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Abstract: Exploring an efficient electromagnetic protection strategy for buildings is of great signifi-
cance to solve the problems caused by increasing electromagnetic pollution, as the rapid progress of
technology continues. In this work, FeCo alloy/carbon–carbon nanotube (FeCo/C–CNT) nanocom-
posites, with significant microwave absorption performance, were successfully synthesized using a
simple pyrolysis method involving FeCo–ZIF MOFs precursors and added to epoxy resin to prepare
a novel electromagnetic wave absorption (EWA) coating. The minimum reflection loss (RLmin) of
the coating applied on the surface of the ceramic tiles was −23.89 dB at 11.37 GHz and the effective
absorption bandwidth (EAB) reached 8.85 GHz. Through microscopic characterization and analysis
of the electromagnetic parameters of the FeCo/C–CNT nanocomposites, it was found that the EWA
coating has an ultrabroad band wave absorption effect, mainly due to the comprehensive advantages
of the polarization loss from CNTs, impedance matching, the dual loss synergy effect, and multiple
reflection between the FeCo alloys, the carbon layer, and the CNTs. This study has successfully
developed high-performance EWA materials and demonstrated the feasibility of an EWA coating
applied to building surfaces, contributing to the improvement of electromagnetic protection functions
of buildings.

Keywords: electromagnetic wave absorption; FeCo/C–CNT wave absorber; electromagnetic protection
coating; metal–organic frameworks; ultrabroad band; ceramic building materials

1. Introduction

As information technology in society continues to advance rapidly, the widespread
application of electronic equipment inevitably gives rise to electromagnetic pollution,
which seriously affects human health [1–3]. The most common methods for reducing
electromagnetic pollution in daily life are mainly the use of filling wave absorbers in
building materials or covering the surfaces of buildings with modified electromagnetic
protective coatings. Owing to the limitations in the preparation process, it remains a
challenge to combine the great properties of electromagnetic wave absorption (EWA)
materials with heat-resistant and oxidation-resistant characteristics when added to ceramic-
based building materials [4].

EWA coatings should satisfy requirements including simple preparation, strong bond-
ing, and high flexibility, which mainly derive from EWA materials and binders [5,6]. In
general, epoxy resin is the preferred material used as a binder due to its high strength, low
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density, and good chemical stability [7]. Additionally, EWA materials are mainly classified
as dielectric and magnetic materials, which can effectively absorb electromagnetic energy
and convert it into heat or other forms of energy for dissipation [8]. However, most tradi-
tional EWA materials still have problems including a narrow bandwidth, large thickness,
and poor EWA performance [9–11]. Therefore, a high-performance microwave absorber is
urgently needed.

A metal–organic framework (MOF), consisting of two parts connected by an organic
ligand and a metal center, is a novel porous crystalline material that has been used in
recent years. With its advantages, including a high specific surface area and an adjustable
crystal structure, it has been in widespread use in the fields of gas separation, catalysis,
and energy conservation [12–14]. As EWA materials, carbonized MOF materials can make
up for the shortcomings of dielectric materials, such as its high permittivity and poor
impedance matching, and also satisfy the wide bandwidth that is lacking in single magnetic
loss materials [15,16]. The superior EWA properties of MOF-derived materials originate
from its numerous pore structures and rich morphological structures. Carbonization pro-
duces carbon with abundant defects and numerous interfaces with metal particles, so the
porous structure and the multiple loss mechanisms of dielectric and magnetic loss give
MOF-derived materials excellent impedance and attenuation abilities [17,18]. Qin et al. [19]
prepared Ni/CO@C nanocomposites with Ni, Co as the metal particles, CH3COONa-3H2O,
and a nicotinic acid mixed solution as precursors at different temperatures, which obtained
prime EWA performance at 650 ◦C, with a minimum reflection loss (RLmin) of −66.3 dB.
Wang [20] obtained CONPS/ZF-67 nanocomposites through carbonization at different
temperatures, resulting in an RLmin for CO/C-700 of −30.31 dB at 11 GHz. Lu and
colleagues [21] tuned the ratio of Co and Cu to prepare a 3D flower-shaped bimetallic
nanocomposite, which reached an RLmin of −51.7 dB at 2.7 mm and an effective absorp-
tion bandwidth (EAB) of 6.4 GHz. Based on previous literature, we have learnt that the
EWA capabilities of MOF-derived materials are higher after carbonization than before
carbonization. The EWA performance of MOF-derived carbon is mainly affected by the
pyrolysis temperature, which can be altered by the degree of reduction or oxidation of the
metal ions and the graphitization of carbon [22,23]. For instance, LV et al. [24] attempted
to obtain porous Co/C nanocomposites through carbonization at different temperatures.
The RLmin of Co/C-500 reaches −35.3 dB in terms of an EAB of 5.80 GHz. It is well known
that carbon nanotubes (CNTs) are 1D carbon materials with high electrical conductivity.
Compositing CNTs with MOFs not only increases the network structure on the surface of
MOFs, but also enhances its electrical conductivity, which is an effective enhancement of
the EWA properties. For instance, Zhang et al. [25] obtained Co@CNT/PC composites by
carbonizing ZIF-67 to grow CNTs in situ on its surface for the co-catalytic generation of CNT.
Li et al. [26] prepared CoFe alloy/porous carbon@carbon nanotubes (CoFe/PC@CNTs)
nanocomposites. Benefiting from the double conductive network formed between the CoFe
alloy, the CNTs, and the PC, the RLmin value for the CoFe/PC@CNTs nanocomposites
reached −68.94 dB and an EAB of 9.14 GHz at 2.63 mm. Consequently, the in situ growth of
CNTs through the pyrolysis of some specific MOFs is one of the most effective strategies to
develop high-performance electromagnetic wave absorbers. Nevertheless, there are fewer
studies on the effect of the pyrolysis temperature on CNT growth.

In this study, FeCo alloy/carbon–carbon nanotube (FeCo/C–CNT) nanocomposites
were successfully synthesized through simple pyrolysis of FeCo-ZIF MOF precursors.
The effects of the microscopic morphology of the FeCo/C–CNT nanocomposites on the
EWA properties at different temperatures were investigated. At 800 ◦C, the FeCo/C–CNT
nanocomposites achieved an RLmin value of −52.06 dB at 13.84 GHz and an EAB value
of 8.07 GHz (3.63 mm). The optimized FeCo/C–CNT nanocomposites were used as
microwave absorbers, added to epoxy resin to obtain an ultrabroad band EWA coating.
The coating covering the surface of the tiles obtained a minimum reflectivity of −23.89 dB
at 11.37 GHz and absorbed more than 90% of the electromagnetic waves in the frequency
ranges 2.36–7.49 GHz and 8.55–12.27 GHz. Furthermore, the mechanisms related to the
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FeCo/C–CNT nanocomposites for enhancing the EWA performance of the coating were
discussed after analyzing the electromagnetic parameters. Notably, this work aims to
develop a material with excellent EWA capabilities, as an ideal wave absorber, as well
as to provide feasible design ideas for expanding the application of EWA coatings in the
construction field.

2. Materials and Methods
2.1. Materials

Hexahydrate iron nitrate (Fe(NO3)2·6H2O, AR, >99%), cobalt nitrate hexahydrate
(Co(NO3)2·6H2O,AR, >99%), and 2-methylimidazole (2-MIM, >99%) were bought from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) The epoxy resin (E51) and curing
agent (low molecular weight polyamide 650) were purchased from Qingdao Baiyi Chemical
Co., Ltd. (Qingdao, China). The organic solvents xylene and N-butanol were all provided
by Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). The materials in this paper
were used in a direct, unpurified manner.

2.2. Fabrication of FeCo/C–CNT Nanocomposites

The FeCo/C–CNT nanocomposites were obtained through straightforward copre-
cipitation, following by pyrolysis treatment without organic solvents. In brief, 6 mmol
Fe(NO3)2·6H2O and 6 mmol Co(NO3)2·6H2O were added to 40 mL of dissolved water, as
solution A. In the meantime, 48 mmol 2-MIM was dissolved in 160 mL deionized water, as
solution B. Solution A and B were mixed under violent agitation for 10 h. Subsequently,
the precursor was collected by centrifugation, washed 3–5 times with deionized water, and
then dried in a vacuum oven. Lastly, the as-prepared samples were pyrolysis treated at
different temperatures, including 600, 700, and 800 ◦C, under N2 for 2.5 h, respectively. The
final samples are defined as FeCo/C–CNT-X (X = 600, 700, and 800, respectively), where X
represents the pyrolysis temperature.

2.3. Fabrication of Epoxy Resin Coating Modified by FeCo/C–CNT Nanocomposites

The detailed preparation process for the epoxy resin coating decorated with
FeCo/C–CNT nanocomposites was as follows: Firstly, the mixture solution was prepared
using xylene and N-butanol with a weight ratio of 7:3; following that the FeCo/C–CNT
nanocomposites were dissolved uniformly in the solution under ultrasonic treatment. Then,
the epoxy resin was preheated at 80 ◦C for 1 h; following that the above mixed solution was
poured into the epoxy resin. Additionally, the hardener, with the same weight, was added
to the epoxy resin to prepare the epoxy composite. Finally, the epoxy resin coating sample
modified by FeCo/C–CNT nanocomposites was obtained, using a Teflon mold with the
size 300 × 300 × 2 mm.

2.4. Characterization

The phase information for the specimens was gathering using X-ray diffraction pat-
terns (XRD, Ultima IV powder diffractometer, Rigaku Inc., Tokyo, Japan). X-ray photoelec-
tron spectroscopy (XPS, ESCALAB X1+, Thermo Fisher Scientific Inc., Waltham, MA, USA)
was used to investigate the chemical components and elemental valency of the materials.
Scanning electron microscopy (SEM, Sigma 500, Zeiss Group, Oberkochen, Germany and
SU8010, Hitachi, Hitachi Co., Ltd., Tokyo, Japan) was conducted to analyze the morphology
of the samples. Additionally, the microstructure information was studied by transmission
electron microscopy (TEM, Tecnai G2 F20, Frequency Electronics Inc., Hillsboro, OR, USA).
According to the coaxial line method, the microwave absorption ability of the as-prepared
specimens was measured. The composites were fabricated into cylindrical specimens by
mixing the samples with paraffin wax in different weight ratios. Then, the dimensions of
the tested samples included an outer size of 7 mm and an inner size of 3.04 mm. The EWA
performance test specimens were denoted as FeCo/C–CNT-X-Y (X = 600, 700, and 800,
Y = 20, 30, and 40, respectively), where X refers to the heat-treatment temperature and Y is
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the filling content. The complex permittivity (εr = ε′ − jε′′) and permeability (µr = µ′ − jµ′′)
of the samples were measured using a vector network analyzer (PNA-N5244A, Agilent
Technologies Inc., Santa Clara, CA, USA) ranging from 1–18 GHz. The reflectance loss
(RL) was measured using the complex permittivity and permeability, with the calculation
equation as follows:

RL(dB)= 20 log|(Zin−Z0)/(Zin+Z0)| (1)

Zin= Z0
√

µr/εrtanh[j(2π f d/c)
√

εrµr] (2)

where Z0 and Zin represent the free space impedance and the input impedance of the
EWA materials, respectively. Moreover, µr and εr denote the measured relatively complex
permeability and permittivity, respectively. In addition, c is the speed of light, d is the
thickness of the materials, and f is the frequency of the electromagnetic wave.

3. Results

The FeCo/C–CNT nanocomposites were fabricated by combining the coprecipitation
and pyrolysis methods, as shown in the schematic diagram in Figure 1a. During the
coprecipitation process, the FeCo-ZIF MOF precursor was obtained using Fe2+ and Co2+

as the metal source and 2-MIM as the organic framework. Regulating the calcination
temperature, the FeCo/C–CNT nanocomposites with different lengths and contents of
CNTs were synthesized. As presented in Figure 1b, the X-ray diffraction (XRD) patterns
show that all the specimens have similar information. There are three diffraction peaks,
namely 44.9◦ (110), 65.3◦ (200), and 82.7◦ (211), corresponding to the FeCo alloy (PDF
49-1586), respectively [27,28]. All the samples exhibit good crystallinity. The results
demonstrate that the FeCo alloy was successfully prepared through carbonization [29].
However, the characteristic peaks corresponding to carbon or the CNTs were almost
impossible to observe, indicating that carbon might be amorphous [30]. The peaks of
FeCo/C–CNT-800 are sharper than those of FeCo/C–CNT-700 and FeCo/C–CNT-600,
suggesting that an increase in temperature is more favorable to the reaction. The X-ray
diffraction (XRD) patterns show that the pyrolysis temperature critically affected the phase
composition of the MOF-derived composites.
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X-ray photoelectron spectroscopy (XPS) was conducted to accurately identify the
chemical composition and surface environment of the FeCo/C–CNT nanocomposites. C, O,
Fe, and Co elements can be observed in the X-ray photoelectron spectroscopy (XPS) survey
spectrum (Figure 1c); where the O element might stem from the adsorbed water on the
surface of the as-prepared samples. Figure 1d shows the high-resolution C 1s spectra of
the FeCo/C–CNT nanocomposite; there are four peaks represented by C–C (284.84 eV),
C–N (285.83 eV), C–O (286.69 eV), and C=O (88.59 eV) bonds, respectively. Figure 1e shows
the Fe 2p spectrum; where Fe3+ appears as the peaks at 725.58 eV and 713.62 eV, while
722.88 eV and 710.4 eV are indexed to Fe2+. The other one at 717.95 eV is a satellite
peak [31]. The X-ray photoelectron spectroscopy (XPS) spectrum of Co 2p has two typical
peaks belonging to Co 2p3/2 (781.41 eV) and Co 2p1/2 (796.76 eV), while the satellite peaks
appeared at 803.82 eV and 786.87 eV [32,33]. The results are in accord with that of X-ray
diffraction (XRD).

Moreover, the microscopic images, exhibited in Figure 2, are used to investigate the
microstructure information of the FeCo/C–CNT nanocomposites. In Figure 2(a,a1), the
FeCo-ZIF precursor displays aggregated sheet-like structures. After pyrolysis treatment,
the surfaces of all the samples became rough and had a porous structure, indicating the
conversion of the lamellar MOF precursor into a porous carbon skeleton. The large porous
structure is conducive to improving the impedance matching of the nanocomposites, as
well as prolonging the transmission path of the electromagnetic waves inside the material
and increasing multiple reflection scattering. And a certain amount of the CNT is attached
to the porous carbon surface, while the FeCo alloy is uniformly distributed on the surface of
the porous carbon matrix and on the ends of the CNT (Figure 2(b–d1)). FeCo alloys have a
particle size of about 30 nm. Notably, with the calcination temperature increase, the size and
content of CNTs significantly increase. At 600 ◦C, while pyrolysis was not sufficient, there
is less CNT being produced. The increase in temperature promotes the growth of CNTs.
The formation of CNTs can originate from the transformation of highly crystallographic
MOFs assembled by organic ligands as the basic units and metal clusters as the catalyst
in the pyrolysis process. The CNTs present on the surface of MOF-derived porous carbon
are interconnected to form a large conductive network, which is conducive to improving
the conductive loss. In addition, there are a large number of interfaces between the
porous carbon, the CNTs, and the FeCo alloy, which leads to more interfacial polarizations
and dipole polarizations [25,34]. In addition, the energy dispersive spectrometer (EDS)
mapping in Figure 2e shows that the C, O, N, Fe, and Co elements were evenly dispersed
in the nanocomposite, which is in accordance with the X-ray photoelectron spectroscopy
(XPS) results.

The transmission electron microscopy (TEM) images indicate, as shown in Figure 3a,b,
that FeCo alloys, with a size of about 10 nm engrafted in graphitized poriferous carbon lay-
ers and CNTs, can be obviously observed. In particular, the FeCo alloy catalyzed the growth
of CNTs, so that they were distributed on the surface of the graphitized porous carbon
layers. It is also observed that the carbon nanotubes are wrapped with alloy nanoparticles
at the ends. As presented in high-resolution transmission electron microscopy (HRTEM)
(Figure 2c), the lattice spacing of 0.2 nm and 0.35 nm refer to the (110) and (002) planes of the
FeCo alloy and graphitic carbon, respectively. The results reveal that FeCo alloy nanopar-
ticles are encapsulated inside the graphitized carbon layer and construct a core–shell
structure. The unique structure would be a benefit to good electromagnetic matching. In
addition, a large number of bent CNT connections on the porous carbon surface form a
conductive network. The clear lattice reveals that the FeCo alloy in FeCo/C–CNT nanocom-
posites has good crystallinity, which is in accordance with the XRD results. In addition, the
diffraction planes of FeCo alloys were further confirmed by the diffraction rings obtained
from the corresponding selected-area electron diffraction (SAED) pattern (Figure 3d). Con-
sequently, FeCo/C–CNT nanocomposites derived from FeCo-ZIF MOFs were successfully
synthesized, based on the above results.
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Electromagnetic wave absorption performance can be deeply evaluated by analyzing
the RLmin values and EAB values, which are calculated according to the absorber thickness
in the range of 1 to 6 mm in the frequency of 1–18 GHz [35,36]. Generally, the RL value is
<−10 dB, implying that approximately 90% of the electromagnetic energy is dissipated [37].
Figure 4 shows the 3D images of the RL values of the FeCo/C–CNT nanocomposites with
different thicknesses. The detailed electromagnetic data, including the RLmin, the frequency
of the optimal RL, and the EAB are listed in Table 1. Both the pyrolysis temperature and
the loading content in regard to the paraffin wax are essential for the EWA performance.
In Figure 4a–c, the FeCo/C–CNT nanocomposites with a filling content of 20%, 30%, or
40%, under 600 ◦C sintering, all exhibit poor EWA ability. When increasing the calcination
temperature, the RLmin and EAB values remarkably improved. As shown in Figure 4e,
the RLmin of the FeCo/C–CNT-700-30 nanocomposite is −30.8 dB at 9.6 GHz and the EAB
reaches 11.42 GHz at 4.26 mm. Furthermore, the absorbing bandwidth of the FeCo/C–CNT-
700-30 nanocomposite reaches 13.04 GHz (6.0 mm), nearly overlaying the whole C, X, and
Ku band, which is far better than that of most absorbers. Notably, the EWA capabilities of
FeCo/C–CNT nanocomposites under heat treatment at 800 ◦C are considerably improved.
The RLmin of the FeCo/C–CNT-800-20 nanocomposite reaches −52.06 dB at 13.84 GHz and
the EAB reaches 8.07 GHz at a thickness of 3.63 mm, as observed in Figure 4g.
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Table 1. Microwave absorption properties of FeCo/C–CNT nanocomposites.

Samples RLmin (dB) Frequency (GHz) EAB, RL < −10 dB Thickness (mm)

FeCo/C–CNT-600-20 −6.85 7.7 \ 4.5
FeCo/C–CNT-600-30 −9.26 2.78 \ 5.0
FeCo/C–CNT-600-40 −9.23 2.89 \ 5.0
FeCo/C–CNT-700-20 −9.79 15.14 \ 2.5

FeCo/C–CNT-700-30
−30.8 9.6 11.42 4.26
\ \ 13.04 6.00

FeCo/C–CNT-700-40 −13.43 6.98 1.84 2.85

FeCo/C–CNT-800-20
−52.06 13.84 8.07 3.63
−45.61 11.07 8.81 3.89

\ \ 9.80 5.00

FeCo/C–CNT-800-30
−60.26 15.94 4.95 1.86

\ \ 5.61 2.00

FeCo/C–CNT-800-40 −45.23 17.75 >3.96 1.28
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Additionally, the RLmin of the FeCo/C–CNT-800-20 nanocomposite is −45.61 dB at
3.89 mm and the EAB value is 8.81 GHz. Along with the matching thickness of 5 mm,
the absorption bandwidth increases to 9.8 GHz. When the filling content is 30% and
the heat treatment temperature is 800 ◦C, FeCo/C–CNT-800-30 also displays good EWA
effectiveness, with an RLmin value of −60.26 dB at 15.94 GHz, in terms of a thickness
of 1.86 mm and an EAB of 5.61 GHz at 2.0 mm (Figure 4h). The results show that the
pyrolysis temperature plays a significant role in the microwave absorption performance
of FeCo/C–CNT nanocomposites. Meanwhile, it is found that the reflection losses are all
increased when the filling is increased from 20% to 30%, and the reflection losses are all
decreased when the filling is increased to 40%. While too high a filling will cause a higher
dielectric loss, which makes the material impedance mismatch and leads to the degradation
of the microwave absorption ability. As shown by previous SEM and TEM images, high
crystallinity FeCo alloy nanoparticles are circumvented by the graphitized carbon layer
and embedded into the end of the CNTs to form a porous structure, leading to good electric
conductivity [25].

Further, to expand the practical application of FeCo/C–CNT nanocomposites, the
materials were introduced into epoxy resin to construct a functional absorbing coating,
whose reflectivity was studied using the arch test method, according to GJB539-2004.
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Considering that the porous structure of cementitious composites may have multiple
scattering and reflection effects on the EWA performance, ceramic brick was selected as a
matrix to clarify the EWA ability of the epoxy resin coating decorated with FeCo/C–CNT
nanocomposites. As shown in Figure 5, the minimum reflectivity of epoxy resin modified
with 5 wt% FeCo/C–CNT nanocomposite is −23.89 dB at 11.37 GHz, and the EAB reaches
8.85 GHz (2.36–7.49 GHz and 8.55–12.27 GHz). The future looks bright for the obtained
FeCo/C–CNT nanocomposites, which are expected to become exceptional EWA candidates
as fillers for electromagnetic protection coatings in building applications.
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modified with FeCo/C–CNT nanocomposites, on ceramic brick.

4. Discussion

According to Figure 4, the FeCo/C–CNT-800-20 and FeCo/C–CNT-700-30 nanocom-
posites both have excellent reflection losses and wide effective bandwidths, which demon-
strates that both the calcination temperature and the filling content are important in de-
termining the EWA efficiency of nanocomposites. As the pyrolysis temperature increases,
the reflection loss of FeCo/C–CNT nanocomposites increase at the same filling amount. A
higher pyrolysis temperature occurs prior to growing more CNTs structures, which results
in more conductive and interface polarization losses [38,39]. Impedance matching and a
superior dissipation capability would be gained due to the magnetic–dielectric synergistic
effect from the FeCo alloy, with ferromagnetic properties and graphitized carbon and CNTs
providing the dielectric loss. Furthermore, abundant interfaces and holes are conducive to
enhancing interfacial polarization and multiple microwave transmission paths, contributing
to the absorption of electromagnetic waves. At the same pyrolysis temperature, the RLmin
values of FeCo/C–CNT nanocomposites show a tendency to increase and then decrease
with the doping content increase in paraffin. This is due to the fact that the nanocomposite
particles contact each other in the paraffin to form more conductive networks, resulting
in a reflection loss increase. However, the excessive nanocomposites in the paraffin might
obtain strong conductivity due to more contact from the conductive networks, causing an
impedance mismatch, meaning that the incoming electromagnetic waves cannot enter the
internal material. Thus, optimal FeCo/C–CNT nanocomposites not only improve the RL
values, but also efficaciously widen the absorbing range, which have great potential as
absorbing materials that meet the demand for practical applications.

It is common knowledge that that impedance matching is important for EWA efficiency,
which is usually evaluated using impedance Z curves. The impedance Z curve vs the
frequency can be calculated by Equation (3) [40,41]:

Z =

∣∣∣∣Zin
Z0

∣∣∣∣ = (
µr

εr

)1/2
tanh

[
j
(

2π f d
c

)
(µrεr)

1/2
]

(3)
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Once the Z value approaches 1, it is demonstrated that more electromagnetic waves
can enter the materials. As plotted in Figure 6e,g, two optimized samples exhibit outstand-
ing impedance matching in a wide frequency range, resulting in a remarkable effective
absorption band. In contrast, Figure 6a–d,f,h,i displays the Z values of other FeCo/C–CNT
nanocomposites, where there is almost none close to 1, implying the poor impedance
matching of the other composites.
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Figure 6. The impedance Z curves of (a) FeCo/C–CNT-600-20; (b) FeCo/C–CNT-600-30;
(c) FeCo/C–CNT-600-40; (d) FeCo/C–CNT-700-20; (e) FeCo/C–CNT-700-30; (f) FeCo/C–CNT-700-40;
(g) FeCo/C–CNT-800-20; (h) FeCo/C–CNT-800-30; and (i) FeCo/C–CNT-800-40 nanocomposites.

The electromagnetic absorption properties of FeCo/C–CNT nanocomposites can be an-
alyzed using electromagnetic parameters. Moreover, the complex permittivity (εr = ε′ − jε′′)
and complex permeability (µr = µ′ − jµ′′) are presented in Figure 7 to assess the im-
pacts of the calcination temperature and the filling content on the microwave absorption
properties [42,43]. It well known that the real parts of complex permittivity and complex
permeability prove the storing ability of microwaves, as well as the imaginary parts of
complex permittivity and complex permeability that designate the capability of dissipating
microwaves [44,45]. As plotted in Figure 7a, the ε′ of FeCo/C–CNT nanocomposites de-
crease with frequency increases, exhibiting typical dispersive behavior. As seen in Figure 7b,
the ε′′ curve fluctuates, indicating that the composite has a polarization relaxation process.
For the µ′′ value, it has a higher value related to the imaginary part at 700 ◦C, indicating
excellent magnetic loss. The lower µ′′ value at 800 ◦C might originate from the graphitiza-
tion degree increase in the non-magnetic porous carbon layer surrounding the FeCo alloy
nanoparticles at high temperatures. Obviously, there is an absorption peak, which appeared
at 13.04 GHz in the dielectric loss tangent (tanδε = ε′′/ε′) for FeCo/C–CNT-800, indicating
more electromagnetic wave attenuation. It is demonstrated that a high pyrolysis tempera-
ture can generate more CNTs and high crystallinity of graphitic carbon, which would be
favorable to enhancing electromagnetic energy loss and dielectric polarization. Neverthe-
less, as for complex permeability, FeCo/C–CNT-700 displays higher imaginary parts and
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a higher tangent (tanδµ = µ′′/µ′) of magnetic loss compared to that of FeCo/C–CNT-800,
originating from the magnetic FeCo alloy components that are not completely coated by
the carbon layers and CNTs.
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Furthermore, the Cole–Cole curves and attenuation constant were explored to access
the microwave absorbing performance. The Cole–Cole curves are plotted by ε′ versus ε′′,
as follows in the equation, according to Debye relaxation theory [46]:(

ε′ − εs + ε∞

2

)2
+

(
ε′′
)2

=
( εs − ε∞

2

)2
(4)

where εs and ε∞ represent the static permittivity and relative permittivity at the high-
frequency limit, respectively. One semicircle generally represents a Debye relaxation pro-
cess. Figure 8 demonstrates that both FeCo/C–CNT-700 and FeCo/C–CNT-800 nanocom-
posites exhibit more semicircle numbers clearly than that of FeCo/C–CNT-600, proving
that a high pyrolysis temperature helps to achieve the intense polarization relaxation and
fantabulous dissipation ability.

Simultaneously, the microwave attenuation constant (α) can be derived from
Equation (5) [47,48]:

α =

√
2π f
c

×
√
(µ′′ ε′′ − µ′ε′) +

√
(µ′′ ε′′ − µ′ε′)2 + (ε′µ′′ + ε′′ µ′)2 (5)

As presented in Figure 9, the FeCo/C–CNT-600-40 nanocomposite possesses the
biggest attenuation constant value compared to the other samples. However, the EWA
performance of the FeCo/C–CNT-600-40 nanocomposite is not good, which might be
attributed to poor impedance matching. Therefore, impedance matching is a more im-
portant factor in enhancing the microwave absorption efficiency than the attenuation loss
in regard to our nanocomposites. Notably, FeCo/C–CNT-700 has a larger attenuation
constant value than that of FeCo/C–CNT-800 in the frequency ranging from 1 to 18 GHz,
implying that FeCo/C–CNT-700 has a better attenuation ability. In particular, the α value
of FeCo/C–CNT-800 decreases to zero from 17 GHz, which might result from the FeCo
alloy embedding more CNTs and porous carbon layers, leading to weak magnetic loss in
the high-frequency region. Based on the above results, the FeCo/C–CNT-700 and FeCo/C–
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CNT-800 nanocomposites are the optimized candidates, with superior EWA capability,
compared with the other samples.
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Figure 8. Cole–Cole plots of (a) FeCo/C–CNT-600-20; (b) FeCo/C–CNT-600-30; (c) FeCo/C–CNT-
600-40; (d) FeCo/C–CNT-700-20; (e) FeCo/C–CNT-700-30; (f) FeCo/C–CNT-700-40; (g) FeCo/C–
CNT-800-20; (h) FeCo/C–CNT-800-30; and (i) FeCo/C–CNT-800-40 nanocomposites.
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The enhancement mechanism of FeCo/C–CNT nanocomposites in regard to the wave
absorption properties of epoxy resin is shown in Figure 10. Firstly, the magnetic–dielectric
synergy effect from the FeCo alloy and carbon layers and CNTs results in outstanding
impedance matching, which is beneficial for more microwaves to go into the interior of the
absorbers. Simultaneously, electromagnetic waves would be dissipated by the magnetic loss
from the FeCo alloy and the conductive loss originating from the carbon layers and CNTs.
As well, the porous structures of nanocomposites are crucial in regard to the attenuation of
microwaves, providing additional transmission paths for scattering and the reflection of
electromagnetic waves, which results in the conversion of electromagnetic energy into other
energy that dissipates. Undeniably, the existence of multiple interfaces among the FeCo
alloy/carbon layers, FeCo alloy/CNTs, and carbon layers/CNTs would cause interface
polarization, which is profitable to attenuate electromagnetic waves through the polar-
ization relaxation process. Therefore, the impedance matching, double loss mechanisms,
conductive loss, multiple reflection, and polarization effects of FeCo/C–CNT nanoscale
wave absorbers enable the modified epoxy coating to have an ultrabroad EAB, exhibit
significant EWA performance, and provide a brand new way of thinking for the application
of EWA coatings.
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