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Abstract: This paper investigates a method for improving the selection of seismic motions for
designing earthquake-resistant underground structures. It is found that PGV alone is unreliable
as a predictor of structural damage with increasing earthquake intensity. Therefore, based on
characterizing seismic intensity by using PGV, another parameter, referred to here as “the severest
parameter”, is introduced to distinguish potential damage capacity for different seismic motions. A
numerical model of a soil–underground structure system was established using the finite element
software OpenSees. A total of 120 real ground motions were selected for the model, considering the
influences of eight different site groups on the underground station and the rupture distances of the
input seismic motions. The results show that as seismic intensity increases, substantial variability in
the response of underground structures emerges under the same amplitude of PGV, diminishing the
effectiveness of the relationship between PGV and structural damage. When assessing the potential
damage capacity of seismic motions with similar or close amplitudes of PGV, VSI is an appropriate
severest parameter for Class III sites and ASI is suitable for Class II sites. When the correlation
coefficient between the severest parameter and the structural response is greater than 0.8, it can be
used to reliably assess seismic damage capacity based on the size of the severest parameter.

Keywords: underground station; seismic response; severest input ground motion; correlation analysis;
seismic potential damage capacity

1. Introduction

Selecting rational ground motion records is the most important step prior to the seismic
analysis and design of underground structures. Different input ground motion records may
lead to significantly different responses in structures. Therefore, Drenick [1] introduced
the “critical excitation method” in order to determine the excitation that maximizes the
demands on a given system under specific constraints. Scholars have applied this concept to
various research subjects, such as linear structures [2], nonproportionally damped structural
systems [3], and tuned mass dampers [4].

On the basis of the “critical excitation method”, Xie and Zhai [5] introduced the
concept of the “severest seismic motion”, which aims to identify seismic motions that
lead the structure to sustain the most severe damage state under the premise of meeting
fortification intensity and site requirements for the structure. The key to this concept lies in
finding the seismic intensity indicator that best reflects the potential damage capacity of
seismic motion.

Scholars have previously constructed the multivariate distribution of any set of ground-
motion intensity measures [6] or developed parametric equations [7] for the selection of
ground motions. Li et al. [8] proposed a methodology for selecting the severest ground
motions for practical dynamic analyses of nuclear power plant (NPP) systems. A series
of correlation analyses were carried out to select the relevant intensity measures that best
characterize the structural demand parameters, and consequently the damage potential, of
ground motions on NPP structures. Zhai et al. [9] selected those real (or recorded) ground
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motions capable of exposing low- and mid-rise reinforced concrete frame structures to an
extreme limit state. By performing correlation analyses, two optimal intensity measures
were selected to represent the ground motion damage potential. The concept of the severest
seismic motion has been applied to earth dams as well [10,11]. Chen et al. [12] proposed
a ranking method based on a composite intensity indicator for the severest input ground
motion for underground structures. The results show that the proposed composite ground
motion intensity indicators have a higher correlation with the seismic dynamic responses
than a single indicator with respect to effectiveness, practicability, and proficiency.

Several scholars have stated that “efficiency” and “sufficiency” are two evaluation
dimensions of seismic intensity indicators, and have proposed seismic intensity parameters
that are suitable for different structural forms and seismic characteristics. In research on
underground structures, the Peak Ground Acceleration (PGA) is a widely used seismic
intensity indicator in structural seismic analysis and design [13–19]. With the rapid de-
velopment of seismic research on underground structures, scholars have found that the
Peak Ground Velocity (PGV) is suitable for seismic damage assessment of underground
structures. Tsinidis et al. [20] investigated the efficiency and sufficiency of various seismic
intensity measures for the structural assessment of buried steel natural gas (NG) pipelines
and found that the PGV is the optimal IM. In the context of underground tunnels, Corigliano
et al. [21] found a better correlation between seismic damage in underground tunnels and
PGV compared to PGA. When studying the optimal seismic intensity indicator for tun-
nels at different depths, Huang et al. [22] evaluated the effectiveness by using dispersion
under double logarithmic linear regression, and found that PGV consistently performed
the best. Liu et al. [23] discovered that PGV had a higher regression fitting accuracy with
the inter-story drift angle of an underground station, with a smaller standard deviation
than PGA. Zhang et al. [24] investigated the optimal seismic intensity indicators for a
three-span three-story station at different burial depths, and indicated that PGV was the
most suitable indicator. Therefore, compared to PGA, PGV is more suitable as a seismic
intensity indicator for assessing the seismic performance of underground structures. In
predicting the damage potential of seismic motions, PGV is an important indicator that
must be taken into account.

However, it has been found that a single parameter cannot describe all seismic charac-
teristics. Only one parameter, whether PGA, PGV, or other parameters, cannot comprehen-
sively and accurately evaluate the correlation between seismic intensity and structural dam-
age. Accordingly, previous scholars have introduced optimization algorithms to construct
mixed seismic parameters with the highest correlation with structural damage [25–27].
These optimization algorithms are computationally complex. The correlation between
the constructed mixed seismic parameters and structural damage is greatly affected by
the optimization algorithm used, making them inconvenient to apply in seismic design.
Therefore, scholars have combined multiple seismic intensity parameters [28,29], which is
more convenient than using optimization algorithms. The research design of this paper
was derived from this concept.

The main objective of this paper is to propose a method for selecting the seismic motion
with the greatest damage potential based on the “severest parameter” for underground
stations. In the seismic design of structures, it is necessary to input the near-field and
far-field seismic motions separately and to consider the stiffness of the site. Therefore,
different types of rupture distances of seismic motions and different site stiffness values
were considered. The selection method proposed in this paper requires two steps. First, the
PGV of the input seismic motions is normalized to a consistent value and its deficiency in
predicting seismic damage potential is verified. Second, based on the same PGV amplitude,
another parameter, referred to here as the “severest parameter”, is selected through a
correlation analysis with the structural seismic responses. Finally, the applicability of
this selection method is verified through the color mapping method, which can provide
visual effects to show the strength and weakness of seismic potential damage capacity. The
selection method provided in this paper improves upon the limitations of PGV alone in
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estimating seismic damage potential. In the seismic design of underground stations, when
the input seismic motions have similar or identical amplitudes to that of PGV, their damage
potential can be evaluated based on the research results of this paper.

2. Numerical Model of Soil–Underground Station System

This paper takes the Daikai station, damaged in the 1995 Kobe Earthquake, as its
research subject. According to the investigation [30], the station had a cross-sectional
dimension of 17 m × 7.17 m, a top slab thickness of 0.8 m, a bottom slab thickness of 0.85 m,
and a side wall thickness of 0.7 m. The cross-sectional dimensions of the central columns
were 0.4 m × 1.0 m, with a longitudinal spacing of 3.5 m and an effective height of 3.82 m.
The main section dimensions and reinforcement details are shown in Figure 1. The concrete
strength of the central columns was 23.52 MPa, while the concrete strength of the other
parts of the structure was 20.58 MPa. In this paper, the station structure is considered to be
buried to a depth of 4 m.
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Figure 1. Section dimension and reinforcement details of Daikai Station (Unit: mm).

The Daikai station was established using OpenSees v3.2.2 finite element software.
The thickness of the model was set to 3.5 m based on longitudinal spacing of the central
columns. The concrete was modeled with the Kent–Scott–Park constitutive model (Con-
crete01 Material) without taking tensile strength into account. The steel reinforcement was
modeled using a uniaxial bilinear constitutive model (Steel01 Material). Specific material
parameters can be found in Table 1.

Table 1. Material properties of the concrete and steel reinforcement.

Material Reinforcement Concrete

Density, ρ/(kg/m−3) 7800 2500
Elastic modulus, E/GPa 200 30
strain-hardening ratio, α 0.00001 —

Yield stress, f y/MPa 235 —
Axial compressive strength

f c0/MPa — 23.52 (the central column)
20.58 (others)

Ultimate compressive strength,
f u/MPa — 12.2

Peak compressive strain, εc0 — 0.0028
Ultimate compressive strain, εu — 0.004

The finite element model of the soil–underground station system is shown in Figure 2.
The dimension of the soil domain is 139 m × 45 m × 3.5 m (wide × height × length).
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According to the Code for the Seismic Design of Buildings (GB50011, 2010), the width of
the soil on each side surrounding the structure should be at least three times larger than
the width of the structure in order to avoid ground motion reflection, while the depth of
the model should be more than three times the height of the station.

For the boundary conditions of the 2D model, the semi-infinite soil domain was
truncated at a distance of 61 m from the structure (more than three times the width of
the structure), which is sufficiently far from the underground structure to eliminate the
influence of the boundary effects on the seismic response of the underground structure.
The bottom boundary of the 2D model was truncated at a depth of 45 m. The longitudinal
thickness of the soil matched the station model at 3.5 m. The burial depth from the top of
the reinforced concrete roof of the station to the ground surface was about 4 m.

The horizontal and vertical displacements were fixed at the bottom surface, while
the ground surface of the structure was free. Using the equalDOF command, horizontal
kinematic constraints were introduced to the nodes on two side boundaries in order to
ensure the same horizontal movement of the two nodes at the same burial depth, which
effectively simulates the shear deformations of the soil layers under upward propagation
of in-plane waves [31].
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Figure 2. Finite element model of soil–underground station system.

Four-node quad elements were employed in the numerical model for the surrounding
soil. The material of the soil domain was PressureIndependMultiYield (PIMY) with yield
surfaces of the Von Mises type.

As the overall depth of the soil layers above the engineering bedrock were smaller
than 50 m, according to the Chinese code for seismic design of urban rail transit structures
the equivalent shear wave velocities of Classes II and III range from 150 m/s to 500 m/s
and from 90 m/s to 150 m/s.

By distinguishing the shear wave velocities, this paper designed five scenarios for
Class II sites and three scenarios for Class III sites. Incorporating the recommended values
for the PressureIndependMultiYield constitutive model from the OpenSees user manual,
the physical parameters of the soil for the two site categories are presented in Table 2,
including the density ρ, initial shear modulus G, initial shear velocity Vs20, Poisson’s ratio
µ, cohesion c, and friction angle φ.

Table 2. Geotechnical properties of soils in different site categories.

Site Category Class II Sites Class III Sites

Shear wave velocity, Vs20/(m/s) 350/320/280/250/200 150/120/100
Density, ρ/(kg/m3) 1900 1800

Initial shear modulus, G/MPa 233/195/149/119/76 40.5/25.9/18
Poisson’s ratio, µ 0.35 0.40
Cohesion, c/kPa 37.0 18.0

friction angle, φ/◦ 30.0 20.0
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3. Seismic Waves and Selection of the Severest Parameter
3.1. Seismic Wave Selection

This paper investigated the effects of rupture distance (R) and site class on under-
ground stations by selecting seismic motions from the PEER Ground Motions Database
with moment magnitudes exceeding 6.0. For site classification, shear wave velocity was
used. Class II sites have a velocity of 260 m/s to 510 m/s, while Class III sites range from
150 m/s to 260 m/s.

In seismic engineering design, it is necessary to input the near-field and far-field
ground motions separately for seismic analysis. Scholars have classified near-fault records
when R is less than or equal to 20 km [32,33] and far-fault records when R is 20 km
to 60 km [34]. In order to enhance the differentiation between near-field and far-field
earthquakes, in this paper we have relaxed the classification based on rupture distance;
near-field ground motions were defined with R ≤ 20 km and far-field ground motions were
defined with R ≥ 80 km. Between near-field and far-field earthquakes, this paper defines
ordinary ground motions with 30 km ≤ R ≤ 70 km as a transitional zone. Therefore, based
on two sites and three types of rupture distances, the selected seismic motions are divided
into six groups. Considering that the literature [35] indicates that 20 input seismic motions
in the IDA method is sufficient to capture the uncertainties in seismic records, 20 seismic
motions were selected for each group, totaling 120 seismic motions in all.

3.2. The Severest Parameters

To better characterize seismic intensity based on PGV, another parameter, referred
to here as “the severest parameter”, was introduced to distinguish the potential damage
capacity for different seismic motions. Specifically, the severest parameter refers to the
seismic characteristic parameter that shows the strongest correlation with structural re-
sponse under the seismic motions with the same PGV. The parameters preselected in this
paper as the severest parameters can be categorized into four classes: acceleration-related
parameters, velocity-related parameters, displacement-related parameters, and hybrid
parameters [36,37].

Most of the formulations are similar, with the following differences: 1⃝ differing by
only one exponent in the expression; 2⃝ differing by only one constant in the expression; and
3⃝ being a linear combination of the other parameters in logarithmic coordinates. Therefore,

after the selection process, in this paper we have chosen nine highly representative least
favorable indicators for subsequent analysis; the specific expressions of the indicators can
be found in Table 3.

Table 3. The optional severest parameters.

Name Formulation Name Formulation Name Formulation

Acceleration-related PGA max|a(t)| asq
∫ ttot

0 a(t)2dt ASI
∫ 0.5

0.1 Sa(T , ξ = 5%)dt
velocity-related vsq

∫ ttot
0 v(t)2dt VSI

∫ 2.5
0.1 Sv(T , ξ = 5%)dt

displacement-related PGD max|d(t)| dsq
∫ ttot

0 d(t)2dt DSI
∫ 5.0

2.0 Sd(T , ξ = 5%)dt
Others td t95-t5

In this table, ttot represents the total duration of the seismic motion; a(t), v(t), and
d(t) represent the acceleration, velocity, and displacement time histories, respectively; Sa,
Sv, and Sd represent the spectral acceleration, spectral velocity, and spectral displacement,
respectively; and t95 and t5 respectively represent the times corresponding to 95% and 5%
of the Arias intensity IA.

In addition, PGA and PGD reflect the amplitude of seismic motion; asq, vsq, and dsq
reflect the input energy of seismic motion; ASI, VSI, and DSI reflect the spectral intensity
within the periodic range of the seismic motion; and td represents the significant duration
of the seismic motion, reflecting the characteristics of strong motion duration.
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In order to evaluate the applicability of the parameters, correlation coefficients were
calculated to show the relationship between structural response and the severest parameter,
with the calculation formula shown in Equation (1):

ρ =
Cov(x, y)√
Var[x]Var[y]

(1)

In the above formula, x and y respectively represent the structural response and the
severest parameter, Cov(x,y) is the covariance between x and y, and Var[x] and Var[y] are
the variances of x and y, respectively. It is generally believed that an absolute value of
ρ between 0.6 and 0.8 represents a high correlation, while a value between 0.8 and 1.0
represents a very strong correlation.

4. Result Analysis
4.1. Distribution Pattern of Structural Response

In this paper, we used the maximum inter-story drift angle of the underground station
as the structural damage indicator and performed IDA analysis after scaling the PGV of
the seismic motions to 10 cm/s, 20 cm/s, 40 cm/s, 80 cm/s, and 120 cm/s. The Class II site
condition with shear wave velocity of 280 m/s was taken as an example.

The axial force time history curves were extracted when the peak axial forces in the
central column reached their maximum and minimum values under seismic actions with
the same PGV amplitude. The shear force time history curves for the central column were
extracted using the same method. The results are shown in Figure 3. In order to create
a sharp contrast in the figures, three conditions were selected while PGV was 10 cm/s,
40 cm/s, and 120 cm/s.
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The relationship between seismic intensity and structural forces was then investigated.
The central column’s axial force under gravity load is 3435.53 kN. When subjected to
seismic actions with PGV of 10 cm/s, the axial force reaches a maximum of 3661.29 kN and
a minimum of 3446.75 kN. As the PGV increases to 40 cm/s and 120 cm/s, the range of
peak axial forces increases as well. Similarly, the peak shear force of the central column
displays a rising trend with higher PGV.

Inter-story drift angle, a common parameter in seismic response analysis, was adopted
to assess structural damage. To understand its overall probability distribution, the cumula-
tive distribution function (CDF) was calculated. The CDF integrates the probability density
function and describes the probability of a random variable (X) falling within a specific
range. The formulation is shown in the following equation.

FX(x) = P(X ≤ x) (2)

Figure 4 shows the cumulative distribution function of the structural inter-story drift
angle in this condition. From Figure 4, it can be observed that the distribution range of
structural response is not significantly affected by different rupture distances under seismic
conditions with the same PGV amplitude.

With higher seismic intensity, the structural response becomes more dispersed and the
effectiveness of the relationship between PGV and structural response weakens. Taking
near-field seismic conditions as an example, when the PGV is 10 cm/s, the maximum
inter-story drift angle is 0.151%, the minimum is 0.014%, and the range is 0.137%. At this
moment, the difference between the maximum and minimum values is not significant.
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When the PGV is 40 cm/s, the maximum inter-story drift angle is 0.495%, the minimum
is 0.080%, and the range is 0.415%. When PGV increases to 120 cm/s, the maximum
inter-story drift angle is 1.004%, the minimum is 0.374%, and the range is 0.630%.

Therefore, under strong earthquake conditions, traditional single intensity indicators
are insufficient to describe the seismic responses.
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Figure 4. Cumulative distribution function of inter-story drift angle for model under different ground
motion intensities with Vs20 = 280 m/s.

4.2. Correlation between the Severest Parameters and Structural Response under
Different Intensities

Based on the same amplitude of PGV, we analyzed the applicability of the severest
parameters for describing structural seismic response through calculation of correlation
coefficients, then examined the trend of correlation coefficients with the changes in seismic
intensity. The correlation between the structural response and the severest parameters at
different seismic intensities was calculated, and the results are shown in Figure 5. In these
conditions, the station site was modeled with a soil shear wave velocity (Vs20) of 280 m/s.

It can be observed that under near-field seismic conditions and when the PGV of the
input seismic motions is 10 cm/s, the asq has the strongest correlation with the structural
response and the correlation coefficient is 0.867. When the PGV increases to 20 cm/s and
40 cm/s, PGA shows the highest correlation with structural response, with correlation
coefficients of 0.840 and 0.839, respectively. When PGV is 80 cm/s, ASI exhibits the highest
correlation, with a correlation coefficient of 0.803. When PGV is 120 cm/s, the highest
correlation is with asq, with a correlation coefficient of 0.763.
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Figure 5. Correlation coefficients between structural response and the severest ground motion
parameter under different intensities with a shear wave velocity of 280 m/s: (a) near-field earthquake
(R < 20 km); (b) ordinary earthquake (30 km < R < 70 km); (c) far-field earthquake (R > 80 km).

Under ordinary seismic conditions, ASI has the strongest correlation with structural
response when the PGV is 10 cm/s, 20 cm/s, and 40 cm/s. The correlation coefficients
for ASI in these three conditions are 0.828, 0.792, 0.755 respectively. Compared to ASI,
the correlation coefficients for PGA and asq are relatively low, with values below 0.75. In
particular, when PGV is 40 cm/s the correlation coefficient of asq is less than 0.4. When
PGV increases to 80 cm/s, ASI demonstrates the highest correlation, with a correlation
coefficient of 0.384. When PGV is 120 cm/s, VSI demonstrates the strongest correlation,
with a correlation coefficient of 0.489.

Under far-field seismic conditions, PGA shows the highest correlation with structural
response when PGV rises from 10 cm/s to 20 cm/s and 40 cm/s. Their corresponding
correlation coefficients are 0.732, 0.766, and 0.779 respectively, while the correlation coeffi-
cients for asq and ASI are lower than 0.7. When PGV is 80 cm/s, PGA shows the highest
correlation, with a correlation coefficient of 0.878. When PGV is 120 cm/s, the highest
correlation is with ASI, with a correlation coefficient of 0.926.

As the seismic intensity increases, the maximum correlation coefficients of the severest
parameter for near-field seismic conditions show a decreasing trend, though still exhibiting
relatively high correlation overall. The maximum correlation coefficients for ordinary
seismic conditions significantly decrease, with an absolute value less than 0.6, indicating
a lack of correlation between the parameters and structural response. The maximum
correlation coefficients for far-field seismic conditions show an increasing trend, exhibiting
high correlation.
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4.3. Correlation between the Severest Parameters and Structural Response at Different Sites

In order to analyze the influence of the site on the seismic damage capacity, we exam-
ined the correlation coefficients between structural response and the severest parameters
for eight site conditions, including Class II sites with shear wave velocities of 350 m/s,
320 m/s, 280 m/s, 250 m/s, and 200 m/s and Class III sites with shear wave velocities of
150 m/s, 120 m/s, and 100 m/s. The PGVs of the input seismic motions were 120 cm/s
and 80 cm/s, respectively. The results of the calculation are shown in Figures 6 and 7.
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Figure 6. Correlation coefficients between structural response and the severest parameter under dif-
ferent shear wave velocities with PGV = 120 cm/s: (a) near-field earthquake (R < 20 km); (b) ordinary
earthquake (30 km < R < 70 km); (c) far-field earthquake (R > 80 km).

According to Figure 6, under near-field seismic conditions, asq has the highest cor-
relation with structural response when soil shear wave velocities range from 250 m/s to



Buildings 2024, 14, 996 11 of 15

350 m/s, with the correlation coefficients fluctuating around 0.8. The correlation coeffi-
cients for ASI and PGA are high as well, though lower than asq. When shear wave velocity
ranges from 100 m/s to 200 m/s, VSI shows the highest correlation. Their corresponding
correlation coefficients are 0.783, 0.813, 0.792, and 0.717, respectively. In these conditions,
the distribution range of the maximum correlation coefficient is between 0.7 and 0.85.

Under ordinary seismic conditions, when the soil shear wave velocity ranges from
320 m/s to 350 m/s, ASI has the highest correlation with structural response. In other
conditions, VSI emerges has the highest correlation with structural response. In these
conditions, the distribution range of the maximum correlation coefficient is between 0.4
and 0.8, with significant fluctuations influenced by shear wave velocity.

Under far-field seismic conditions, when the soil shear wave velocity ranges from
200 m/s to 350 m/s, the three most strongly correlated parameters are PGA, asq, and
ASI. Among them, ASI has the highest correlation coefficients, which fluctuate around 0.9.
When the soil shear wave velocity ranges from 100 m/s to 150 m/s, VSI shows the highest
correlation with structural response. Their corresponding correlation coefficients are 0.659,
0.854, and 0.828, respectively. In these conditions, the distribution range of the maximum
correlation coefficient is between 0.65 and 0.95.
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Figure 7. Cont.
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Figure 7. Correlation coefficient between structural response and the severest parameter under
different shear wave velocities with PGV = 80 cm/s: (a) near-field earthquake (R < 20 km); (b) ordinary
earthquake (30 km < R < 70 km); (c) far-field earthquake (R > 80 km).

According to the Figure 7, under near-field seismic conditions, ASI has the highest
correlation with structural response when soil shear wave velocities range from 200 m/s
to 350 m/s. Their corresponding correlation coefficients are 0.709, 0.740, 0.803, 0.872, and
0.881, respectively. The correlation coefficients of PGA and asq are slightly lower than
ASI, with a very small difference. When soil shear wave velocity ranges from 100 m/s to
150 m/s, VSI shows the highest correlation, with correlation coefficients fluctuating around
0.8. In these conditions, the distribution range of the maximum correlation coefficient is
between 0.7 and 0.9.

Under ordinary seismic conditions, the situation is similar with Figure 6b. The distribu-
tion range of the maximum correlation coefficient is between 0.55 and 0.8, with significant
fluctuations influenced by shear wave velocity.

Under far-field seismic conditions, when the soil shear wave velocity ranges from
200 m/s to 350 m/s, PGA and ASI exhibit the highest correlation. Their correlation
coefficients have similar values and are greater than 0.8. When the soil shear wave velocity
ranges from 100 m/s to 150 m/s, VSI shows the highest correlation with structural response.
Their corresponding correlation coefficients are 0.773, 0.823, and 0.717, respectively. In
these conditions, the distribution range of the maximum correlation coefficient is between
0.7 and 0.9.

Based on the results of the above analysis, the parameters that performed well in most
cases were chosen. Therefore, with the same amplitude of PGV for input motions, ASI can
be used as the severest parameter for predicting seismic damage capacity in Class II sites.
In Class III sites, VSI can be used as the severest parameter.

4.4. Ranking of Seismic Damage Capacity

In order to visually analyze the applicability of ranking seismic damage capacity
based on the severest parameter, as shown in Figure 8, the seismic records were sorted
according to the size of the severest parameters. Six calculation results were selected
as demonstrations.

In the lower part of subgraph in Figure 8, the seismic records are sorted based on the
values of the severest parameters. From left to right, the values of the severest parameters
present an increasing trend. The seismic records are color-coded using a color mapping
technique, with red indicating the highest values and green indicating the lowest values.

In the upper part of the subgraph in Figure 8, it can be seen that the sorting of seismic
records remains unchanged from the lower part of subgraph. Based on the size of the
inter-story drift angle, these records were recolored. Red represents the record with the
highest inter-story drift angle and green represents the lowest.
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Figure 8. The effect of assessing the seismic damage potential based on the severest parameters:
(a) near-field earthquake, Vs20 = 280 m/s; (b) ordinary earthquake, Vs20 = 280 m/s; (c) far-field
earthquake, Vs20 = 280 m/s; (d) near-field earthquake, Vs20 = 120 m/s; (e) ordinary earthquake,
Vs20 = 120 m/s; (f) far-field earthquake, Vs20 = 120 m/s.

The symbol ρ in the figures represents the correlation coefficient between the inter-
story drift angle and the severest parameter.

As shown in Figure 8, the correlation coefficient in Figure 8c is 0.926, and the color
order of the inter-story drift angle is basically the same as that of the severest parameter. In
Figure 8a,d,f, the correlation coefficients are 0.763, 0.813, and 0.854, respectively, indicating
that the size of the severest parameter can roughly reflect the seismic damage capacity. The
correlation coefficients in Figure 8b and e are 0.489 and 0.618, respectively. It is obvious
that the correspondence between the size of the severest parameters and the structural
response is relatively poor. Overall, when the correlation coefficient is relatively high
(greater than 0.8), the selected size of the most critical indicator can be used to rank the
seismic damage capacity.

5. Conclusions

This paper establishes a finite element model of a soil–underground station structure
and conducts seismic response analysis using the incremental dynamic analysis method. By
analyzing the correlation between the severest parameter and the inter-layer drift angle, the
paper investigates how to select the seismic motion with the maximum potential damage
capacity. Additionally, the impact of various site conditions and seismic source distances is
taken into account. The following conclusions are obtained:

(1) As the seismic intensity increases, the structural forces show an increasing trend. The
range of the maximum inter-layer drift angle of the underground structure grows
from 0.137% to 0.630% when the PGV increases from 10 cm/s to 120 cm/s, and
the difference in structural response significantly increases. This indicates that it
is necessary to differentiate the damage capacities of different seismic motions for
structures under strong seismic conditions.

(2) With a high PGV amplitude of the input seismic motions, the severest parameters
exhibit a high correlation with structural responses under both near-field and far-
field seismic motions, with the maximum correlation coefficient exceeding 0.9. The
correlation with structural responses under ordinary earthquake conditions is poor,
with a maximum correlation coefficient below 0.5. Therefore, the application of the
severest parameters for ranking damage capacities for different seismic motions is
more suitable for near-field and far-field seismic conditions.

(3) When selecting input seismic motions based on the severest parameter, the following
principle can be adopted: with the same amplitude of PGV for input seismic motions,



Buildings 2024, 14, 996 14 of 15

ASI can be used as the severest parameter for predicting seismic damage capacity in
Class II sites. In Class III sites, VSI can be used as the severest parameter.

(4) When there is a strong correlation between the severest parameter and the structural
response (ρ greater than 0.8), the ranking of the severest parameter can effectively
indicate the potential damage capability of seismic motions.
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