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Abstract: This study provides weight and normalization reference information for declaring the
environmental information of building materials produced and exported in Turkey. Reference
information was first determined for the global warming potential based on greenhouse gas (GHG)
emissions, which is the subject of the European Union Green Deal Carbon Border Adjustment
Mechanism (CBAM). For a more holistic approach, reference information is also recommended for
environmental impact categories acidification, air pollution, ecological toxicity, eutrophication, fossil
fuel depletion, human health, indoor air quality, land use, ozone depletion, photochemical smog
formation, and water depletion, in addition to GHG emissions. Reference information is determined
based on the life cycle assessment (LCA) methodology defined in the international standards ISO
14040 and ISO 14044. Semi-structured interviews were held with twenty-one industry stakeholders
in Turkey to determine the weight reference values. The results obtained from the semi-structured
interviews were combined using the analytic hierarchy process (AHP) method. Normalization
reference information was determined by compiling Turkey’s national emission values. The suggested
reference information has been tested using a case study. Total environmental impact scores were
calculated for floor coverings and exterior wall finishes, including global warming potentials based
on GHG emissions, and eleven other environmental impact categories. The findings support the
need to use regional reference information in Turkey. The reference information recommended in this
study can be used both in declarations within the scope of the EU Green Deal and in other possible
environmental impact declarations resulting from building materials.

Keywords: European Green Deal; greenhouse gas emissions; building materials; environmental
impact; sustainability

1. Introduction

The scope of the European Green Deal was developed to ensure sustainability in EU
countries; it is aimed to reduce GHG emissions to 1990 levels by 2030 in EU countries and to
be carbon neutral until 2050 [1,2]. A gradual transition to CBAM, which entered into force
in October 2023, will be achieved within three years. Within the scope of CBAM, it will be
obligatory to declare inventory data of GHG emissions of products imported into the EU.
Products will be taxed based on their GHG emissions. For this reason, the European Green
Deal has become essential for non-EU countries in terms of import and export relations
with EU countries [3]. Turkey exports products to the EU in many industries, including
the building materials industry. Turkey has no database where GHG emissions and other
environmental impacts of building materials are declared. However, within the scope of
the European Green Deal, it is estimated that some tools will be established in which the
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sustainability criteria are used, and the inventory data of the building materials will be
declared to be able to export the building materials [4].

GHG, which will be taxed within the scope of CBAM, is one of the negative impacts of
building materials in their life cycles. In addition, building materials have other negative
environmental impacts during their life cycle [5]. Eleven environmental impact categories
defined for building materials in the EN 15804:2012+A2:2019 [6] standard are acidification,
air pollution, ecological toxicity, eutrophication, fossil fuel depletion, global warming,
human health, land use, ozone depletion, photochemical smog formation, water depletion.
In addition, BEES (Building for Environmental and Economic Sustainability), a building
material evaluation tool, evaluates indoor air quality as it has an environmental impact
category specific to the construction industry. The twelve environmental impact categories
highlighted here were adopted within the scope of this study. The relationship between
environmental impact categories and building materials can be explained as follows:

• Global warming (or climate change) is due to GHG emissions from human activities [2].
Global warming potential (GWP) is measured as GHG emissions expressed in carbon
dioxide (CO2) equivalents according to the Intergovernmental Panel on Climate
Change (IPCC) Guidelines [7]. The construction industry is responsible for one-
third of the world’s GHG emissions [8]. One of the components of concrete, the most
fundamental building material today, is cement, and its production is an essential
source of CO2 emissions [9]. Additionally, concrete is usually produced off-site and
transported to the site; this leads to GHG emissions from transportation [9].

• Acidification potential (AP) expresses the building material’s contribution to the en-
vironment’s acidification [10]. Acidification is caused by substances such as sulfur
dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3), and the substances released
as a result of their reactions [11]. Multiplying the emissions of these substances by
equivalence factors and converting them into hydrogen ion (H+) equivalents is a
measure of AP [12]. Acidifiers, mainly released from combustion fossil fuels, are re-
leased during the life cycle of building materials, especially during the manufacturing
and transportation stages. Estokova vd. (2017) [10] examined the embodied energy,
GWP, and AP environmental impacts of built-in materials used in twenty masonry
buildings. While it was revealed that foundation materials caused the most negative
environmental impact, the GWP share in the study was determined to be 57.8%, and
the AP share was 30.4%.

• Air pollution is caused by the emissions of the main air pollutants SO2, NOx, O3
(ozone), CO (carbon monoxide), VOCs (volatile organic compounds), PM (particulate
matter), and Pb (lead) [13]. The leading causes of air pollution include acidification
and eutrophication [14]. As stated in the CACC (2019) [15] news, 1500 billion bricks,
commonly used building materials worldwide, are produced in polluting kilns. Ninety
percent of the bricks in the world are produced in Central Asia, and significant air
pollutants are released while transporting these materials to the global market. Due to
brick burning and transportation processes, large amounts of PM, black carbon, SO2,
and CO2 emissions are released and cause air pollution [15].

• The impact of ecological toxicity is measured by converting emissions from the life cycle
processes of building materials into 2,4-D (2,4-Dichlorophenoxyacetic acid) equivalents
according to TRACI (2009) [12,16]. Pacheco-Torgal and Jalali (2011) [17] stated that
even though most of the existing buildings are built following legal regulations,
practitioners may need to learn the toxic properties of the materials or include toxic
building materials due to economic factors. For instance, although the toxicity of Pb
has been known for many years, replacing plumbing systems containing Pb requires
high costs [17]. On the other hand, some blast furnace slags and fly ashes used in
concrete may have radioactive properties [18].

• Eutrophication is the enrichment of natural water resources in nitrogen (N) and phos-
phorus (P) by both natural and artificial means [19]. Eutrophication potential (EP) is
measured by converting the eutrophication-causing emissions of building materials
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within their life cycle into N equivalent [16]. Marzouk et al. (2017) [20] estimate that
building materials contribute to eutrophication in their life cycle as follows: 44% pro-
duction and transportation phase, 16% on-site transportation and application phase,
2% using phase, 23% maintenance and repair phase, 12% demolition phase, and
3% recycle phase. On the other hand, Islam et al. (2016) [21] expressed that 77% of
shipping containers used for shelter in Australia cause eutrophication during their
life cycle. In their study, Kim and Chae (2016) [14] determined that coarse aggregate
and fine aggregates used in the concrete production phase cause both acidification
and eutrophication.

• Fossil fuel depletion results from fossil fuels used in the life cycle stages of building
materials. Depending on the combustion of fossil fuels in vehicle engines, pollutants
such as NO (nitrogen monoxide), CO, CO2, VOC, NO2 (nitrogen dioxide), and O3 are
released [22], and at the same time, these pollutants cause photochemical smog formation.
Hahnel et al. (2021) [23], in their study examining the life cycle environmental impacts
of timber, steel, and concrete structural flooring systems, determined that the most
dominant environmental impacts are global warming and fossil fuel depletion.

• Indoor air quality depends on VOCs emitted into the indoor air from different sources.
Various chemicals used in some building materials, such as fire retardants, anti-stain
chemicals, and plasticizers, are released into the indoor air over time [24]. Alyüz and
Veli (2006) [25] state that building materials cause significant VOC emissions due to
the use of chemical substances in their production and their application in the building.
The essential sources of VOCs are building materials and decoration materials [25].

• Land use refers to land transformations. Excavations carried out to obtain raw materials
for building materials, use of agricultural lands during the production process, land
occupation during the use phase, and land occupation during the waste storage and
disposal phases are land use. For instance, due to the methods used to obtain limestone,
which is one of the raw materials of cement, and to obtain aggregate and sand for
concrete production, effects such as destruction of the habitats of plants and animals,
changes in topography, and pollution of waterways occur [26]. When aggregate and
sand are obtained from stream beds, land use occurs, the bottom boundaries of the
stream beds change, and habitats are altered [27].

• Ozon depletion originates from chlorofluorocarbons (CFCs), widely used in buildings’
air conditioning and ventilation systems, which cause ozone depletion when released
into the atmosphere [28]. The CCAC (2015) report [29] states that the emissions of
substances from ozone depletion increase by 8–15% every year due to population
growth and urbanization.

• Water depletion occurs directly and indirectly during the production of building materi-
als [30]. Following a series of case studies carried out in non-residentials in Australia,
McCormack et al. (2007) [31] determined that 5 to 20 m3 of embodied water per m2 of
gross floor area is consumed, and the building materials that cause embodied water are
steel, concrete, and carpet, respectively. In the production process of these materials,
water is used as a lubricant, cleaning agent, sealant, heat transfer medium, solvent,
and air pollution control tool and for other purposes depending on the materials
produced [30]. As another example of water depletion in terms of building materials,
specifically in commercial buildings, replacing carpets in approximately ten years
increases embodied water [32].

• Human health is affected permanently or temporarily by the environmental impacts
mentioned above. For instance, photochemical smog formation causes respiratory tract
irritation and lung irritation [33]. Ozon depletion causes various skin diseases, cataracts,
immune system weakening, respiratory diseases, asthma attacks, and vascular occlu-
sion in humans [34]. There are studies in the literature on the details of the human
health impacts caused by building materials [35–38].

In summary, the aims of this study are as follows: firstly, to recommend national refer-
ence information for Turkey’s global warming potential resulting from GHG for CBAM
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declarations; secondly, for a more holistic approach, to recommend national reference infor-
mation for the other eleven environmental impact categories mentioned above; thirdly, to
test the recommended reference information with floor coverings and exterior wall finishes.

The novelty of the current study stems from the lack of national reference information
for Turkey to declare GHG emissions from building materials within the scope of CBAM. In
addition to GHG emissions, the study provides reference information for the other eleven
environmental impact categories.

2. Materials and Methods

The process followed in determining the reference information recommended in the
study is shown in Figure 1.
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2.1. Materials

The study was tested with two groups of building materials: floor coverings and exte-
rior wall finishes. Information on the building materials is shown in Table 1. Test materials
were selected based on semi-structured interviews with industry stakeholders. In addition,
the building materials in Table 1 are produced in Turkey. Furthermore, environmental data
of these materials are available in the BEES database.

Table 1. Testing materials.

Groups of Building Materials Building Material

GROUP 1: Floor coverings
Ceramic Tile with Recycled Content

Marble Tile
Terrazzo Tile

GROUP 2: Exterior wall finishes
Brick Siding

Insulated Siding
Vinyl Siding

2.2. Methods
2.2.1. Life Cycle Assessment

The phases of LCA defined in international standards ISO 14040 (2006) [39] and
ISO 14044 (2006) [40] are shown in Figure 2. LCA includes four mandatory phases: goal
and scope definition, inventory analysis, impact assessment, and interpretation [39]. The
impact assessment phase has optional elements called weighting, normalization, and
grouping [41]. Implementation of optional phases does not imply a preference. If the study
becomes clearer with implementing these phases, it is necessary to implement them.
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In the goal and scope definition phase, the functional unit should be decided, and
system boundaries should be determined. The functional unit is the quantitative expression
of the building material. The materials being compared should have similar functions. For
instance, the amount required for a building material to fulfill its function should be shown
in measurable units such as m2, m3, lt, and kg [42].

When determining the system boundaries, the cut-off criteria for the study must be
specified. Three different system boundaries are recommended when carrying out an LCA
study of a building material: (i) cradle to gate, (ii) cradle to grave, (iii) cradle to cradle [40].
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2.2.2. Environmental Impact Calculation Method

The potential environmental impacts of building materials are converted to numerical
values by the following equations. The total environmental score is calculated by the
following equation:

IESj = W ×
EISj

∑n
j=1 EISj

(1)

where IESj is the total environmental score calculated for each j building material; W
is environmental performance weight; EISj is the environmental impact score of each j
building material; n is the number of building materials. Since only the environmental
performance of building materials is calculated, W = 100.

EISj is calculated by the following equation [43]:

EISj =
p

∑
k=1

IASjk (2)

where p is the number of environmental impact categories; IASjk is the normalized,
weighted environmental impact assessment score of building material j according to the k
environmental impact category.

IASjk is calculated by the following equation [43]:

IASjk =
IAjk × wk

NFk
× 100 (3)

where IAjk is the environmental impact assessment score of building material j according
to the k environmental impact category; wk is the relative importance weight of the k
environmental impact category; NFk is the normalized value of the k environmental
impact category.

IAjk is calculated by the following equation [43]:

IAjk =
n

∑
i=1

IFij × EFi (4)

where IFij is the inventory input i of building material j; EFi is emission factors for inventory
input i; n is the number of inventory inputs of the k environmental impact category.

2.2.3. Weighting Calculation Method: Analytic Hierarchy Process

The analytic hierarchy process as expressed by Saaty (2001) [44] is “the objective
mathematical expression of the subjective and personal preferences of an individual or
a group in making a decision”. It provides the opportunity to measure ideas, feelings,
thoughts, and experiences numerically. The application steps are as follows:

1. The hierarchy consists of three levels: the top level includes the goal, the middle level
includes the criteria and sub-criteria if any, and the bottom level includes the decision
alternatives [45,46].

2. An n × n-dimensional square matrix is defined in which the criteria are compared
pairwisely [47]. Pairwise comparisons are carried out according to the fundamental
comparison scale proposed by Saaty (1987) [48] (p. 163).

3. The requirement for the pairwise comparison matrix to be consistent is that its maxi-
mum eigenvalue (λmax) is equal to the matrix size (n) [49]. The consistency ratio of the
pairwise comparison matrix is calculated with the following equation [50]. If CR < 0.1,
the matrix is consistent; otherwise, decision-makers need to revise their judgments in
the pairwise comparison matrix until they obtain acceptable consistency [51].

CR =
CI
RI

(5)
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where CI is the consistency index; RI is the random consistency index [47]. CI is calculated
by the following equation [48].

CI =
λmax − n

n − 1
(6)

In the literature, the RI values obtained for matrix dimensions 1, 2, 3, . . ., 15 as a result
of a series of studies are given by Saaty (2008) [49] (p. 264).

2.2.4. Normalization Factor Calculation Method

The twelve environmental impact categories considered in the study are measured in
different units. In order to calculate the total environmental impact of a building material,
these values should be on the same scale. This is made possible by implementing the LCA’s
normalization phase of the impact assessment phase.

According to ISO 14044 (2006) [40], normalization is performed by dividing the numer-
ical results of the environmental impact categories by the reference values. Normalization
factors are calculated with the following equation [52]:

NFi =
CFi,s × Es

P
(7)

where NFi is the normalization factor for impact category i (impact/year/capita); CFi,s, the
emission factor of impact category i (impact of one gram of substance s, impact/g);
Es, substance emissions for the reference area (g/year); P, the population of the reference
area (capita).

Emission factors (or characterization factors) are coefficients representing the contri-
butions of reference substances that contribute to the concerned environmental impact
category. These values are determined mostly by assuming a normal distribution among
the emission factors of the reference substances [52].

2.3. Limitations

The limitations of the study can be listed as follows:

(i) Turkey has no national database where the emission amounts of building materials
throughout their life cycles are declared. Some emission data feeding the environmen-
tal impact categories could not be obtained.

(ii) Some industry stakeholders contacted did not respond to semi-structured
interview requests.

(iii) When the study was initially planned, it was intended to test five different material
groups (insulation, plaster, walls, floor coverings, and exterior wall finishes). However,
while the BEES Online software used in the study was upgraded to BEES Online 2.0,
the inventory data of the building materials in the previous version were removed
from the database. Since the tested materials must have equivalents in the BEES
Online database for comparisons to be made, the material groups used in the case
study are limited to floor coverings and exterior wall finishes.

(iv) In the normalization value calculations, 2018 was chosen as the reference year. When
the inventory data declared by the Turkish Ministry of Environment, Urbanization,
and Climate Change, Turkish Ministry of Agriculture and Forestry, TurkStat (Turkish
Statistical Institute), and EMEP (European Monitoring and Evaluation Program) were
examined, it was determined that the most comprehensive data regarding the selected
environmental impact categories were for 2018. Another reason is that the Turkish
Ministry of Environment, Urbanization, and Climate Change declares inventory data
from two previous years every year.

3. Results and Discussion
3.1. Weighting Reference Values

In the ISO 14040 (2006) [39] and ISO 14044 (2006) [40] international standards, there is
no limitation on determining the weights of environmental impact categories. However, it
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is stated that the chosen environmental mechanism and the reference values should be com-
patible with the reference period of the study. In order to ensure regional adaptation, three
groups, namely green building consultants, green building designers, and green building
practitioners operating in Turkey, were requested to participate in the study voluntarily.

The green building consultants can be accredited professionals working in green build-
ing consulting institutions, architects working within green building design institutions,
and engineers involved in Turkey’s green building production phase. Within the scope
of the study, semi-structured interviews were conducted between May 2020 and January
2021 with twenty-one industry stakeholders: seven green building consultants, seven green
building designers, and seven green building practitioners. Stakeholders were requested
to vote on the environmental impact categories as short-term (0–10 years), medium-term
(10–100 years), and long-term (>100), according to the fundamental comparison scale by
Saaty (1987) [48] (p. 163). Values depending on the personal judgment of stakeholders were
then combined using the AHP technique.

It should be noted that, in semi-structured interviews, stakeholders were asked
whether there were any environmental impact categories for Turkey’s conditions in ad-
dition to the 12 environmental impact categories. No stakeholders reported additional
environmental impact categories. Stakeholders were also asked about testing materials.
The questions asked in the semi-structured interviews are given in Appendix A.

Figure 3 shows the hierarchical structure created to determine the weights of environ-
mental impact categories. According to the information obtained from the semi-structured
interviews, a 12 × 12-dimensional pairwise comparison matrix was created. According
to the AHP procedure described in the previous section, the normalized matrix, relative
importance weight vector, and priority calculations were performed.

Buildings 2024, 14, 889 8 of 22 
 

3. Results and Discussion 
3.1. Weighting Reference Values 

In the ISO 14040 (2006) [39] and ISO 14044 (2006) [40] international standards, there 
is no limitation on determining the weights of environmental impact categories. However, 
it is stated that the chosen environmental mechanism and the reference values should be 
compatible with the reference period of the study. In order to ensure regional adaptation, 
three groups, namely green building consultants, green building designers, and green 
building practitioners operating in Turkey, were requested to participate in the study vol-
untarily. 

The green building consultants can be accredited professionals working in green 
building consulting institutions, architects working within green building design institu-
tions, and engineers involved in Turkey’s green building production phase. Within the 
scope of the study, semi-structured interviews were conducted between May 2020 and 
January 2021 with twenty-one industry stakeholders: seven green building consultants, 
seven green building designers, and seven green building practitioners. Stakeholders 
were requested to vote on the environmental impact categories as short-term (0–10 years), 
medium-term (10–100 years), and long-term (>100), according to the fundamental com-
parison scale by Saaty (1987) [48] (p. 163). Values depending on the personal judgment of 
stakeholders were then combined using the AHP technique. 

It should be noted that, in semi-structured interviews, stakeholders were asked 
whether there were any environmental impact categories for Turkey’s conditions in addi-
tion to the 12 environmental impact categories. No stakeholders reported additional en-
vironmental impact categories. Stakeholders were also asked about testing materials. The 
questions asked in the semi-structured interviews are given in Appendix A. 

Figure 3 shows the hierarchical structure created to determine the weights of envi-
ronmental impact categories. According to the information obtained from the semi-struc-
tured interviews, a 12 × 12-dimensional pairwise comparison matrix was created. Accord-
ing to the AHP procedure described in the previous section, the normalized matrix, rela-
tive importance weight vector, and priority calculations were performed. 

 
Figure 3. Hierarchical structure for obtaining the weights of environmental impact categories. 

The maximum eigenvalue of the matrix was calculated as λmax = 12,591. This value is 
equal to the matrix size (n). The consistency index CI was calculated as follows: 

Figure 3. Hierarchical structure for obtaining the weights of environmental impact categories.

The maximum eigenvalue of the matrix was calculated as λmax = 12.591. This value is
equal to the matrix size (n). The consistency index CI was calculated as follows:

CI =
λmax − n

n − 1
=

12.591 − 12
12 − 1

= 0.054

Based on the consistency index, the consistency ratio CR was calculated as follows:

CR =
CI
RI

=
0.054
1.54

= 0.035
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The RI value is taken from Saaty (2008) [49] (p. 264). Since n = 12 for the 12 × 12 matrix,
the value of 1.54 was considered, and CR = 0.035 < 0.1 was calculated; the matrix
is consistent.

In calculating the weights of the environmental impact categories, the AHP application
was carried out separately for the decision criteria and sub-criteria. Both the weight
reference values calculated within the scope of this study and the BEES Stakeholder Panel
weights [53] are shown in Figure 4.
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3.2. Normalization Reference Values

The emission factors considered in the characterization of environmental impacts in
this study are as follows: 100-year time horizon of the IPCC for global warming; direct use
of inventories approach for water depletion and indoor air quality; SETAC’s (Society of
Environmental Toxicology and Chemistry) environmental problems approach acidification,
air pollution, ecological toxicity, eutrophication, fossil fuel depletion, human health, land
use, ozone depletion, photochemical smog formation.

In order to obtain the normalization reference information values, it is necessary to
calculate the impacts caused by each Turkish citizen in each environmental impact category
within a year. According to TurkStat data, the population of Turkey as of 31 December 2018
is 82,003,882 people [54].

Many of the environmental impact assessment tools divide the environmental im-
pacts of the reference area by the population of the area under calculation and consider the
per capita environmental impact as the normalization factor. For instance, differently, the
reference values for Germany and the Netherlands are total inputs and outputs per capita,
while in China, the total environmental burdens per unit building floor area in a year in the
entire construction industry are taken into account. In Australia, per capita, environmental
impacts are calculated for the reference year, while in the USA, the amount of emissions
released per capita for the reference year is calculated.

The normalization reference information value calculations for the global warm-
ing, air pollution, acidification, and water depletion environmental impact categories are
shown below.

3.2.1. Calculation of Global Warming Normalization Reference Information Value

The Turkish Ministry of Environment, Urbanization, and Climate Change calculates
Turkey’s national GHG emissions using the IPCC Guidelines. According to the GHG
inventory results, the total GHG emissions in 2018 were calculated as 522 million tons
(Mt) of CO2 equivalent [55]. TurkStat declared the total GHG emission per capita in
Turkey in 2018 as 6.4 tons of CO2 equivalent. Since these data are directly declared as
CO2 eq./year/capita by TurkStat, the global warming environmental impact category
normalization value is considered in the calculations as 6,400,000 g CO2 eq./year/capita.
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3.2.2. Calculation of Air Pollution Normalization Reference Information Value

Turkey is preparing a national emission inventory by the Turkish Ministry of Environ-
ment, Urbanization and Climate Change and the CLRTAP (Convention on Long-Range
Transboundary Air Pollution) of the EMEP Protocol. According to SETAC’s environmental
problems approach, the impacts of air pollution are measured through nitrogen oxides
(NOx), sulfur oxides (SOx), and particulate matter (PM) emissions. According to Turkey’s
Informative Inventory Report, NOx emissions were 785 kilotonnes and SOx (as SO2) emis-
sions were 2519 kilotonnes in 2018 [56]. According to EMEP data, PM10 emissions were
239.08 kilotonnes and PM2.5 emissions were 193.64 kilotonnes in 2018 in Turkey [57].
Considering these emission values and air pollution emission factors, the air pollution
normalization reference information value was calculated in terms of the microDALYs
reference unit as in Table 2.

Table 2. Obtaining the air pollution environmental impact category normalization reference informa-
tion value.

Air Pollutants NOx >PM10 ≤PM10 Unspecified PM SOx

Emission factors [53] 0.002 0.046 0.083 0.046 0.014

Emissions 7.85 × 1011 g NA 239.08 × 109 g (PM10)
193.64 × 109 g (PM2.5)

NA 2.52 × 1012 g

Air pollution index
(∑ imi × CPi )

1,570,000,000 - 35,915,760,000 35,266,000,000

Total 72,751,760,000 microDALYs/year
Population (capita) 82,003,882

Normalization reference
information value 887.17 microDALYs/year/capita

NA: not available; mi: inventory input i in grams; CPi: microDALYs per functional unit of inventory input i (as
grams in this table).

3.2.3. Calculation of Acidification Normalization Reference Information Value

NH3, NOx, and SOx acidifiers were obtained from Turkey’s 5th Statement on Climate
Change [56]. Emission amounts, emission factors, acidification index calculation, and
normalization value calculation are shown in Table 3. For other acidifiers hydrochloric
acid (HCl), hydrocyanate (HCN), hydrofluoric acid (HF), hydrogen sulfur (H2S), and
sulfuric acid (H2SO4), Turkey’s national emission inventory data for the reference year are
not available.

Table 3. Obtaining the acidification environmental impact category normalization reference informa-
tion value.

Acidifiers NH3 HCl HCN HF H2S NOx SOx H2SO4

Emission factors [53] 95.49 44.70 60.4 81.26 95.9 40.04 50.79 33.30
Emissions 7.28 × 1011 g NA NA NA NA 7.85 × 1011 g 2.519 × 1012 g NA

Acidification index
(∑ imi × APi )

6.952 × 1013 - - - - 3.143 × 1013 1.279 × 1014 -

Total 2.289 × 1014 H+ eq./year
Population (capita) 82,003,882

Normalization reference
information value 2,791,186.52 H+ eq./year/capita

NA: not available; mi: inventory input i in grams; APi: millimoles of hydrogen ions per functional unit of
inventory input i (as grams in this table).

3.2.4. Calculation of Water Depletion Normalization Reference Information Value

While calculating the normalization reference information of the water depletion
environmental impact category, the inventory inputs were used directly without any
impact assessment. According to 2018 TurkStat data, the average daily water depletion
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per person in Turkey is 224 L/day/capita [58]. The normalization reference information is
taken into account as 81,760 L/year/capita.

An extensive study was carried out to calculate the normalization reference infor-
mation. Here, the calculations of the normalization reference information values of the
environmental impact categories of global warming, air pollution, acidification, and water
depletion, which are the shortest examples, are shown. There are numerous emission
factors for the other eight environmental impact categories. There are many calculations
in obtaining the normalization reference information values, so the calculation of the nor-
malization reference information values for all environmental impact categories cannot be
shown here. The normalization reference information values obtained after all calculations
and the normalization values used for the USA in BEES Online software are shown in
Table 4.

Table 4. Normalization values.

Environmental Impact Categories Reference Unit Present Study USA [53]

Acidification H+ eq./year/capita 2,791,186.52 7,800,200,000
Air Pollution microDALYs/year/capita 887.17 19,200

Ecological Toxicity g 2,4-D eq./year/capita 43,238.69 81,646.72
Eutrophication g N eq./year/capita 27,104.47 19,214.20

Fossil Fuel Depletion MJ energy/year/capita 300,489.72 35,309
Global Warming g CO2 eq./year/capita 6,400,000 25,582,640.09
Human Health g C7H8 eq./year/capita 13,357,199.68 274,557,555.37

Indoor Air Quality g TotalVOCs/year/capita 35,108.09 35,108.09
Land Use count/acre/capita 0.002344 0.00335

Ozone Depletion g CFC-11 eq./year/capita 2.439 340.19
Photochemical Smog Formation g NOx eq./year/capita 11,870.17 151,500.03

Water Depletion liters/year/capita 81,760 529,957.75

3.3. A Case Study

This section shows an example application using the weight and normalization values
generated as reference information.

1. The case study LCA’s goal and scope definition: The goals of the case study are to
(i) calculate the environmental performance scores of building materials using the
recommended reference information and (ii) show how the result would be affected
if BEES Online’s default weighting and normalization values were used for Turkey
without recommending reference information. In the calculations, the functional
unit of each building material was considered in grams, per BEES Online. Twelve
environmental impact categories were evaluated, as previously mentioned. The
selected impact assessment approaches are the 100-year time horizon of the IPCC,
the direct use of inventories approach, and the environmental problems approach.
The system boundary of the study is the cradle-to-grave approach. The service life
of building materials is assumed to be 50 years. In BEES calculations, the building
materials are assumed to be transported in one direction from 500 miles.

2. The case study LCA’s inventory analysis: As mentioned before, there is no platform,
database, legal obligation, or encouraging application where the inventory data within
the life cycle of building materials are declared in Turkey. For this reason, the life
cycle inventory data of the building materials given in Table 1 were obtained from the
BEES Online database while performing the case study within the scope of the study.

3. The case study LCA’s impact assessment: The total environmental score is calcu-
lated by summing the effects into twelve environmental impact categories of the
building materials evaluated in the case study. Equations (1)–(4) were used to cal-
culate total environmental scores. To show the importance of regional adaptation
of the reference information values calculated in the study, the total environmental
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scores of the building materials in Table 1 were calculated using different weights and
normalization values.

For Group 1–Set 1 evaluation, the weights and normalization reference information
values determined within the scope of this study were used. For Group 1–Set 2 evalua-
tion, the weights determined within the scope of this study and the USA normalization
values in Table 4 were used. For Group 1–Set 3 evaluation, calculations were performed
using the BEES Stakeholder Panel weights defined in BEES Online software and the USA
normalization values in Table 4.

As a result of the three calculations mentioned above, the impacts of global warming
potential depending on the GHG emissions in the life cycle of the building materials in
Table 1 are shown in Figure 5. As the study’s introduction states, building materials will be
taxed on GHG emissions within the CBAM. For this reason, GHG emission declarations of
building materials have become very important. The local conditions of the geographies
where the building materials are produced must be adapted to the study at this stage.
Otherwise, misleading results may occur. Set 2 and Set 3 evaluations within the scope of the
study were carried out to show the results that would be revealed if reference information
adapted to local conditions was not used.
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If the weights and normalization reference information were not calculated within the
scope of this study and the weights and normalization values defined in the BEES online
software were directly used, the global warming potential per functional unit of the ceramic
tile with recycled content would be obtained as 0.0030 g CO2 equivalent/year/capita.
However, using the reference information value adapted to the local conditions of Turkey,
the global warming potential per functional unit of the same material was obtained as
0.0124 g CO2 eq./year/capita.

Figure 6 shows the total environmental scores of building materials, including eleven
other environmental impact categories, in addition to their global warming potential, based
on GHG emissions. Total environmental scores were obtained by summing the impacts of
the functional unit of the evaluated materials in twelve environmental impact categories.
Evaluating the impacts of environmental impact categories by summing them up is a more
holistic approach. For example, according to Figure 6, the total environmental impact
score is 82.47 in Set 1 calculations for ceramic tile with recycled content, while the total
environmental impact score for Set 3 calculations is 132.63. These differences are more
closely related to the techniques and technologies used by the countries in the building
material production processes and the system boundaries. If the total environmental impact
scores are used for building material selection, the importance of the score difference will
become more apparent.
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material alternatives, similarity in the rankings is an expected result. However, the total
environmental scores calculated for the same building material in all three evaluation sets
differ. This shows that the weights and normalization values used are not superior to each
other, but the values obtained depending on the regional adaptation affect the results of
the studies.

4. The case study LCA’s impact interpretation: Set 1 calculations for Group 1 and Group
2 building materials show calculations using weights and normalization reference
information obtained in the present study. Set 2 calculations were performed to show
how there would be differences in the evaluations if only the weights were calculated
and normalization values were not calculated for Turkey. Set 3 calculations showed
how the results would be affected if the values defined in BEES Online were used
directly, without obtaining weights and normalization values for Turkey.

Set 1, Set 2, and Set 3 calculation results for Group 1 and Group 2 building materials
show that it has become imperative to consider the compatibility of the chosen environ-
mental mechanism and the reference values with the scale of time and space, as specified
in ISO 14044 (2006) [40]. Because the emission amounts, populations, and weights of the
chosen environmental impact categories of the USA and Turkey for the reference year are
different, all these differences affect the study’s results.

4. Conclusions

This study recommends reference information that can be used to declare both the
global warming potentials of building materials due to GHG emissions and other in-
ternationally accepted environmental impacts. Since the reference information varies
significantly according to the internal factors of the geography where studied, the opinions
of the local industry stakeholders were consulted. In addition, Turkey’s national emission
amounts were used. A case study was performed to demonstrate the use of the recom-
mended weight and normalization reference information. The purpose of the case study
was to show how the results change in the direct use of existing building material evalua-
tion tools without adapting to local conditions. In the case study, only the environmental
performance of building materials was considered. Economic and social impacts, which
are the other dimensions of sustainable development, are excluded from the scope of this
study. Therefore, W = 100 is taken into account in Equation (1). If the economic and social
sustainability impacts were also taken into account, these impacts should be added to the
right side of Equation (1) by multiplying by their weights. In future studies, the economic
and social dimensions of sustainable development can be adapted to the study.

The reference information recommended in the study is based on the LCA. Although
the relative structure of LCA is criticized from time to time in the literature, it continues
to be used reliably because ISO international standards also define it. The LCA process
requires extensive data collection. Especially for the inventory analysis phase, the inputs,
outputs, system boundaries, and environmental impacts of the unit processes of building
materials should be well known. There are national inventory databases of building
materials in some developed countries. However, there has yet to be such a database in
Turkey. The building material manufacturers do not tend to share these data. This is due to
two main reasons: (i) In Turkey, as in many developing countries, economic concerns are
more prominent than ecological concerns. (ii) Another reason is that the national legislation
has no legal obligation on this issue. However, as stated in the study’s introduction, the EU
Green Deal is closely related to Turkey in this regard. After October 2023, when the EU
Green Deal came into force, declaring GHG inventory data of building materials exported
to EU countries will be obligatory within three years. Although concrete steps have yet to
be taken in Turkey, construction industry stakeholders anticipate that structures will be
created where inventory data of building materials will be shared.

In the absence of reference information proposed to be used nationally, it is thought
that the reference information recommended in the study can be used reliably. This study
had two main limitations: the lack of national inventory data and the fact that industry
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stakeholders did not accept interview requests, which was a relatively lesser limitation
than the first. In future studies, the opinions of more stakeholders such as building
material manufacturers, state authorities, and legislators can be consulted in determining
the weight values.

Local LCA tool development, which may require effort, time, and high costs, should
be encouraged and supported. With the cooperation of universities, industry, and state
authorities, databases of building materials produced, used, and exported in Turkey can
be created.
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Appendix A

Appendix A.1

In this section, there are 12 environmental impact categories that you will be asked to
weigh proportionally in the short, medium, and long term. It is thought that the adverse
effects of building materials on the environment are mainly in these 12 environmental
impact categories.

Environmental performance is determined according to the life cycle assessment
approach defined in the ISO 14040 and ISO 14044 standards. Environmental impact cate-
gories are called as follows: acidification, air pollution, ecological toxicity, eutrophication,
fossil fuel depletion, global warming, human health, indoor air quality, land use, ozone
depletion, photochemical smog formation, and water depletion. Information about each
environmental impact category is presented in the description column below.

You can mark the relative importance weights of these environmental impact cate-
gories in the short-term, medium-term, and long-term in the table below, or you can write
them as a single value.

www.ceip.at/data-viewer
https://www.nist.gov/services-resources/software/bees
https://cevreselgostergeler.csb.gov.tr/en
https://cevreselgostergeler.csb.gov.tr/en
https://tez.yok.gov.tr/UlusalTezMerkezi/tarama.jsp
https://tez.yok.gov.tr/UlusalTezMerkezi/tarama.jsp
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Environmental Impact Categories

Relative Importance Weights

DescriptionShort Term (0–10 Years)
(%)

Medium Term (10–100 Years)
(%)

Long Term (>100 Years) (%)

Acidification

0–10 0–10 0–10
Acidification occurs with the increase in hydrogen
(H+) ions due to the increase in acids such as nitric

acid and sulfuric acid in the environment in a region.
Acidifying compounds can be found in gaseous

form, dissolved in water, or fixed on solid particles.
They dissolve in rain or water and enter the

ecosystem. Acidification affects trees, soil, buildings,
construction materials, animals, and people.

Humans release them by burning fossil fuels and
biomass. Other compounds released by human

sources, such as hydrogen chloride and ammonia,
also contribute to acidification.

10–20 10–20 10–20

20–30 20–30 20–30

30–40 30–40 30–40

40–50 40–50 40–50

50–60 50–60 50–60

60–70 60–70 60–70

70–80 70–80 70–80

80–90 80–90 80–90

90–100 90–100 90–100

Air Pollution

0–10 0–10 0–10

Air pollutants consist of solid and liquid particles
commonly found in the air. They arise from many

activities, including combustion, vehicle use,
electricity generation, material handling, crushing,
and grinding operations. Solid and liquid particles

that create air pollution include coarse particles that
negatively affect respiratory diseases such as asthma
and fine particles that cause more serious respiratory

symptoms and diseases.

10–20 10–20 10–20

20–30 20–30 20–30

30–40 30–40 30–40

40–50 40–50 40–50

50–60 50–60 50–60

60–70 60–70 60–70

70–80 70–80 70–80

80–90 80–90 80–90

90–100 90–100 90–100
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Environmental Impact Categories

Relative Importance Weights

DescriptionShort Term (0–10 Years)
(%)

Medium Term (10–100 Years)
(%)

Long Term (>100 Years) (%)

Ecological Toxicity

0–10 0–10 0–10

Ecological toxicity measures the potential of
chemicals released into the environment to harm

land and aquatic ecosystems.

10–20 10–20 10–20

20–30 20–30 20–30

30–40 30–40 30–40

40–50 40–50 40–50

50–60 50–60 50–60

60–70 60–70 60–70

70–80 70–80 70–80

80–90 80–90 80–90

90–100 90–100 90–100

Eutrophication

0–10 0–10 0–10

Eutrophication is the addition of mineral nutrients to
soil or water. Adding large amounts of mineral

nutrients such as nitrogen and phosphorus to soil
and water causes a decrease in ecological diversity.

Excessive release of nitrogen and phosphorus causes
adverse effects on waterways during their transport.
Due to the tendency of these nutrients to increase the
formation of algae in the water, oxygen deficiency is
caused, and, therefore, the death of species such as

fish is also caused.

10–20 10–20 10–20

20–30 20–30 20–30

30–40 30–40 30–40

40–50 40–50 40–50

50–60 50–60 50–60

60–70 60–70 60–70

70–80 70–80 70–80

80–90 80–90 80–90

90–100 90–100 90–100
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Environmental Impact Categories

Relative Importance Weights

DescriptionShort Term (0–10 Years)
(%)

Medium Term (10–100 Years)
(%)

Long Term (>100 Years) (%)

Fossil Fuel Depletion

0–10 0–10 0–10

Fossil fuel types pose environmental risks when used
uncontrolled and excessively. Waste resulting from

the use of fossil fuels causes environmental pollution.
Fossil fuel consumption, which causes air, soil, and
water pollution, also causes a decrease in natural

resources.

10–20 10–20 10–20

20–30 20–30 20–30

30–40 30–40 30–40

40–50 40–50 40–50

50–60 50–60 50–60

60–70 60–70 60–70

70–80 70–80 70–80

80–90 80–90 80–90

90–100 90–100 90–100

Global Warming

0–10 0–10 0–10 The earth absorbs radiation from the sun. This
energy is then redistributed by the atmosphere and

oceans. In the presence of greenhouse gases
accumulating in the atmosphere, the greenhouse

gases retain the energy reflected from the
atmosphere. The rays that cannot reach space are

kept in the atmosphere and surround the world like
a blanket. This phenomenon is known as the

greenhouse effect. The greenhouse effect is a natural
phenomenon. The environmental problem is caused

by humans’ greenhouse gases released into the
atmosphere. The increase in temperature on the

earth’s surface due to the greenhouse effect is called
global warming or climate change.

10–20 10–20 10–20

20–30 20–30 20–30

30–40 30–40 30–40

40–50 40–50 40–50

50–60 50–60 50–60

60–70 60–70 60–70

70–80 70–80 70–80

80–90 80–90 80–90

90–100 90–100 90–100
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Environmental Impact Categories

Relative Importance Weights

DescriptionShort Term (0–10 Years)
(%)

Medium Term (10–100 Years)
(%)

Long Term (>100 Years) (%)

Human Health

0–10 0–10 0–10

Many factors threaten human health. Different
people have variable resistance to other substances.

10–20 10–20 10–20

20–30 20–30 20–30

30–40 30–40 30–40

40–50 40–50 40–50

50–60 50–60 50–60

60–70 60–70 60–70

70–80 70–80 70–80

80–90 80–90 80–90

90–100 90–100 90–100

Indoor Air Quality

0–10 0–10 0–10

Building materials have significant effects on indoor
air quality throughout buildings. A product’s total

volatile organic compound emissions are often used
as a measure of indoor air quality.

10–20 10–20 10–20

20–30 20–30 20–30

30–40 30–40 30–40

40–50 40–50 40–50

50–60 50–60 50–60

60–70 60–70 60–70

70–80 70–80 70–80

80–90 80–90 80–90

90–100 90–100 90–100
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Environmental Impact Categories

Relative Importance Weights

DescriptionShort Term (0–10 Years)
(%)

Medium Term (10–100 Years)
(%)

Long Term (>100 Years) (%)

Land Use

0–10 0–10 0–10

Land use measures the potential for harm and
habitat alteration of threatened and endangered

species from human land use.

10–20 10–20 10–20

20–30 20–30 20–30

30–40 30–40 30–40

40–50 40–50 40–50

50–60 50–60 50–60

60–70 60–70 60–70

70–80 70–80 70–80

80–90 80–90 80–90

90–100 90–100 90–100

Ozone Depletion

0–10 0–10 0–10

The ozone layer in the stratosphere acts as a filter that
absorbs harmful shortwave ultraviolet light while
allowing longer wavelengths to pass. The ozone

depletion causes more harmful shortwave radiation
to reach the earth’s surface. This situation negatively

affects ecosystems, agricultural production, and
human health. For example, it is known to have

adverse effects on human health, such as skin cancer,
cataracts, and suppression of the immune system.

10–20 10–20 10–20

20–30 20–30 20–30

30–40 30–40 30–40

40–50 40–50 40–50

50–60 50–60 50–60

60–70 60–70 60–70

70–80 70–80 70–80

80–90 80–90 80–90

90–100 90–100 90–100



Buildings 2024, 14, 889 21 of 24

Environmental Impact Categories

Relative Importance Weights

DescriptionShort Term (0–10 Years)
(%)

Medium Term (10–100 Years)
(%)

Long Term (>100 Years) (%)

Photochemical Smog Formation

0–10 0–10 0–10

Air emissions from industry and transportation
accumulate at ground level in some conditions and

react with sunlight to create air pollution.
Photochemical smog formation causes harmful

effects on human health and vegetation.

10–20 10–20 10–20

20–30 20–30 20–30

30–40 30–40 30–40

40–50 40–50 40–50

50–60 50–60 50–60

60–70 60–70 60–70

70–80 70–80 70–80

80–90 80–90 80–90

90–100 90–100 90–100

Water Depletion

0–10 0–10 0–10

This impact is considered only in terms of water
depletion. Activities such as agricultural production

that cause water pollution are excluded.

10–20 10–20 10–20

20–30 20–30 20–30

30–40 30–40 30–40

40–50 40–50 40–50

50–60 50–60 50–60

60–70 60–70 60–70

70–80 70–80 70–80

80–90 80–90 80–90

90–100 90–100 90–100
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Apart from the 12 environmental impact categories above, are there any environmental
impact categories you think can add to Turkey’s conditions? If so, what is that/what are
they? What is the relative importance of weight(s)?

Environmental
Impact Category

Relative Importance Weights
Description

(If Available)
Short Term
(0–10 Years)

(%)

Medium Term
(10–100 Years)

(%)

Long Term
(>100 Years) (%)

Appendix A.2

The answers you give in this section will be used to test the weights obtained based
on your answers in the first section.

Please specify the five most common insulation materials you encounter in practice

Name of building material Where can it be supplied?

Please specify the five most common floor covering materials you encounter in practice.

Name of building material Where can it be supplied?

Please specify the five most common plaster materials you encounter in practice.

Name of building material Where can it be supplied?

Please specify the five most common exterior wall finish materials you encounter in practice.

Name of building material Where can it be supplied?

Please specify the five most common wall materials you encounter in practice.

Name of building material Where can it be supplied?
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2018, 13, 597–607. [CrossRef]
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