number of features and no longer has the effect of improving
the forecast. For each machine learning method implemented in this study, feature selec-
tion was carried out individually, which made it possible to generate its own set of the
most suitable input features—a feature-engineered dataset. Subsequently, when training,
validating and testing machine learning models, each of the datasets (both original and
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feature-engineered datasets) was divided as follows: 65% for training, 15% for validation
and 20% for testing.

3.2. Ridge Regression

Ridge regression (RD) is a modification of linear regression. The main difference from
linear regression is that, when training the model, it is additionally penalized quadratically
for the value of the norm of weights w, and the penalty is weighted by the hyperparameter
λ (lambda). This scheme is also called L2-regularization. In this way, it is possible to control
the values of the weights, which makes the model more stable and prevents a sharp increase
in the weights. The ridge regression loss function is expressed by the following formula:

JRide = ∥Xw − y∥2 + λ∥w∥2 (2)

Overall, ridge regression is an important machine learning technique, especially in
cases where the input data are highly correlated, as seen in our study.

For the ridge regression method, the eight most significant features were selected
in the feature-engineered dataset, shown in Table 2. In addition to the main initial fea-
ture X1 (number of freeze–thaw cycles), seven artificially obtained parameters had an
impact: Cluster, Cluster_mean, Cluster_std, Cluster_q75, Cluster_q25, Cluster_max, Clus-
ter_neighbours (Table 3).

Table 3. Feature-engineered dataset for ridge regression.

Method Number of Selected Features Features

Ridge Regression 8 Number of freeze–thaw cycles
Cluster
Cluster_mean
Cluster_std
Cluster_q75
Cluster_q25
Cluster_max
Cluster_neighbours

Despite the elimination of features X2–X4, information about them is stored in ar-
tificially created features, the obtaining of which is based on preserving the strength of
influence of each of the original features on the cluster membership of each instance of
the dataset.

The selection of optimal hyperparameter values for ridge regression for both the
original dataset and the feature-engineered dataset, performed using Optuna, is shown
in Table 4.

Table 4. Parameters for RD.

No Parameter Definition Original Dataset Feature-Engineered Dataset

1 λ The Power of Regularization 0.042505 0.072677

3.3. Decision Tree

To tackle regression problems, decision trees (DT) is an effective non-parametric
supervised learning approach. Based on data features, the DT decision tree uses simple
decision rules to predict the value of a target variable [55]. Trees can be viewed as a
piecewise constant approximation; they cannot extrapolate. This predictive analysis method
is especially in demand in commercial and industrial data mining applications [56].

A clear advantage of this method is its ease of understanding and interpretation. Trees
can be visualized. Figure 7 shows a visualization of the tree built for this study on the
original dataset.
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Figure 7. Visualization of a decision tree.

Among the disadvantages, it is worth noting that, during the execution of the algo-
rithm, overly complex over-trained trees can be created.

For the DT method, the 10 most significant features were selected in the feature-
engineered dataset, shown in Table 5. Features X2–X4 turned out to be the least significant
for this machine learning method.

Table 5. Parameters for DT.

Method Number of Selected Features Features

Decision tree 10 Number of freeze–thaw cycles
Cluster_mean
Cluster_std
Cluster_q75
Cluster_q25
Cluster_q5
Cluster_q95
Cluster_q50
Cluster_max
Cluster_min

To minimize the problem of overfitting for a tree that is prone to this process, hyperpa-
rameter optimization is necessary [51]. Table 6 presents the final parameter values for the
DT model, selected using Optuna for the original and feature-engineered dataset.

Table 6. Parameters for the DT model.

No Parameter Definition Original Dataset Feature-Engineered
Dataset

1 Criterion Criterion that was used to construct each branch friedman mse friedman mse

2 Max depth Max depth of one tree 684 255

3 Min samples split “Minimum number of objects in a sheet to split it” 7 2

4 Min samples leaf “Minimum number of objects in a sheet for it to exist” 2 4
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As can be seen from the comparison of hyperparameters, the trees became less deep as
the model received higher-level features, due to which it became easier to capture patterns
(the generalization ability of the model improved). Among the parameters there is “crite-
rion”, a rule by which the most optimal division of a node in the sheet is selected (options
“squared_error”, “friedman_mse”, “absolute_error”, “poisson”). “friedman_mse” is selected,
which uses mean squared error with Friedman’s improvement score for potential splits.

3.4. XGBoost

XGBoost (XGB) is an optimized distributed gradient boosting library designed to
be highly efficient, flexible and portable [57,58]. It is an ensemble learning method that
sequentially builds shallow trees that are further ensembled to achieve a more accurate
and reliable prediction. XGBoost has proven itself to be a powerful algorithm in the field of
machine learning when solving regression problems.

A characteristic feature of the objective function when implementing this algorithm
is that it consists of two parts—the learning loss and the regularization term. The regu-
larization inclusion acts as a penalty, reducing model complexity and improving model
generalizability and robustness, as follows:

obj(θ) = L(θ) + Ω(θ) (3)

where L is the learning loss function; Ω is the regularization term; and θ signifies the
parameters that the model learns from the provided dataset.

Our model’s ability to predict the training data is measured by the training loss. The
mean squared error is often chosen for L. When implementing the XGBoost algorithm, the
responses are summed over all trees of the ensemble:

F(x) =
K

∑
k=1

fk(x) (4)

where fk is the k-e tree of the ensemble.
For the implementation of the XGBoost method, 14 features turned out to be significant,

except for Cluster q50.
Table 7 presents the summary parameters for the XGBoost model. When moving from

the original dataset to the feature-engineered dataset, there was a decrease in the number
of trees from 1993 to 841, but at the same time the maximum tree depth has increased by
three units.

Table 7. Parameters for XGB.

N Parameter Definition Original Dataset Feature-Engineered
Dataset

1 lambda L2 regularization 0.425207503 0.0675070558

2 alpha L1 regularization 0.005520339 0.0053793840

3 Colsample bytree the proportion of features that will be used to
construct each tree 1 0.6

4 subsample fraction of the training sample that will be
used to build each tree 0.8 0.6

5 learning_rate learning rate 0.014 0.016

6 n estimators number of trees 1993 841

7 Max depth maximum tree depth 11 14

Figure 8 shows XGBoost training graphs ((a)—original dataset, (b)—feature-engineered
dataset). The number of trees is represented on the x-axis, while the loss-function values
are shown on the y-axis.
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Figure 8. XGBoost training: (a) on original dataset; (b) on feature-engineered dataset.

Overtraining is not observed in both cases; learning occurs steadily without sudden
jumps. The number of trees along the OX axis in Figure 8b is smaller, since, when working
with an extended dataset, the XGBoost algorithm identifies dependencies faster.

Since the algorithm is based on a tree structure, it can be visualized for a more detailed
understanding of the logic of the method. Figure 9 shows a visualization corresponding to
the logic of the algorithm on the original dataset.

Figure 9. Visualization of XGBoost.

3.5. Assessing the Quality of the Machine Learning Methods Used

The chosen metrics for evaluating and comparing the forecast accuracy of the machine
learning models were “mean absolute error” (MAE), “mean squared error” (MSE), “root-
mean-square error” (RMSE), “mean absolute percentage error” (MAPE) and the coefficient
of determination R2. Below are the formulas for calculating (5)–(9), as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷ| (5)

MSE =
1
n

n

∑
i=1

(yi − ŷ)2 (6)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷ)2 (7)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
ŷi

∣∣∣∣× 100 (8)
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R2 = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(9)

where yi represents the actual value of the compressive strength; ŷi is the predicted value
of compressive strength; and y is the average value for yi.

3.6. Results of the Used Machine Learning Methods

The prediction error plots presented in Figure 10 reflect the distribution of actual
strength values for samples from the test set, in comparison with the values obtained as
a result of prediction using the implemented machine learning algorithms. The red lines
show the boundary ∆ = ±5 MPa [10].

Figure 10. Graphs of forecast errors for (a) RD/original dataset; (b) RD/feature-engineered dataset;
(c) DT/original dataset; (d) DT/feature-engineered dataset; (e) XGB/original dataset; (f) XGB/feature-
engineered dataset.
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The worst fit into a given “tube” of acceptable values, as well as a low value of the
coefficient of determination, is observed in the RD model trained on the original dataset.
However, when checking the RD algorithm on the feature-engineered dataset, a significant
improvement in the predictive properties is observed: an increase in R2 to 0.89 and a
reduction in the number of emissions outside the specified range ∆ = ±5 MPa, as well as
the distribution of points along the blue straight line y = x on the graph. As outliers in
Figure 10, when assessing the quality of the model, points are identified that go beyond the
boundaries of ±5 MPa. The fight against outliers consisted of using regularization methods
at the model training stage.

According to Figure 10, the best fit within the specified boundaries is demonstrated by
the XGB algorithm. This is due to the fact that the XGB algorithm itself is a fairly strong
model, and a deep analysis of the data made it possible to identify a number of informative
features that increased the predictive qualities of the model, reaching a coefficient of
determination of R2 = 0.93.

Analyzing Table 8, which shows the metrics calculated on the test specimens, it can
be concluded that the XGBoost gradient boosting algorithm for decision trees is the best
among the implemented models for predicting the strength of vibro-centrifuged variatropic
concrete when analyzing the influence of aggressive environmental factors. At the same
time, for all models there is an improvement in metrics when moving from the original
dataset to the feature-engineered dataset.

Table 8. The obtained metrics values on the test sample.

N Model MAE MSE RMSE MAPE, % R2

1 RD/Original dataset 3.035809 15.601231 3.949839 7.23 0.71

2 RD/Feature-engineered dataset 1.364647 7.061922 2.657428 3.23 0.89

3 DT/Original dataset 1.290714 6.957745 2.637754 3.06 0.90

4 DT/Feature-engineered dataset 1.252009 6.404198 2.530652 2.95 0.90

5 XGB/Original dataset 1.181808 5.413174 2.326623 2.82 0.92

6 XGB/Feature-engineered dataset 1.134627 4.801390 2.191208 2.72 0.93

In Figure 11, for a more visual interpretation and a good understanding of the results,
Table 8 is visualized in the form of graphs.

Figure 11. Cont.
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Figure 11. Graphical interpretation of quality metrics (a) MAE; (b) MSE; (c) RMSE; (d) MAPE; (e) R2.

Based on the graphs, we can conclude that, when working with a feature-engineered
dataset, the metrics of all models improve: errors are reduced, and the coefficient of
determination increases. The changes are especially noticeable when working with the
ridge regression algorithm. Thus, the average absolute error in percentage decreased from
7.23 to 3.23%, while the root-mean-square error decreased by 2.2 times.

As a result of this research, several predictive models were created based on ML-
algorithms, namely ridge regression, decision tree and XGBoost. The implemented models
can be used to improve the process of managing the life cycle of vibro-centrifuged varia-
tropic concrete by reducing the time required to determine the compressive strength of
new samples that were subject to similar aggressive influences from external factors. It
is assumed that data collected in laboratory conditions are as close as possible to data
from field conditions. However, to confirm, test calculations should be carried out, based
on which it is possible to track the emergence of data drift or concept drift with further
adaptation of the algorithm and taking into account new factors, if any are discovered.

The effectiveness of using the implemented machine learning methods to predict the
strength of vibro-centrifuged variatropic concrete is comparable to traditional methods.
MAE = 1.134627, MSE = 4.801390, RMSE = 2.191208 and MAPE = 2.72%, as well as R2 = 0.93
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are not inferior to traditional methods, where these values are usually in the range of 6–7%.
Such an error is quite acceptable and adequate for obtaining reinforced concrete products
and structures of stable quality. It should be noted that standard calculations in predicting
the properties of various reinforced concrete structures differ somewhat depending on
the type of these structures. It should be emphasized that, here, we are dealing with
vibro-centrifuged concrete; that is, with a rather complex advanced technology. Moreover,
the accuracy of predicting such materials with a variatropic structure can reach an error of
10–12%. Here, in our case, we have a significantly lower error; that is, our proposed method
is effective, especially for the proposed variatropic vibro-centrifuged concrete. From the
point of view of regulatory documents of various countries, the error can reach 13–15%.

Therefore, it is necessary to note the effectiveness of our proposed method and pro-
pose it for implementation to manage the life cycle of reinforced concrete structures and
products obtained using vibration centrifugation technology, as well as outline prospects
for the development of research in the future. They lie in the direction of studying the
proposed machine learning methods for reinforced concrete products and structures of
other types; for example, with simple structures or variatropic structures of a different
nature; for example, obtained not by vibration centrifugation technology, but by other
technologies. The practical applicability of the results obtained lies in the direction of
introducing these methods at enterprises producing precast reinforced concrete, as well
as for specific construction projects that involve the use of particularly high-strength and
high-quality vibro-centrifuged elements; for example, columns.

Comparing the results obtained with the results of other researchers who used ML,
it can be noted that the performance assessment of the best model is not inferior to the
assessment of metric methods in [22–25], and the root mean square and mean absolute
error are lower than in the study that used tree structure model in [27].

To ensure responsible and unbiased use of the machine learning algorithms discussed
in this study in actual construction industry practice, as part of the life cycle process of
vibro-centrifuged variatropic concrete, the following must be ensured:

- Transparency and interpretability of results with a clear justification of the limits of
acceptable errors. Allowable errors must be within generally accepted building codes
and regulations. If the permissible errors are exceeded, the forecast model should
be modified.

- Data security, in cases of supplementing models with information that is not subject
to disclosure.

- Training and regulation. Users of the final product with implemented “smart” al-
gorithms must have clear instructions for their use and intelligently evaluate the
decisions made by the system. It is planned to develop a user interface using the
Streamlit framework [59].

4. Conclusions

There is a serious deficiency, in both scientific and practical terms, expressed in the
lack of a systematic knowledge base, about the life cycle management processes of vibro-
centrifuged variatropic concrete using machine learning methods. A comparison was
made of the developed machine learning algorithms based on ridge regression, decision
tree and XGBoost for predicting the compressive strength of vibro-centrifuged variatropic
concrete using a database of 664 samples of experimental values obtained under laboratory
conditions. Both theoretical and practical aspects are revealed in the results of the work,
as follows:

(1) A database has been compiled, containing information on vibro-centrifuged concrete
strength and its susceptibility to aggressive environmental factors. The collected
dataset has been compiled into a database and is planned to be made publicly available
to interested researchers.
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(2) A hypothesis was put forward and confirmed about the possibility of dividing data
into clusters with the subsequent use of analytical techniques to extract additional
knowledge from the dataset, which contributed to improving the final metrics of
regression models.

(3) Machine learning methods have been implemented, optimized and tested; namely,
ridge regression, decision tree and XGBoost. The hyperparameters of each model
were optimized using the Optuna optimization system.

(4) The XGBoost model showed the best quality metrics: MAE = 1.134627, MSE = 4.801390,
RMSE = 2.191208, MAPE = 2.72% and R2 = 0.93.

(5) Overall, strength prediction of vibro-centrifuged variatropic concrete using ML meth-
ods was found to be effective and accurate. In addition, the use of feature engineering
and feature selection techniques made it possible to improve the quality of the models.

(6) The developed models can provide additional information for civil engineers and
materials science specialists to make informed decisions regarding the impact of
environmental factors on variatropic concrete strength.

(7) The models implemented in this study were saved with the best parameters and can
later be used to analyze new numerical datasets; predictions of compressive strength
values for new samples are made by running through the final XGBoost model.

(8) It is possible to adapt the algorithms for other types of concrete that face challenging
environments. To consider a variety of material properties and transitions, it is
recommended to employ data drift, concept drift and domain adaptation technologies.
This ensures the inclusion of new relationships without compromising quality. It is
planned to develop a user interface using the Streamlit framework.

However, this study is limited to the consideration of four characteristics of envi-
ronmental influence and, therefore, there is scope for further development. In general,
improvement in the research lies in the following areas of development: research into the
influence of other aggressive factors, the expansion of a number of ML models and the
creation of a user interface.
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