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Abstract: Using sustainable cement-based alternatives, such as secondary cementitious raw materials
(SCMs), could be a viable option to decrease CO2 emissions resulting from cement production. Pre-
viously conducted studies to determine the optimal mix designs of concrete primarily focused on
either experimental approaches or empirical modeling techniques. However, in these experimen-
tal approaches, few tests could be performed for optimization due to time restrictions and lack of
resources, and empirical modeling methods cannot be relied on without external validation. The
machine learning-based approaches are further characterized by certain shortcomings, including a
smaller number of data points, a less robust connection among the controlling factors, and a lack of
comparative analyses among machine learning models. Furthermore, the literature on predicting
the performance of concrete utilizing binary SCMs (silica fume (SF) and ground granulated blast
furnace slag (GGBS)) is not available. Therefore, to address these drawbacks, this research aimed to
integrate ML-based models with experimental validations for accurate predictions of the compressive
strength (CS) and tensile strength (TS) of concrete that includes SF and GGBS as SCMs. Three soft
computing techniques, namely the ANN, ANFIS, and GEP methods, were used for prediction pur-
poses. Eight major input parameters, including the W/B ratio, cement, GGBS, SF, coarse aggregates,
fine aggregates, superplasticizer, and the age of the specimens, were considered for modeling. The
validity of the established models was assessed by using external experimental validation criteria,
statistical metrics, and performance measures. In addition, sensitivity and parametric analyses were
performed. Based on statistical measures, the ANFIS models outperformed other models with higher
correlation and lower statistical error values. However, the GEP models exhibited superior perfor-
mance compared to ANFIS and ANN with respect to the closeness of the RMSE, MAE, RSE, and R2

values between the training, validation, and testing sets for both the CS and TS models. Experimental
validation showed strong evidence for the applicability of the proposed models with an R2 of 0.88
and error percentages of less than 10%. Sensitivity and parametric investigations demonstrated that
the input variables exhibited the patterns described in the experimental dataset and the available
literature. Hence, the proposed models are accurate, have better prediction performance, and can be
used for design purposes.

Keywords: secondary cementitious raw materials; mechanical properties; machine learning
algorithms; parametric analysis; sensitivity analysis

1. Introduction

The construction sector is the primary source of global warming due to the signifi-
cant CO2 emissions produced during cement manufacturing [1,2]. Since the invention of
modern-day cement in the early 1800s, its manufacture has consistently risen as a result of
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an increase in population, continuously growing urbanization, and extensive infrastructure
construction. The global production of cement experienced a significant increase of 54%,
rising from 1.6 billion tons in 2000 to 2.55 billion tons in 2006 [3,4]. In 2023, the world-
wide manufacture of cement reached an incredible 4.1 billion tons, resulting in a total of
1.6 billion tons of CO2 emissions, which is over three times higher than the 0.49 billion tons
emitted in 1990, as reported by [5,6]. The International Energy Agency (IEA) predicts that
global cement manufacturing will expand by an additional 12–23% by the year 2050 [7].
According to Hanifa et al. [8], China, India, Europe, and the United States were the leading
countries in terms of CO2 emissions from 2006 to 2021. Figure 1 shows the region-wise
annual CO2 emissions from cement industries in the last three decades. It can be seen that
Asian countries had a significant growth in their CO2 emissions, which was 5.3 times more
than the initial emissions. In 2019, these countries accounted for 70.3% (1.73 Gt) of the
overall CO2 releases from the cement sector, as opposed to only 32% (0.28 Gt) in 1990. This
rise is in line with their growing production of cement. It is known that the production of
one ton of cement needs 1.5 tons of raw material, 140 kWh electricity, and 4000 MJ energy.
Overall, the manufacture of cement accounts for around 8% of the world’s man-made CO2
emissions and consumes around 3% of the world’s energy [9].

Figure 1. Region-wise annual CO2 from the cement industry [10].

Cement has a negative long-term impact on the ecosystem due to CO2 emissions and
high energy consumption [11]. Therefore, minimizing CO2 emissions from the cement
manufacturing industry has become a primary concern for researchers [12]. Many ap-
proaches could be used to address this problem. One such viable strategy for minimizing
the environmental impact associated with the cement industry is the utilization of SCMs
as a partial substitute for cement in concrete [13–15]. The utilization of SCMs as a partial
replacement for cement provides numerous benefits, such as higher strength, enhanced
durability, financial advantages, and improved sustainability [16].

Industrial by-products, such as SF and GGBS, are proven to be the most effective
SCMs as a substitute for cement in concrete. SF is produced in the smelting process of
ferrosilicon or silicon alloy production, whereas GGBS is a by-product of blast furnaces.
On average, annually, 1–1.25 million tons of SF and 230–260 million tons of GGBS are
produced worldwide [17,18]. The inadequate management and disposal of these industrial
residues can give rise to numerous environmental problems, including the emission of
uncontrolled pollutants into the atmosphere during production and transportation, as
well as soil and water pollution, if appropriate storage and disposal methods are not
employed [19]. Furthermore, the excessive accumulation of significant volumes of SF
and GGBS waste can exert pressure on waste management systems, resulting in earlier
saturation of landfills. This, in turn, can have adverse effects on communities. Therefore,
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the implementation of efficient methods for handling these wastes and the exploration of
sustainable applications, such as incorporating them as SCMs in concrete, can be beneficial
by reducing the environmental concerns associated with SF, GGBS, and the cement industry.
For instance, Akhtar et al. [20] investigated that substituting 10% of SF in 2.2 billion tons
of concrete decreased CO2 emissions by 39 million tons. In another study [21], it has been
stated that replacing 50% of GGBS in concrete with OPC can reduce around 0.5 tons of
the CO2 emissions per ton of concrete. Considering the environmental drawbacks of the
cement industry and the benefits of employing SCMs in concrete, it is imperative to develop
robust and reliable methods for sustainable construction practices.

Recent advances in machine learning (ML) techniques have led to the development of
precise and reliable models for predicting the properties of various cement-based compos-
ites containing SCMs [22]. For instance, several ML techniques, including GEP [23], support
vector machines (SVMs) [24], multilayer perception neural networks (MLPNNs) [25], deep
learning (DL) [26], the ANFIS, ANNs, and multi-expression programming (MEP) [27], have
been effectively employed to estimate the mechanical characteristics of concrete incorpo-
rated with SCMs. Recently, ANN and ANFIS ML approaches have been used successfully
to identify and generalize complex patterns in data. Hence, they can be efficiently utilized
to estimate the properties of concrete. Shahmansouri et al. [28] employed ANN mod-
els to predict the CS of geopolymer concrete (GPC) using an experimental database of
117 specimens from 39 different mixtures containing varying proportions of GGBS, SF, and
natural zeolite. They compared the ANN-estimated CS with the actual results and observed
that the ANN model accurately predicted the CS of GPC. Amlashi et al. [29] used three soft
computing models: an M5 model tree (M5MT), an ANN, and multivariate regression, to
estimate the elastic modulus, CS, and slump of plastic concrete. Their findings indicate that
the ANN model had superior accuracy in predicting all three parameters compared to the
other models. Mahesh et al. [30] used ANN models to estimate the elastic modulus and CS
of fiber-reinforced concrete. The models were developed using 158 and 140 experimental
results for the elastic modulus and CS, respectively. The outcomes of their study show
the superior predictive capabilities of the ANN, as it exhibits minimal variation from the
actual values, with R2 values of 0.96 and 0.97 for the elastic modulus and CS, respectively.
Topçu et al. [31] explored ANN and fuzzy logic algorithms in order to accurately predict
the CS and TS of recycled aggregate concrete incorporated with SF. The models were
constructed using experimental data from 210 specimens with 35 different mix designs.
For the purpose of prediction, the study utilized eight input parameters and examined the
strength properties at various time intervals (3, 7, 14, 28, 56, and 90 days). The outcomes of
the models indicate that ANN and fuzzy logic algorithms possess considerable potential
in accurately forecasting the strength properties of concrete. Dao et al. [32] focused on
predicting the CS of GPC through the utilization of two ML techniques: the ANN and
ANFIS techniques. For the model development, 210 samples were used. The outputs of
the ANN and ANFIS were evaluated based on several statistical measures, such as R2

and MAE values. The findings indicate that both models exhibited substantial potential
in anticipating the CS of GPC. However, the ANFIS outperformed the ANN model with
a marginally lower MAE of 1.655 MPa compared to 1.989 MPa and a higher R2 of 0.879
compared to 0.851. Overall, the study provides evidence to support the efficacy of the
ANFIS and ANN models as predictive tools for estimating the CS of GPC. Using ANNs,
Sadowski et al. [33] projected the CS of concrete comprising waste quartz dust. The ANN
models revealed strong correlation values (R) of 0.93, 0.91, and 0.94 for the training, testing
(evaluation), and validation stages, respectively, indicating that the CS of green concrete
utilizing waste mineral dust can be evaluated accurately using these models. Despite
the reliable correlation proposed by these models, no empirical formula was suggested
for their practical use. This is because of the sophisticated architecture of ANNs and the
ANFIS, which is also regarded as a significant barrier to the widespread adoption of ANN
and ANFIS models [34]. Multi-collinearity is also another drawback of these modeling
techniques. Furthermore, ANNs and ANFIS are categorized as “black-box models” due to
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their incapability to demonstrate fundamental physical mechanisms, limited transparency,
and inability to generate closed-form prediction equations [35].

Evolutionary modeling approaches such as GEP, influenced by Darwin’s idea of
natural selection, have gained the attention of researchers in recent years. Unlike “black-
box” models such as ANNs and the ANFIS, GEP gives predictive equations that provide
valuable information about the connections between input parameters and the desired
output [36]. GEP-extracted mathematical formulas can be used in practice with improved
prediction efficiency. Nafees et al. [23] used MLPNN, GEP, and ANFIS models to forecast the
CS and TS of concrete incorporated with silica fume by utilizing a database comprising 283
and 145 data points for CS and TS, respectively. It was reported that all three models showed
a notable level of accuracy in their predictive capabilities. Nevertheless, the GEP models
demonstrated their superiority by yielding significantly higher R2 values than the other
methods. According to the authors, the GEP method developed predictive equations for
each outcome, which can be used to pre-design SF concrete mixtures in the future. Awoyera
et al. [37] employed two ML models, GEP and an ANN, to predict the flexural strength, CS,
and TS of self-compacted geopolymer concrete. The prediction outcomes were compared
using statistical values of the mean square error (MSE) and R2. The author concluded
that GEP models are more reliable as they gave fewer errors and provided empirical
relationships for forecasting the properties of concrete. Shahmansouri et al. [38] developed
numerical models using GEP to predict the CS of geopolymer concrete containing GGBS. A
total of 351 data records, with the five most important input parameters, were employed to
create the models. The efficacy and generalization ability of the models was assessed based
on sensitivity and parametric analyses. The study’s findings indicate that GEP models can
be used as an effective tool for promoting sustainability in the construction sector as they
provide robust and strong empirical correlations.

Based on the aforementioned literature analysis, it is evident that numerous researchers
have employed ML methodologies to forecast the mechanical characteristics of concrete
that incorporate supplementary cementitious materials (SCMs) by employing traditional
machine learning techniques. The aforementioned investigations were characterized by
certain shortcomings, including a smaller number of data points, a less robust connection
among the controlling factors, the non-availability of GEP-based predictive equations,
and a lack of comparative analyses and experimental validation. Furthermore, as per the
authors’ knowledge, studies in the literature about predicting the performance of concrete
utilizing binary SCMs (silica fume and GGBS) are not available. Therefore, for the first time,
this study employed three distinct computational methodologies, including ANN, ANFIS,
and GEP techniques, to develop models that can accurately and precisely forecast the CS
and TS of concrete incorporated with SF and GGBS. Each model’s predictive performance
was assessed using various statistical performance measures and experimental testing for
cross-validation in the laboratory. Moreover, sensitivity and parametric analyses were
conducted to determine the influence of input variables on the CS and TS of concrete
incorporated with SF and GGBS. The availability of reliable and precise ML techniques to
anticipate the properties of concrete containing SF and GGBS will promote sustainability
and save money and time.

2. Research Methodology

The process used to develop the modeling techniques for forecasting the CS and TS of
concrete containing SF and GGBS is described in this section. Initially, a detailed description
of the data collection is provided, followed by a general review of the ML techniques (ANN,
ANFIS, and GEP) employed in this study. Thereafter, performance measurement and
experimental validation criteria for the models are discussed. Figure 2 shows a detailed
overview of the methodological procedure followed in this research.
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Figure 2. Flow diagram of the methodology.

2.1. Data Collection

An extensive database of SCM-based concrete was compiled from articles published in
international journals [39–62]. The collected database was mainly obtained from concrete
mixes incorporated with a combination of SCMs (SF and GGBS). While developing the
database, care was taken to select the data points that provided comprehensive details
regarding the mix design and sizes of the specimens used. The total dataset consisted of
648 data points for CS and 245 data points for TS. The database comprised two types of
concrete samples, i.e., cylinders and cubes. The reported database for CS contains 248 data
points obtained from cubic specimens with a size of 150 mm and 400 data points obtained
from standard-size cylindrical samples (150 mm in diameter and 300 mm in height). How-
ever, according to previous experimental investigations, the length-to-diameter ratio (L/D)
affects the strength properties of concrete [63]. Therefore, for the sake of homogeneity, all
of the data points were normalized in standard cylindrical form. A normalization factor
of 0.8 was used for the cubes of 150 mm in size [64]. Similarly, the collected database for
TS contains 245 data points obtained from standard-size cylindrical specimens. In this
study, eight major input parameters, including the water-to-binder ratio (W/B), ground
granulated blast furnace slag (GGBS) content, cement content (C), silica fume (SF) content,
superplasticizer (SP), specimen age (A), and coarse aggregate (CA) and fine aggregate
(FA) proportions, were considered to develop the database, while CS and TS were used as
output parameters. It is known that the distribution of the input data of any model has a
significant impact on its performance [65]. Before developing the models, it is important
to ensure that the data are randomly distributed without biasness, and outliers should be
detected. This study used the raincloud visualization technique with a normal distribution
curve to determine potential outliers in the database, as shown in Figures 3 and 4 for CS and
TS, respectively. It can be noted that only a few data points deviated from the normal trend.
Several statistical techniques could be used to eliminate the effect of outliers, such as data
trimming, imputation, and data transformation [66]. The selection of the most appropriate
outlier detection technique depends on the type of data. The imputation technique can be
considered the most effective outlier detection method when the data slightly deviate from
the normal trend [67]. Therefore, this study also employs an imputation technique in which
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the outliers are replaced with mean values. After the outlier analysis, the distribution of
input parameters and their relationship with the performance indicators (CS and TS) are
calculated, as shown in Figures 5 and 6, respectively. It is evident that the input data are
distributed randomly without any biasness.

Figure 3. Outlier detection using raincloud plots for the CS database.

Figure 4. Outlier detection using raincloud plots for the TS database.
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Figure 5. 3D bar charts representing frequency distribution for the CS database. Note: The measuring
unit for all input variables is “kg/m3”, except the age, which is measured in days.
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Figure 6. 3D bar charts representing frequency distribution for the TS (MPa) database. Note: The
measuring unit for all input variables is “kg/m3”, except the age, which is measured in days.
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For analysis, the whole database was split into three categories, i.e., training, validation,
and testing subsets. The training database was used for the general evolution of the model,
while the validation and testing databases were utilized to assess the model’s predictive
validity. When partitioning a dataset into categories, it is crucial to make sure that the
data distribution is uniform in the training and validation phases. This objective was
accomplished through the random arrangement of the training (learning), validation, and
testing (evaluation) datasets, ensuring that the variables being used exhibited a satisfactory
level of consistency with regard to statistical properties, including the mean, median, and
standard deviation, as well as the range of data. The present study employed a training
dataset comprising 70% of the total data for both CS and TS (454 and 171 data points),
while the remaining 30% of the total data points (194 and 74) were allocated to validate the
models. Before running the models, numerous tests were performed to evaluate whether
the consistency of the database was valid.

The statistical analyses of input parameters used for CS and TS models are given in
Tables 1 and 2, respectively. These provide details about the standard deviation, mode,
kurtosis, median, skewness, range, smallest, and highest values of the datasets being
used for both CS and TS models. A minimal standard deviation value demonstrates
that most values are concentrated in a very narrow range around the mean value in the
normal distribution curve. On the other hand, a higher standard deviation shows that
the numbers are dispersed more widely. The skewness of a variable is the degree to
which the distribution of its probabilities deviates from symmetry with respect to the
mean [68]. According to Brown and Greene [69], the acceptable kurtosis value is within
the range of −10 to +10, and this value indicates the type of probability distribution. The
abovementioned statistical measures show that the data are distributed over a wider range,
making the models more generalized. Moreover, the efficacy of the model can be enhanced
by the distribution of input variables across a wide range. It is essential to carefully
examine the mutual dependency of specific parameters utilized in model construction to
avoid complexity in the analysis of the model’s results. The issue of correlation among
particular variables is commonly known as multi-collinearity. To avoid this concern, it is
recommended that the correlation coefficient between the two variables should be lower
than 0.8 [70]. Tables 3 and 4 indicate that all variables utilized in the model exhibit a weak
correlation, as indicated by both the negative and positive correlation values.

Table 1. Statistical description of the CS parameters.

Parameters Minimum Mean Range Median Kurtosis Mode SD Skewness Maximum

Inputs Units

C kg/m3 113.4 254.0 463.6 243.0 −0.3 270.0 87.9 0.5 577.0
GGBS kg/m3 21.5 126.2 348.5 129.6 −0.1 64.8 57.6 0.5 370.0
SF kg/m3 9.0 36.1 80.0 38.7 0.9 45.0 15.0 0.5 89.0
SP kg/m3 0.0 3.1 11.3 3.8 0.6 0.0 3.1 1.0 11.3
CA kg/m3 793.0 1090.8 655.0 1093.0 4.0 1093.0 91.7 1.2 1448.0
FA kg/m3 499.0 724.9 493.0 768.0 −0.5 785.0 98.5 −0.2 992.0
W/B 0.2 0.4 0.4 0.4 −1.2 0.6 0.1 0.2 0.6
Age Days 1.0 50.8 364.0 28.0 9.8 28.0 63.0 2.8 365.0
Output
CS MPa 11.2 39.2 69.6 35.2 −0.2 34.4 14.3 0.7 80.8
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Table 2. Statistical description of the TS parameters.

Parameters Minimum Mean Range Median Kurtosis Mode SD Skewness Maximum

Inputs Units

C kg/m3 113.4 261.4 463.6 270.0 0.0 270.0 83.6 0.4 577.0
GGBS kg/m3 45.0 135.8 325.0 135.0 0.0 45.0 58.4 0.4 370.0
SF kg/m3 16.2 40.3 72.8 45.0 2.4 45.0 13.9 0.6 89.0
SP kg/m3 0.0 2.8 11.3 0.0 −0.1 0.0 3.8 1.1 11.3
CA kg/m3 985.0 1108.5 463.0 1093.0 2.0 1093.0 108.1 1.3 1448.0
FA kg/m3 499.0 723.5 401.0 785.0 −1.1 785.0 114.3 −0.3 900.0
W/B 0.2 0.4 0.4 0.4 −1.3 0.6 0.1 0.5 0.6
Age Days 7.0 68.5 358.0 56.0 5.1 28.0 62.2 1.9 365.0
Output
TS MPa 2.1 4.5 6.1 4.3 −0.1 3.7 1.2 0.5 8.3

Table 3. Correlation coefficient metrics for the CS parameters.

C GGBS SF SP CA FA W/B Age CS

C 1
GGBS −0.2172 1
SF 0.0304 0.1853 1
SP −0.0681 0.0145 0.2537 1
CA −0.0004 −0.0160 −0.1282 −0.0553 1
FA −0.4142 −0.1128 0.0059 0.3206 −0.5484 1
W/B −0.5972 −0.2312 −0.2535 −0.2416 0.1206 0.3244 1
Age −0.1608 −0.0225 0.0425 0.0707 −0.0420 0.1705 0.1828 1
CS 0.2388 0.2360 0.2262 0.2561 −0.3149 0.2068 −0.5637 0.2442 1

Table 4. Correlation coefficient metrics for the TS parameters.

C GGBS SF SP CA FA W/B Age TS

C 1
GGBS −0.2450 1
SF 0.3150 0.1287 1
SP 0.1128 0.1204 0.2327 1
CA −0.0548 0.1256 −0.3269 −0.0927 1
FA −0.3015 −0.2016 −0.0832 0.2561 −0.6536 1
W/B −0.6520 −0.2686 −0.3952 −0.4985 0.0654 0.2200 1
Age 0.0304 −0.0619 0.0519 0.1025 −0.1778 0.1123 −0.0198 1
TS 0.5449 0.1457 0.4139 0.5142 −0.3211 0.0702 −0.7511 0.3124 1

2.2. Overview of Soft Computing Techniques
2.2.1. Artificial Neural Networks

Artificial Neural Networks (ANNs), initially introduced by McCulloch et al. [71], are
computational models utilized for the efficient prediction and categorization of non-linear
regression problems. Neural networks comprise fundamental computational elements
known as neurons, which are grouped into layers. Every single neuron in a particular
layer is linked to all of the neurons in the adjacent layer. The computational structure is
structured hierarchically, with at least three layers comprising its composition: the input
layer (input neurons), one or more computational layers (hidden layers), and the output
layer, as demonstrated in Figure 7. The input layer is accountable for acquiring variables for
the training and evaluation of the model. Likewise, the computational layer is accountable
for linking the input and output layers to help with the processing of data, which are
subsequently transmitted to the output layer to generate the model’s outcomes [72]. This
study employs the process of forward propagation, which is accomplished through a



Buildings 2024, 14, 1091 11 of 43

sequential pathway in which the preceding neuron receives and interprets data before
transmitting the data to the succeeding neurons. Simultaneously, every input is subjected
to the influence of weight (Wj w/b, Wj C, Wj GGBS, Wj SF, Wj SP, Wj A, Wj CA, Wj FA),
which denotes the varying degrees of the significance of the input data in relation to the
output. A threshold value, denoted by j, is added by each node to the sum of weighted
signal inputs.

Figure 7. Schematic of ANN models with eight input parameters.

Subsequently, a non-linear conversion function is applied to the integrated input (Ij)
that transforms a value from one unit of measurement to another. The activation functions
(AFs) play a crucial role in ANNs and have a notable impact on the efficacy of the models
by introducing non-linearity to the networks. Therefore, selecting an appropriate AF is
a critical consideration [73]. Several commonly utilized AFs for improving the efficacy
of ANN models have been identified in the literature [74,75]. The activation conversion
functions that are frequently employed in artificial neural networks (ANNs) include logistic
sigmoid, linear, and hyperbolic tangent sigmoid functions [76]. The present study employed
a linear transfer function (PURELIN) and a BPNN transfer function (TRANSIG). These
functions result in an increased statistical performance and number of neurons in the
training phase, while decreasing the performance accuracy in the testing and confirmation
phases [77]. The logistic function, which is represented by Equation (1), was employed as
an AF in this study. The ANN method is mathematically represented by Equations (1)–(3).

zh(x) =
1

1 + e−x (1)

Ij =
{(

wj C∗C + wj w
b
∗ w

b
+ . . . wj A∗A

)}
+ θj Summation (2)

CSj or TSj = x
(
Ij
)

Transfer (3)

The training process of an ANN starts with the propagation of data from the input
neurons, while the weights are established according to predetermined rules to produce
outputs with minimal error. Following that, the model that has undergone training is
subjected to scrutiny and validation through a distinct subset of data designated for testing
purposes. Further details regarding the ANN modeling methodology can be found in [78].
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2.2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The ANFIS is an ML model that integrates the features of both fuzzy logic and neural
networks. It exhibits superior predictive capabilities and represents a more viable option
for computing complex non-linear problems with enhanced accuracy [79]. An ANFIS
learns from a training set to construct a fuzzy inference system that can be fine-tuned and
optimized through a learning algorithm, similar to the training process of neural networks.

The ANFIS uses a collection of fuzzy if–then regulations to estimate the input–output
correlation. The aforementioned regulations are commonly derived from specialized exper-
tise or acquired through a process of learning. In the present study, the fuzzy logic toolbox
in the MATLAB R2022a environment was used for the development of ANFIS models.
The fuzzy logic toolbox provides a range of functions and tools for the creation of ANFIS
models. This toolbox also facilitates the process of training and optimizing the ANFIS
model by utilizing the provided data and parameters. The ANFIS comprises multiple
layers, wherein the parameters of each layer undergo modifications through the learning
process. The initial stage of a fuzzy system involves the acquisition of input variables by
the input layer. These variables are subsequently subjected to a fuzzification process in
the fuzzification layer, wherein they are converted into fuzzy sets by utilizing membership
functions (MFs). Fuzzy if–then rules are utilized in the rule layer to combine the fuzzified
inputs. The normalization layer combines the normalized outputs generated by the rule
layer, thereby ensuring consistency across the rules. Ultimately, the defuzzification layer
transforms the normalized outputs into precise numerical values. During the training
process, the fuzzy rules and MF parameters are adapted using a learning algorithm to
minimize the differences between the anticipated and actual outputs. This approach aims
to optimize the performance of the model. Figure 8 illustrates the ANFIS structure for
multiple input variables, wherein the fixed and adaptive nodes are represented by circles
and squares, respectively. The ANFIS architecture can be represented by the first order of
the Sugeno model, which employs two sets of if–then rules.

Figure 8. Representation of ANFIS models with the parametric settings considered in this study.

Rule 1 applies if C and W/B are A1 and B2, respectively.
Then, Equation (4) indicates that

z1 = p1(C) + q1

(w
b

)
+ r1 (4)
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Rule 2 applies if C and w/b are A2 and B2, respectively.
Then, Equation (5) says that

z2 = p2(C) + q2

(w
b

)
+ r2 (5)

Here,

An and Bn = fuzzy logic sets;
Pn, qn, and rn = shape factors (estimated in the training phase);
z1 and z2 = outputs (CS and TS).

The ANFIS model is composed of five distinct layers, as noted by Golafshani et al. [80].
A comprehensive explanation of the functions of these layers is provided herein.

First Layer: This layer is also known as the fuzzification layer, in which each input
variable is fuzzified or converted into a fuzzy set using membership functions.

Equations (6) and (7) represent the basic fuzzy rule and the model parameters, respec-
tively.

O1
i = µAi(C), i = 1, 2 (6)

O1
i = µBi−2(w/b), i = 3, 4 (7)

Here, u is the significance (weight) calculated by linking the fuzzy association function,
and both Ai (C) and Bi−2 work together to distinguish one method of applying a fuzzy MF
from another. The bell-shaped and gaussian MFs are represented in Equations (8) and (9).

µAi(C) = e
− (C−ci)

2

2ai
2 (8)

µAi(C) =
1

1 +
{(

C−ci
ai

)}bi
(9)

Second Layer: The resulting response of this layer relates to the firing capacity of the
pre-specified regulations applied to a given input series. The points in the second layer
are fixed and execute basic multiplication operations. The resulting output boundaries are
presented in Equation (10).

O2
i = wi = µAi(C)· µBi

(w
b

)
, i = 1, 2 (10)

Third Layer: In this layer, the outputs obtained from the second layer are normalized
to ensure that the overall output is within a specified range. This step is important for
consistency and comparability across different rules. Layer outputs are illustrated in
Equation (11).

O3
i = wi =

wi

w1 + w2
i = 1, 2 (11)

Fourth Layer: In the fourth layer, the nodes exhibit adaptability, and their outcomes
are represented as the result of standardized firing strength in conjunction with a first-order
polynomial while considering the first-order Sugeno model. Consequently, the resulting
output is expressed as Equation (12):

O3
i = wizi = wi{(pi(C) + qi(w/b) + ri)} (12)

Fifth Layer: In the fifth layer, only one permanent node is denoted by the symbol Σ.
This node is responsible for performing the sum of the weighted consequences of the rules
that previously resulted from the previous layer. Consequently, the findings of the model
can be obtained by utilizing Equation (13).

O5 = ∑2
i=1 wizi =

∑2
i=1 wizi

w1 + w2
(13)
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Notably, within the ANFIS framework, only the first and fourth layers exhibit the
ability to adapt. The premise parameters, denoted as {ai, bi, ci}, are linked to the input
association functions within the first layer of the system. Similarly, the three consequent
parameters {pi, qi, ri} are associated with first-order polynomials and are located in the
fourth layer, as reported by Islam et al. [81].

2.2.3. Gene Expression Programming (GEP)

GEP, introduced by Ferrira [82], is a modification of genetic programming (GP) and is
premised on the evolutionary population hypothesis. It encompasses simple, fixed-length
linear structures like chromosomes, and more complex, non-linear structures like parse
trees. The essential parameters that must be specified in GEP are identical to those used
in GP, such as the function set, set of terminals, fitness trial, governing parameters, and
terminal conditions. Figure 9 shows a graphical description of the GEP working procedure.
Chromosomes of fixed length are first generated at random for each individual gene. Static-
length linear strings are then represented as non-linear structures of various sizes and
form termed expression trees (ETs), indicating chromosomes of branched structures [83].
It is important to mention that in GEP, genotypes (genetic constitution) and phenotypes
are separated so that the program can benefit from all of evolution’s merits [82]. Then,
each individual’s fitness is assessed by expressing the chromosomes as ETs. For use in
the reproduction phase, the best-fit individuals are chosen. The iterations are repeated
with new individuals in search of the optimal solution. Several genetic operations like
crossover, mutations, and reproduction are executed for the transformation of populations.
Figure 9 shows the ET representations of the GEP model and the crossover and mutation
processes. The notable modification in GEP is that the genome (haploid set of chromosomes)
is passed down to the succeeding generation, and the whole structure does not need
to be replicated and transformed because all modifications occur in a perfectly linear
framework. Another important characteristic to note is that every individual is composed
of a single chromosome containing several genes, which are then separated into head and
tail segments [83]. Additionally, genetic algorithms are used to change chromosomes during
the reproductive stage [84]. Finally, GEP models can modify the parameter arrangement
based on how well it fits with the results of the experiments.

Figure 9. Representation of the GEP working process, tree structure, crossover process, and
mutation process.
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2.3. Model Structures

Before developing a model, the first step is creating a general function. The input
parameters that have the most significant effect on the properties of concrete were selected
in this function, and parameters having a negligible influence on the properties of concrete
were neglected. As a result, the following variables were found to be functions of the
mechanical characteristics of concrete incorporated with SF and GGBS:

CS and TS (MPa) = f
(

C, GGBS, SF, SP, CA, FA,
W
B

, A
)

(14)

The ANN models were developed by using the Levenberg–Marquardt method. The
data were portioned randomly, and a total of 10 hidden neurons were used. The feed-
forward back-propagation network type was employed for the iteration process. It is
crucial to note that, in this study, the trial-and-error method was adapted to achieve
optimal performance concerning the desired number of hidden layers [28]. Table 5 presents
the statistical parameters used for the modeling process using the ANN approach in the
present study.

Table 5. Parametric settings for training the ANN models.

Parameter Type Value/Type

Data Distribution CS TS

Total dataset 682 245
Calibration (training) (70%) 454 171
Testing (15%) 97 37
Validation (15%) 97 37
General settings
Hidden neurons 10
Network type Feed-forward back-propagation
Output layer transfer function PURELIN
Training method Levenberg–Marquardt
Computational layer transfer function TANSIG
Epochs 41
Data division Random
Rate of learning 0.01
Non-linear parameters 18

The ANFIS exhibits constraint when accommodating a single output compared to
an ANN. Hence, the outputs were subjected to independent treatment, with identical
input variables being considered for both the ANN and ANFIS models. Similar datasets of
training, testing, and validation were used for ANFIS modeling to observe the optimized
outcomes. Initially, the hybrid optimization method, specifically the least-square and
back-propagation method, was employed to generate the fuzzy inference system (FIS)
using subtractive clustering, also known as “sub-clustering”. Subsequently, the FIS was
trained utilizing the trim function, as documented by Jalal et al. [85]. It is important to
emphasize that this approach was used due to the extensive database. Moreover, Venkatesh
and Bind [86] suggested using the grid portioning technique in cases where the total
amount of inputs is six or fewer. In this study, trial-and-error methods were adapted, the
ANFIS model was trained, and optimal parameter values were determined using an initial
number of epochs as 40. The term “epoch” refers to the number of iterations or passes over
the training set that the program was allowed to run. Each epoch represents a complete
iteration through the training data. Table 6 presents a comprehensive list of the different
setting parameters used to train the ANFIS models.

In the process of developing the GEP models for the anticipation of the CS and TS
of concrete containing SF and GGBS, GeneXproTools 5.0, a highly adaptable GEP data
modeling program, was used. This is a user-friendly and effective data mining tool created
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specifically for categorization, time-series analysis, basic functional regression, and logical
synthesis. A well-structured Microsoft Excel (v2010) dataset with eight input parameters
and established outputs was uploaded to begin the simulation process.

Table 6. Parametric settings for training the ANFIS models.

Parameter Type Value/Type

Data Distribution CS TS

Total dataset 648 245
Calibration (training) (70%) 454 171
Testing (15%) 97 37
Validation (15%) 97 37
General settings
Number of nodes 10 10
Number of fuzzy rules 7 8
Number of non-linear parameters 50 77
Epochs 40 40
Number of linear parameters 66 120
Number of MFs 18 89
Error goal in training 0 0
Fuzzy structure Sugeno
Output function Linear
Optimization technique Hybrid method
MF type trimf
FIS type Sub-clustering

The generalization capability and robustness of the generated model greatly depend
on its fitting parameters. Initially, numeric constants and genetic operators were chosen
based on the literature, and 20 trial-and-error-based models were run for each output (CS
and TS) to determine the best settings. Different fitting parameter combinations were used
by varying the gene number, head size, number of genetic factors (chromosomes), and
linking functions [22]. The operating time of each model was determined according to the
number of genetic factors. The basic genetic operators and numeric constants utilized for
both the CS and TS predictive models are explained in Table 7. The fitness parameters
employed in each of the 20 GEP models for CS are listed in Table 8, and for the TS models,
these parameters are listed in Table 9.

Table 7. Genetic operators and numeric constants used in the GEP models for CS and TS.

Genetic Operators

RIS transposition rate 0.00541
Permutation 0.00546
Two-point recombination rate 0.00273
Leaf mutation 0.00546
Gene recombination rate 0.00274
Conservative mutation 0.00364
Rate of gene transposition 0.00272
Mutation 0.00138
Rate of mutation 0.00134
Fixed-root mutation 0.00182
Rate of inversion 0.00535
IS transposition rate 0.00531

Numerical Constants

Data type Floating number
Method Random selection
Lower bound −10
Fine-tuning 0.0026
Constant per gene 10
Upper bound 10
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Table 8. Descriptive summary of the parametric settings of the GEP models used for CS.

Models No. of
Chromosomes

Variable
Used

Head
Size

Constant
per Genes

Number of
Genes

Linking
Function Ftn Set Duration

(Minutes)

CS1 30 7 8 10 3 Addition (÷, ×, +, −) 20
CS2 50 7 10 10 4 23
CS3 80 9 12 10 5 25
CS4 100 7 14 10 6 30
CS5 150 7 16 10 7 40
CS6 30 7 8 10 3 Division (÷, ×, +, −) 23
CS7 50 9 10 10 4 26
CS8 80 9 12 10 5 29
CS9 100 8 14 10 6 35

CS10 150 7 16 10 7 45
CS11 30 9 8 10 3 Multiplication (÷, ×, +, −) 18
CS12 50 8 10 10 4 22
CS13 80 9 12 10 5 24
CS14 100 8 14 10 6 27
CS15 150 8 16 10 7 35

CS16 30 7 8 10 3 Multiplication (÷, ×, +, −,
Pow,

√
) 30

CS17 50 9 10 10 4 34
CS18 80 8 12 10 5 38
CS19 100 9 14 10 6 42
CS20 150 8 16 10 7 50

Table 9. Descriptive summary of the parametric settings of the GEP models used for TS.

Models No. of
Chromosome

Variable
Used Head Size Constant per

Genes
Number of

Genes
Linking
Function Function Set Duration

(Minutes)

TS1 30 7 8 10 3 Addition (÷, ×, +, −) 22
TS2 50 8 10 10 4 24
TS3 80 9 12 10 5 26
TS4 100 9 14 10 6 32
TS5 150 9 16 10 7 40
TS6 30 8 8 10 3 Division (÷, ×, +, −) 24
TS7 50 8 10 10 4 26
TS8 80 7 12 10 5 28
TS9 100 8 14 10 6 33

TS10 150 7 16 10 7 45
TS11 30 9 8 10 3 Multiplication (÷, ×, +, −) 20
TS12 50 9 10 10 4 22
TS13 80 9 12 10 5 26
TS14 100 8 14 10 6 27
TS15 150 8 16 10 7 37

TS16 30 7 8 10 3 Multiplication (÷, ×, +, −,
Pow,

√
) 31

TS17 50 7 10 10 4 37
TS18 80 8 12 10 5 38
TS19 100 9 14 10 6 44
TS20 150 9 16 10 7 54

2.4. Model Validation

Performance validation is essential to assess the reliability and generalization capa-
bility of ML-based models. In this study, statistical metrics and experimental validation
criteria were used to assess the efficacy of the proposed models.

2.4.1. Statistical Validation

Initially, the performance of the developed models was evaluated by using statistical
error correlations such as the mean absolute error (MAE), relative root-mean-squared error
(RRMSE), root mean square error (RMSE), correlation coefficient (R), and root-squared
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error (RSE). Typically, a model with a higher R2 value and lower RMSE, MAE, and RSE
values indicates better results. Equations (15)–(20) present the mathematical formulations
of these statistical measures.

RMSE =

√
∑n

i=1(ai − mi)
2

n
(15)

MAE =
∑n

i=1|ai − mi|
n

(16)

R =
∑n

i=1(ai − ai)
2(mi − ai)

2√
∑n

i=1(ai − ai)
2 ∑n

i=1(mi − ai)
2

(17)

RSE =
∑n

i=1(mi − ai)
2

∑n
i=1(a − ai)

2 (18)

RRMSE =
1
|a|

√
∑n

i=1(ai − mi)
2

n
(19)

ρ =
RRMSE

R
(20)

Here, mi and ai represent the model and experimental (actual) output values, while
ai and ai represent the mean values of the model and experimental outputs, respectively,
and n is the total size of the population (database). For an effective and stable correlation
between the actual and anticipated values, it has been suggested that it is better to have
an R value larger than 0.8 [87]. However, this value was excluded due to its negligence
towards the multiplication and division of outcomes to a constant [87]. Therefore, R2 was
also employed due to its unbiased evaluation and comparatively higher efficiency. The
maximum variation among the input parameters is captured when R2 values are equal to
1 [88]. There is another statistical correlation commonly used for performance measures, i.e.,
RMSE. This metric is most prominent because large errors are addressed more efficiently
than small errors, and an error value near zero indicates the best model [89]. However, it
does not always guarantee the accuracy of identifying the lowest error in prediction. Due
to this, the MAE was also estimated, which is very beneficial when dealing with continuous
and smooth data [90]. In essence, better and improved models are indicated by lower error
statistical metrics (MAE, RSE, and RMSE) and greater R and R2 values.

However, a major issue related to AI approaches is overfitting, which results in higher
errors in the testing dataset. Hence, minimization of the objective function (OBF) is per-
formed to select the most suitable prediction model, as demonstrated in Equation (8) [65].
The OBF is calculated to assess the trained model’s effectiveness, including error function
and changes in the correlation coefficient. The overfitting problem can be fixed by lowering
the OBF value.

OBF =

(
nT − nV

n

)
ρi T + 2

(nV

n

)
ρi V (21)

V and T subscripts denote validation and training data points, respectively, and n
refers to the total size of the population. A model having an OBF value closer to zero
represents the most appropriate model since it comprises the impact of both the RRMSE
and R values.

2.4.2. Experimental Validation
Materials

In the present study, OPC Grade53, SF, and GGBS were utilized as cementitious
materials in the mixture. The chemical compositions and physical characteristics of these
materials are shown in Table 10. The mineralogical compositions of these cementitious
materials can have notable impacts on the properties of concrete, such as its strength,
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durability, and workability. SF, for instance, is known to enhance the strength and durability
of concrete due to its pozzolanic reaction and filler effect. On the other hand, GGBS
contributes to improved workability and strength due to filler effects. However, in this
study, OPC cement was used for the whole experimental part. Similarly, throughout the
experimental investigation, the mineralogical compositions of SF and GGBS remained the
same in order to evaluate the specific effects of SF and GGBS on concrete properties when
other factors are held constant. River sand and granite with a maximum size of 4.75 mm
and 19 mm were used as fine aggregates (FAs) and coarse aggregates (CAs) in the mixtures.
The properties of the CAs and FAs were thoroughly examined. The fineness moduli of the
FAs and CAs were measured as 2.2 and 5.3, respectively. Likewise, the water absorption
and specific gravity were determined as 2.1% and 2.57, and 4% and 3.41, for the FAs and
CAs, respectively. In addition, the superplasticizer type S-3 was used to maintain the
workability of the concrete samples.

Table 10. Properties of cementitious materials [91,92].

Component OPC GGBS SF

Chemical Composition (% Mass)

K2O – 0.69 0.56
CaO 62.73 33.06 0.22
Fe2O3 3.95 0.34 0.5
SO3 3.14 2.67 0.12
SiO2 20.78 35.84 97.5
Na2O 0.78 1.08 0.25
Al2O3 4.82 12.43 0.2
MgO 1.57 12.08 0.56
Physical Properties
Specific gravity 3.15 3.05 2.22
Specific surface area (m2/kg) 421 550 2300
Loss on ignition 2.08 2.08 2.08

Mix Design and Specimen Preparation

A total of 54 concrete samples, with varying proportions of SF and GGBS, were
prepared. The details of the mix designs for external validation are presented in Table 11.
In total, six different mixes were designed. CM represents the control mix, while M1 to
M5 represent mixes with different percentages of SF and GGBS replacing the cement. The
percentage of SF in these mixes varied from 5 to 20, while the percentage of GGBS varied
from 10 to 40. For example, M1 represents a mix containing 5 percent SF and 10 percent
GGBS as a replacement. As discussed earlier, the main aim of this study is to evaluate the
impact of SF and GGBS in concrete; therefore, the W/B ratio, mineralogical compositions
of cementitious materials, and other ingredients used in the mixes were kept consistent.
The concrete specimens were tested for workability using ASTM C143. Likewise, the CS of
the samples was evaluated using the ASTM C39 at the ages of 28, 56, and 90 days.

Table 11. Mix designs used for external validation.

Code SCMs
Cement SP SF Water GGBS CA FA

(kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3)

CM CM 415 10 0 156 0 1050 730
M1 SF5+GGBS10 353 10 20 156 41 1050 730
M2 SF10+GGBS20 291 10 41 156 83 1050 730
M3 SF10+GGBS30 249 10 41 156 125 1050 730
M4 SF15+GGBS30 228 10 62 156 125 1050 730
M5 SF20+GGBS40 166 10 83 156 166 1050 730
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3. Results and Discussion
3.1. Performance Assessment of ANN Models

The statistical characteristics and performance index of the training, validation, and
testing sets for optimum models of CS and TS based on the ANN models are shown in
Figure 10. It is obvious that the R2 values for training, validation, and testing for the CS-
ANN models are greater than 90% (R2

training = 0.941, R2
validation = 0.937, R2

testing = 0.938).
Similarly, for the TS-ANN models, the R2 values are 0.958, 0.938, and 0.931 for the training,
validation, and evaluation stages, respectively. It is important to mention that the greater
difference between the training and validation values is due to the fact that ANN models
work on the black-box principle. It can be seen that the error values (RMSE, MAE, RSE,
RRMSE) for each set of both CS and TS models are minimal, approaching zero, indicating
the higher accuracy of the optimum models. The RMSE values are equal to 3.328 MPa,
4.049 MPa, and 3.826 MPa for the training, validation, and testing phases, respectively, for
CS-ANN, and 0.269 MPa, 0.321 MPa and 0.343 MPa for the TS-ANN models. Consequently,
the MAE values are equal to 1.788 MPa, 2.791 MPa, and 2.832 MPa for the training, valida-
tion, and testing phases of CS-ANN. For the TS-ANN models, these values are 0.202 MPa,
0.255 MPa, and 0.034 MPa, respectively. From these findings, it can be noted that in all three
stages for both the CS-ANN and TS-ANN models, the MAE values are lower than RMSE
values, indicating a better efficacy of the models. In addition, the PI and OF values for all
of the established models in all three stages are close to zero. To further assess the model’s
accuracy, the greatest error percentage in the models between the actual and estimated
outcomes is depicted in Figure 11a–d. It is evident that the experimental and estimated
outcomes are comparable with each other, with maximum errors less than 13 MPa and
0.93 MPa and with means of 2.56 MPa and 0.23 MPa in the CS-ANN and TS-ANN models,
respectively. Figure 11b,d illustrates the error histograms for the CS-ANN and TS-ANN
models. These figures demonstrate that greater than 81.17% of the projected results lie
within the range of 0 to 4 MPa for the employed data in the case of the CS-ANN model.
Meanwhile, greater than 90% of the anticipated TS values fall within the error range of
0 MPa to 6 MPa. It is clear from Figure 11 that the error values are closer to zero, which is
evidence of the better performance of ANN-based models.

Figure 10. Comparison of experimental and anticipated results using ANN models for (a) CS and
(b) TS.
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Figure 11. Absolute error plots for the ANN models: (a) scatter plot for CS, (b) histogram for CS,
(c) scatter plot for TS, (d) histogram for TS.

3.2. Performance Assessment of ANFIS Models

In order to enhance efficiency, similar datasets generated by the ANN models were
used as input for the ANFIS models. However, a difference was observed between the
predictive outcomes of both techniques. This difference can be attributed to the use of
additional fuzzy logic in the ANFIS models. It is obvious from Figure 12 that the R2

values are 0.97, 0.969, and 0.967 for all three stages, i.e., training, validation, and evaluation
(testing), respectively, for the CS-ANFIS models, and 0.995, 0.998, and 0.998 for the TS-
ANFIS models. These higher R2 values reveal the strong predictive performance of ANFIS-
based models. Like ANN-based models, the RMSE and MAE values for the CS-ANFIS and
TS-ANFIS models are close to zero, and the MAE values are lower than the RMSE values.
Moreover, the ANFIS models show 33% and 30% lower RMSE and MAE values than
the ANN models for CS and approximately 85% and 93% lower for TS. Additionally, the
RRMSE, OF, and RSE values are close to zero for both the CS-ANFIS and TS-ANFIS models.
To determine the predictive performance of ANFIS-based models, the absolute error plots
between the ANFIS-anticipated and experimental values are presented in Figure 13a–d for
the CS-ANFIS and TS-ANFIS models, respectively. The error values show that the ANFIS-
predicted values accurately reflect the experimental values for the CS and TS models. It
can be seen that the ANFIS models exhibit 40% and 86% lower absolute error values for
CS and TS, respectively. The highest and lowest absolute error values for the CS-ANFIS
model are equal to 10.73 MPa and 0.009 MPa, while for the TS-ANFIS model, these values
are equal to 0.48 MPa and 0.0003 Mpa, respectively. Similarly, the average absolute error
values for these models are 1.68 Mpa and 0.032 Mpa, respectively. Figure 13b,d presents the
error histograms, which show that 87% of the error values lie between 0 Mpa and 4 Mpa
for the CS-ANFIS model. Likewise, 98% of the absolute error values lie in the 0 Mpa to
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0.4 Mpa range for TS-ANFIS. From these findings, it can be inferred that ANFIS-based
models exhibit comparatively superior predictions compared to ANN-based models.

Figure 12. Comparison of experimental and anticipated results using ANFIS models for (a) CS and
(b) TS.

Figure 13. Absolute error plots for the ANFIS models: (a) scatter plot for CS, (b) histogram for CS,
(c) scatter plot for TS, (d) histogram for TS.
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3.3. GEP Model Development and Performance Assessment

Unlike the other models, GEP also provides predictive equations for the outputs. So,
before discussing the performance of GEP models, the development of predictive equations
for the CS and TS of concrete is described in detail. The efficacy of the GEP-based developed
models is significantly influenced by their fitting parameters. Therefore, it is crucial to
find the best parametric settings to achieve an appropriate balance between complexity
and simplicity, avoid overfitting, and enhance the model’s generalization capability. The
process of identifying the most suitable parameter values for a model that exhibits strong
performance on new data generally involves an iterative procedure. In the present study, a
trial-and-error approach was employed. During the experimentation phase of GEP, various
combinations of parameters were tested by varying the genetic factor (chromosomes), the
linking function, the head size, and the number of genes to identify the best parametric
settings for both the CS and TS models, as presented in Tables 8 and 9, respectively. The
GEP system was designed to run indefinitely due to the significance of maintaining stable
values for correlations and fitness functions. The models were evaluated based on several
statistical error measures, such as R2, RMSE, and MAE values. The statistical measures
for the training and evaluation phases of the GEP models for CS are displayed in Table 12,
while these measures for the TS models are shown in Table 13. The results demonstrate that
increasing the parametric values (head size, genetic factors, linking functions, and gene
size) while using different linking functions (+, −, /, ×) enhanced model performance, as
reflected by lower RMSE and MAE values and higher R2 values. Moreover, the running time
and the complication of the models may be increased by the increase in these parametric
values, thereby making it difficult to comprehend the dynamics of the model. Following
the statistical assessments conducted on the suggested GEP models, the best GEP models
(CS12 and TS12) were chosen to predict the CS and TS of concrete incorporated with SF
and GGBS, respectively.

Table 12. Summary of the GEP models for CS.

Models
Training Dataset Testing (Validation) Dataset

R2 RMSE MAE RRSE R ρ R2 RMSE MAE RRSE R ρ

CS1 0.861 5.047 4.070 0.374 0.928 0.107 0.839 5.277 4.071 0.402 0.916 0.110

CS2 0.860 5.079 4.069 0.375 0.927 0.108 0.852 5.031 4.098 0.387 0.923 0.111

CS3 0.863 4.960 4.069 0.370 0.929 0.107 0.857 4.997 4.065 0.379 0.926 0.110

CS4 0.871 4.934 4.063 0.357 0.933 0.102 0.861 4.957 4.060 0.366 0.928 0.106

CS5 0.870 4.959 4.061 0.362 0.933 0.104 0.881 4.967 4.087 0.345 0.939 0.108

CS6 0.767 7.691 5.085 0.483 0.876 0.166 0.784 6.738 5.030 0.465 0.885 0.169

CS7 0.798 6.871 5.075 0.463 0.893 0.177 0.805 6.401 5.074 0.457 0.897 0.180

CS8 0.798 6.871 5.075 0.463 0.893 0.123 0.805 6.401 5.064 0.468 0.897 0.127

CS9 0.857 5.046 4.066 0.346 0.926 0.095 0.857 5.035 4.071 0.385 0.925 0.099

CS10 0.866 5.002 4.068 0.366 0.930 0.094 0.869 4.988 4.063 0.366 0.932 0.098

CS11 0.876 4.998 3.98 0.376 0.936 0.085 0.875 4.935 4.062 0.366 0.936 0.088

CS12 0.883 4.917 3.821 0.341 0.940 0.064 0.876 4.972 4.021 0.356 0.936 0.067

CS13 0.882 4.922 3.881 0.344 0.939 0.069 0.872 4.985 4.065 0.359 0.934 0.072

CS14 0.881 4.949 3.897 0.345 0.939 0.069 0.881 4.997 4.058 0.346 0.938 0.072

CS15 0.860 5.759 4.071 0.462 0.927 0.099 0.861 4.967 4.071 0.400 0.928 0.102

CS16 0.778 6.691 5.082 0.483 0.882 0.156 0.787 6.634 5.083 0.467 0.887 0.159
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Table 12. Cont.

Models
Training Dataset Testing (Validation) Dataset

R2 RMSE MAE RRSE R ρ R2 RMSE MAE RRSE R ρ

CS17 0.808 5.875 4.945 0.463 0.899 0.167 0.805 6.401 4.865 0.447 0.897 0.170

CS18 0.818 5.781 4.936 0.433 0.905 0.125 0.805 6.401 4.826 0.436 0.897 0.128

CS19 0.860 5.079 4.069 0.375 0.927 0.103 0.852 4.931 4.869 0.387 0.923 0.107

CS20 0.861 5.035 4.068 0.373 0.928 0.102 0.846 5.073 4.888 0.393 0.920 0.106

Table 13. Summary of the GEP models for TS.

Models
Training Dataset Testing (Validation) Dataset

R2 RMSE MAE RRSE R ρ R2 RMSE MAE RRSE R ρ

TS1 0.896 0.365 0.265 0.312 0.947 0.058 0.871 9.277 0.385 0.353 0.933 0.059

TS2 0.895 0.379 0.275 0.313 0.946 0.058 0.884 8.931 0.395 0.340 0.940 0.060

TS3 0.899 0.396 0.245 0.309 0.948 0.058 0.889 8.747 0.395 0.333 0.943 0.059

TS4 0.907 0.353 0.242 0.298 0.952 0.055 0.892 7.597 0.392 0.322 0.945 0.057

TS5 0.906 0.376 0.242 0.302 0.952 0.056 0.913 7.967 0.382 0.303 0.956 0.058

TS6 0.803 0.469 0.367 0.403 0.896 0.089 0.816 10.738 0.387 0.409 0.903 0.091

TS7 0.834 0.427 0.341 0.387 0.913 0.095 0.836 10.401 0.381 0.401 0.914 0.097

TS8 0.834 0.411 0.342 0.387 0.913 0.067 0.836 10.401 0.384 0.411 0.914 0.068

TS9 0.892 0.388 0.276 0.289 0.945 0.052 0.888 8.346 0.387 0.339 0.942 0.053

TS10 0.902 0.367 0.245 0.306 0.949 0.051 0.901 8.430 0.382 0.321 0.949 0.053

TS11 0.912 0.345 0.239 0.315 0.955 0.046 0.907 8.257 0.379 0.284 0.952 0.047

TS12 0.919 0.321 0.234 0.285 0.959 0.035 0.908 7.972 0.374 0.312 0.953 0.036

TS13 0.918 0.322 0.238 0.287 0.958 0.037 0.904 8.283 0.378 0.315 0.951 0.039

TS14 0.917 0.349 0.237 0.288 0.958 0.037 0.912 7.997 0.377 0.304 0.955 0.039

TS15 0.896 0.359 0.255 0.386 0.946 0.054 0.893 8.967 0.385 0.351 0.945 0.055

TS16 0.814 0.491 0.366 0.403 0.902 0.084 0.818 10.634 0.386 0.410 0.905 0.086

TS17 0.844 0.487 0.356 0.387 0.919 0.090 0.836 10.401 0.396 0.392 0.914 0.092

TS18 0.854 0.478 0.345 0.362 0.924 0.067 0.836 10.401 0.391 0.383 0.914 0.069

TS19 0.895 0.379 0.245 0.313 0.946 0.056 0.884 8.931 0.385 0.340 0.940 0.058

TS20 0.897 0.387 0.247 0.312 0.947 0.055 0.878 9.073 0.387 0.345 0.937 0.057

The output of the optimum GEP models used for predicting CS and TS are shown in
the form of expression trees (ETs), as displayed in Figures 14 and 15. The ETs for CS and TS
include four fundamental mathematical operations, namely +, /, −, and x, as illustrated in
Table 8. These ETs were interpreted to establish the empirical correlations. The empirical
expressions for the CS models are developed by considering multiplication as a linking
function. The head size and the number of genes are considered as 10 and 4, respectively.
The simplified equations in Equations (22)–(26) are recommended for predicting the CS of
concrete containing SF and GGBS. The indicators used in the ETs are presented in Table 14.

CS (MPa) = A × B × C × D (22)

A =
2.15(d7 − d3)

d7 + d2
+

d2
d4

d3 + 2.62 (23)
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B =

[
d4 − 14·d5

−4.38·d4 − d7·d2

]
+ 9.03 (24)

C =
4·d6(d0 + d7)

4·d6(d0 + d7)− d2
(25)

D = 0.3939 +
(d5·d6 + d1)− (d4 − d2)

d7(5.31·d0 − 69.56)
(26)

Figure 14. GEP expression tree extracted for CS.
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Figure 15. GEP expression tree extracted for TS.
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Table 14. ET indicators.

Parameter Unit Indicator in the
Expression Tree Description

C kg/m3 d0 Cement content
GGBS kg/m3 d1 Amount of GGBS
SF kg/m3 d2 Amount of silica fume
SP kg/m3 d3 Superplasticizer
CA kg/m3 d4 Coarse aggregates (granite)
FA kg/m3 d5 Fine aggregates
W/B - d6 Water-to-cement ratio
Age Days d7 Age of specimens at the time of testing

The formula for the TS of concrete incorporated with SF and GGBS is created by con-
sidering the same parameters as those considered for the CS. Parametric settings for the op-
timum proposed model (TS12) are illustrated in Table 9. The empirical Equations (27)–(31)
are proposed to predict TS.

TS = E × F × G × H (27)

E = −1.5 − 1.11.d0·d7
d6·d0·d7 − d2·(d3 − 4.67)

(28)

F =
d7

d5 − d4
+

d1 + 9.66·d2
d7·d2

− 8.32 (29)

G =
−2.47

−7.2 − d6
( d0

d2−d3)(−7.2)

(30)

H =
−4.98·d0·d3 + 2.49(d4 − d5)

−14.32·d0.d3 + 7.16(d4 − d5)− d1
(31)

In addition, statistical analyses of the GEP-based model outcomes are shown in
Figure 16a,b. It can be noticed that the MAE and RMSE values obtained from the CS-GEP
and TS-GEP models are comparatively greater than those obtained from the ANN and
ANFIS models. The CS-GEP models show 22% and 47% higher values of RMSE in the
testing phase compared to the ANN and ANFIS values, respectively. For TS-GEP, these
values are 15% and 20% higher, respectively. Similarly, the R2 values for the evaluation
phase are 0.88 and 0.90, respectively, for the CS-GEP and TS-GEP models, which are 7%
and 3% lower than the ANN models, whereas these values are 9% and 10% lower than the
ANFIS models. Other statistical error values, including the RSE and RRMSE calculated for
the GEP models, are comparable to ANN and ANFIS-based models for CS and TS. The
results of the error analysis of the GEP-based predictive models for CS and TS are shown
in Figure 17a–d. It can be noted that the absolute error values between the GEP-anticipated
and actual values are slightly higher for CS and lower for TS, in contrast to those of the
ANN and ANFIS models. Moreover, as shown in Figure 17b,d, 60% of the error values of
CS-GEP fall in the range of 0–4 MPa. Similarly, 77% of the error values of TS-GEP fall in the
range of 0–0.4 MPa, which is relatively less than the ANN and ANFIS models. The possible
reason for the discrepancy in the relative efficacy of the ANN, ANFIS, and GEP models for
CS and TS could be attributed to the variability in the corresponding experimental datasets.
The GEP-based empirical algorithm has demonstrated superior predictive performance
compared to the ANN and ANFIS when applied to larger datasets.
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Figure 16. Comparison of experimental and anticipated results using GEP for (a) CS and (b) TS.

Figure 17. Absolute error plots using GEP: (a) scatter plot for CS, (b) histogram for CS, (c) scatter plot
for TS, (d) histogram for TS.

The GEP-based developed models for CS and TS were further evaluated by using the
correlation p-values, which represent the likelihood of significance. The statistical analysis
was conducted using the SPSS v23 software, which is commonly employed in practical
applications. A significance threshold of 5% was used in the computation, as reported
by Güllü and Fedakar [93]. The p-value indicates the degree of confirmation against the
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null hypothesis, in which a lower p-value corresponds to a greater degree of confirmation.
The p-values obtained for the GEP models for CS and TS are close to zero, indicating a
significant degree of correlation between the observed and projected values.

3.4. Experimental Validation
3.4.1. Workability

Figure 18 displays the slump readings for all six tested combinations. The minimum
slump reading of 42 mm was noted in a mixture containing 20% SF and 40% GGBS, which
is 55% less than the control mix. It is clear that slump readings decrease with an increase in
the cement replacement level with SCMs (SF and GGBS) in the concrete. This is due to the
fact that SF and GGBS have greater specific surface area and more cohesion, which requires
extra water to maintain workability compared to normal concrete [54].

Figure 18. Slump testing results.

3.4.2. Compressive Strength

The CS was determined using the compression testing machine, following the guide-
lines of the ASTM C39. The results of the laboratory-derived CS are shown in Figure 19. It
can be noted that CS increased with the increase in the age of testing, irrespective of the
specific binder mixture employed for the development of the samples. The increment in
CS at later ages with the addition of SF and GGBS is more pronounced than in CM. This is
because of the pozzolanic reactions and nucleation effects associated with SF that reduce
the calcium hydrate (CH) content and enhance the densification of the samples. Further,
the enhanced CS at later ages can also be attributed to the fine grain sizes and filler effects
due to the inclusion of SF and GGBS [94]. The concrete mix containing SCMs (10% SF and
30% GGBS) demonstrated the highest CS of 50.4 MPa at the age of 90 days. The optimum
replacement of SCMs resulted in 21% enhanced CS as compared to CM. Meanwhile, the
addition of SCMs exceeding 40% (M5 mix) led to a decrease in CS by 11%. This is due to
the fact that excessive substitution of cement with supplementary cementitious materials
(SCMs) could reduce the presence of reactive substances needed for hydration, resulting in
weaker connections and weakened durability in the hardened concrete [54]. It is important
to mention that ACI-recommended conversion factors were used to convert the CS values
into TS values [95].



Buildings 2024, 14, 1091 30 of 43

Figure 19. Laboratory-derived CS outcomes.

3.4.3. Comparison of Experimental Results with Proposed Models

After thorough evaluations of the models using various mathematical approaches, a
separate dataset was constructed using experimental testing to evaluate the effectiveness
and applicability of the produced ML models. The separate dataset allows a thorough
evaluation of the model’s ability to make predictions without relying on the initial data
used for training. A statistical summary of the constructed dataset using experimental
findings is presented in Table 15. This cross-validation approach is crucial for confirming
the models’ ability to generalize to unfamiliar data, which is a vital part of their practical
applications. It is important to mention that the same parametric settings were used in the
development of the models so that hyperparameter optimization can also be verified.

Table 15. Statistical summary of the developed database for external validation.

Parameters
Cement Water SF GGBS CA FA Age CS TS

(kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (Days) (MPa) (MPa)

Mean 283.67 156 41.17 90 1050 730 59.56 40.53 3.16
Median 270 156 104 1050 730 56 41.12 3.17
SD 84.28 0 57.56 0 0 25 5.1 0.33
Range 249 0 166 0 0 62 18.45 1.17
Minimum 166 156 0 1050 730 28 32.44 2.6
Maximum 415 156 166 1050 730 90 50.89 3.77

A comparison between the findings of the external experimental validation and ML
models is depicted in Figure 20a,b for the CS and TS models, respectively. It can be seen that
the findings are highly comparable, with an R2 of more than 0.88 in all developed models,
as shown in Figure 21a,b for CS and TS, respectively. Furthermore, the error percentage
between the experimental and estimated values falls in the acceptable range of less than
10%, as shown in Table 16. Minor differences can be noted between the outcomes of the
actual and validation models, which can be due to the lower number of databases used
for validation. The optimum replacement in the experimental validation is found to be
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10% SF and 30% GGBS, which is well aligned with the literature. The consistency of the
results demonstrates the efficacy of the models in accurately identifying and anticipating
the fundamental patterns of mechanical characteristics of concrete incorporated with SF
and GGBS. The strong alignment between the model predictions and the findings obtained
in the laboratory highlights the reliability of the ML models that have been constructed,
thus evoking confidence in their dependability for real-world use.

Figure 20. Comparison between the experimental and models’ anticipated values for external
validation: (a) CS and (b) TS.

Table 16. Percentage error comparison between the model-predicted and experimental values.

CS Experimental
Values

Error % in ML Models TS Experimental
Values

Error % in ML Models

ANN ANFIS GEP ANN ANFIS GEP

39.09 4.24 1.67 4.12 3.58 2.82 1.64 0.63
46.46 0.03 4.33 2.61 3.77 2.41 2.40 3.34
41.23 4.29 2.03 6.30 3.06 1.16 1.21 3.80
46.34 0.42 4.50 1.88 3.13 2.78 3.02 0.48
37.00 1.78 3.08 5.31 3.57 2.10 3.75 0.22
41.45 0.04 1.06 6.42 3.17 6.25 2.06 0.79
38.23 2.09 3.66 2.44 3.16 2.31 0.10 0.20
42.32 0.78 6.70 3.13 2.84 2.26 3.50 0.44
32.44 6.20 1.08 3.66 2.96 2.71 0.29 0.54
36.67 2.07 1.91 2.04 3.31 1.88 0.96 1.39
50.89 0.03 0.03 4.73 3.60 0.60 0.83 0.09
35.45 0.02 2.32 3.32 2.68 2.84 2.32 4.48
34.67 0.11 6.38 3.38 2.60 2.27 5.51 7.74
33.45 0.15 7.71 5.19 2.77 2.19 6.37 6.73
43.00 3.60 1.28 4.11 3.31 2.96 2.93 2.95
43.00 6.42 6.37 2.05 2.93 4.65 5.51 8.22
46.78 5.20 0.26 5.15 3.26 3.52 0.30 0.42
41.00 4.82 3.04 3.53 3.19 4.74 3.30 7.26
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Figure 21. Models’ R2 values based on the experimental dataset: (a) CS and (b) TS.

3.5. Statistical Evaluation and Comparative Analysis of Models

The comparative analysis based on statistical parameters of the proposed models
employing the ANNs, ANFIS, and GEP is presented in Table 17. The proposed models
efficiently predicted the CS and TS of concrete containing SCMs by considering the impact
of all specified input parameters, as is obvious from the significantly reduced errors (RMSE,
MAE, and RSE). The R2 values for the CS neural models using ANN and ANFIS methods
are around 95% and 99%, respectively, for all three datasets (training, validation, and
testing), while they are just below 90% for the GEP models. Likewise, the other statistical
errors, such as RMSE and MAE for the CS models, are lowest for the ANFIS, followed
by the ANNs. The mean R value for all three proposed models is higher than 90%. The
higher R values indicate a strong connection between the input parameters, which results
in higher prediction accuracy [80]. Similarly, the ANFIS models exhibit higher R2 values in
all three datasets for TS. All of the proposed models for TS showed R2 values greater than
90% in the following order: R2

ANFIS 0.99 > R2
ANN 0.95 > R2

GEP 0.91. The superior results
indicated by the ANFIS models can be attributed to the integration of the neural networks’
training capability and the fuzzy logic’s reasoning ability. The predictive capabilities of the
established models are also compared based on statistical performance measures such as
PI and OF, as depicted in Figure 22a–d. The values of these measures being nearer to zero
indicate the better precision of the models. In the established models for CS, the ANFIS
models show the lowest PI, equal to 0.031, 0.043, and 0.033 in the training, validation,
and testing phases, respectively; for CS-ANN, these values are 0.043, 0.051, and 0.047,
respectively. Similarly, the PI values in the case of CS using GEP are 0.064, 0.084, and
0.073 for the training, testing, and validation phases, respectively. Additionally, for the TS
models, the PI is lower than 1% for all three testing conditions. According to the criteria
discussed by [85], the PI value should be less than 20% for accurate prediction. Hence,
all of the developed models satisfy the given criteria and can be considered good for the
anticipation of the CS and TS of concrete incorporated with SF and GGBS. However, in the
ANN models, significant variation was observed between PI values of the training and
testing conditions. As discussed in a recent study by Jalal et al. [85], this variation can be
attributed to the local minima problem that is commonly associated with ANN models.
According to Zhang et al. [88], the optimizing process may cease at a locally optimized
state rather than a global termination state, leading to inaccurate predictions. The concept
of local optimization involves the closure of the search process for a particular problem
when the ideal solution is discovered, even before the optimum one. However, in ANFIS
models, the aforementioned issue can be addressed by the training capacity of the ANN
and the fuzzification of logical reasoning in the fuzzy toolbox. Furthermore, it can be noted
that the OF values obtained from the ANN, ANFIS, and GEP models for CS are 0.042,
0.031, and 0.062, respectively, and for the TS models, these values are 0.029, 0.009, and
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0.035, respectively. The OF values for all cases are close to zero, revealing the validity of the
proposed models while controlling the overfitting.

Table 17. Summary of statistical calculations.

Proposed Models Subset Type R2 RMSE MAE RRMSE RSE R ρ OF

CS ANN Trn-set 0.9419 3.3284 1.788 0.0851 0.0583 0.9705 0.0436 0.0427
Vald-set 0.9377 4.0493 2.791 0.1008 0.0647 0.9683 0.0512
Test-set 0.938 3.8269 2.832 0.0925 0.0657 0.9685 0.0472

ANFIS Trn-set 0.9702 2.3688 1.681 0.0731 0.0298 0.985 0.031 0.0311
Vald-set 0.9698 3.0691 2.321 0.0859 0.0583 0.9848 0.0436
Test-set 0.9678 2.5721 1.983 0.0659 0.0339 0.9838 0.03325

GEP Trn-set 0.8831 4.9174 3.821 0.1251 0.1161 0.9392 0.0642 0.0621
Vald-set 0.8763 4.9716 4.021 0.1263 0.1243 0.9353 0.0841
Test-set 0.8821 4.9321 4.071 0.1255 0.1191 0.9371 0.0737

TS ANN Trn-set 0.9585 0.2699 0.202 0.0592 0.2675 0.979 0.0299 0.0299
Vald-set 0.9384 0.3211 0.255 0.0723 0.0671 0.9681 0.0366
Test-set 0.9311 0.3433 0.258 0.0761 0.0692 0.9654 0.0392

ANFIS Trn-set 0.9951 0.0886 0.034 0.0198 0.0167 0.9975 0.0099 0.0099
Vald-set 0.9981 0.0381 0.133 0.0077 0.0021 0.9991 0.0039
Test-set 0.998 0.0383 0.017 0.0076 0.002 0.9992 0.0038

GEP Trn-set 0.9188 0.3213 0.234 0.0712 0.0812 0.9585 0.0362 0.035
Vald-set 0.9123 0.3812 0.374 0.0782 0.0891 0.9551 0.0426
Test-set 0.9081 0.4043 0.261 0.0861 0.0972 0.9342 0.0533

Note: Trn: training, Vald: validation, Test: testing.

Figure 22. The objective function (OF) and performance index (PI) values of the (a,b) CS models and
(c,d) TS models.

The summary of statistical measures indicates that in all predictive models, namely
the ANN, ANFIS, and GEP models, the projected values are very close to actual values
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for both the CS and TS. Considering the R and R2 values, the upward sequence is ANFIS
> ANN > GEP. Meanwhile, the ANFIS models for both CS and TS exhibit the lowest
values for error measures (RMSE, RSE, MAE, RRMSE) followed by the ANN and GEP
models. However, the GEP models show superior performance compared to the ANFIS
and ANN models with respect to the closeness of the RMSE, MAE, RSE, and R2 values
between the training, validation, and testing sets for both CS and TS. In addition, GEP
represents an evolutionary technique that gives a simple empirical formula for forecasting
the CS and TS (refer to Equations (25) and (26)). This approach significantly diminishes
the overall duration needed to estimate the CS and TS compared with conventional testing
procedures (i.e., experimental investigations), and the evaluation process can be completed
at a significantly faster rate. Therefore, the application of the presented equations gives a
viable and quick method for the estimation of the CS and TS of concrete incorporated with
SF and GGBS.

3.6. Validation of GEP-Based Equations

The best-proposed model (GEP) was further validated by using several statistical tests,
as shown in Table 18. Golbraikh et al. [96] recommended that to achieve higher efficiency
in the model, the gradient of one of the regression lines (k or k′) crossing through the origin
(center) must pass close to unity. The gradient of the regression lines for the CS model is
0.971, while for TS, it is 0.973. In addition, performance indicators (i.e., m and n) of less
than 0.1 are considered reliable. This signifies a strong correlation and more accuracy. It
can be seen that both CS and TS models exhibit m and n values less than the recommended
range. Moreover, several researchers have recommended that the squared coefficient
(R0

2) between actual and estimated values should also be close to 1 [97]. It is evident
from the findings that the suggested models satisfy the external verification requirements,
demonstrating the models’ excellent validity, prediction power, and independence from
simple correlations between the inputs and outputs.

Table 18. GEP model external validation.

S. No. Equation Condition Model

CS TS

1 R R > 0.8 0.991 0.993
2 k = ∑n

i=1
(ai×mi)

ai
2 0.85 < k < 1.15 0.971 0.973

3 k′ = ∑n
i=1

(ai×mi)
mi

2 0.85 < k′ < 1.15 1.002 1.001

4 R0
2 = 1 − ∑n

i=1(mi−ai
0)

2

∑n
i=1(mi−mi

0)2 ,

ai
0 = k × mi

R0
2 ∼= 1 0.969 0.970

5 R′
0

2
= 1 − ∑n

i=1(ai−mi
0)

2

∑n
i=1(ai−ai

0)2 ,

mi
0 = k′ × ai

R′
0

2 ∼= 1 0.990 0.991

6 m =
(R2−R0

2)
R2

m < 1 0.0541 0.055

7 n =

(
R2−R′

0
2
)

R2
n < 1 0.005 0.005

3.7. Sensitivity and Parametric Analyses

In the case of modeling based on machine learning, multiple parametric evaluations
must be performed to ensure that models are reliable and work efficiently across various
data combinations. Firstly, a sensitivity analysis (SA) was executed to determine the relative
influence of various input parameters on the properties of concrete incorporated with SF
and GGBS using Equations (32) and (33).

Mi = fmax(mi)− fmin(mi) (32)
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SA =
Mi

∑
j=1
n Mj

(33)

Here, fmax(mi) and fmin(mi) represent the maximum and minimum anticipated output
based on the ith input variable; other inputs are fixed at average values. Figure 23a,b display
the SA findings for CS and TS, respectively. It can be seen that W/B, age, and cement
have the highest impact, whereas SP has the lowest impact on the CS and TS of concrete
containing binary SCMs (SF and GGBS). The effect of other input parameters on the CS
and TS is relatively small and quite similar from a structural materials perspective [19,98].

Figure 23. Sensitivity analysis outcomes for (a) the CS models and (b) the TS models.

Furthermore, numerous research studies have suggested parametric analyses for
evaluating the efficiency of the most impactful input parameters in predicting outcomes.
In our parametric analysis, each individual input variable was changed by using definite
increments, while the remaining variables were fixed at their mean values. The resulting
changes in the output were then observed and recorded. Figures 24 and 25 show the results
obtained from parametric analyses of the proposed CS and TS models. It is clear that the
CS and TS increased with a reduction in the W/B ratio, and vice versa. Similar results were
found in the experimental investigation carried out by Bhaskar et al. [57]. They compared
the mechanical characteristics of concrete incorporated with SF and GGBS by using varying
W/B ratios and discovered that the concrete exhibited higher strength properties with a
W/B ratio of 0.35 as opposed to W/B ratios of 0.45 and 0.55. GGBS and SF trends show
that the CS and TS of the concrete increase up to the optimum values with percentages of
around 30% and 12% GGBS and SF replacement, respectively, and then decrease, which
is in line with the available literature [56]. In several experimental studies, authors have
investigated 30% and 10% GGBS and SF as optimum replacement proportions in concrete.
For instance, Bhaskar et al. [55] conducted an experimental study to determine the optimum
replacement of SF and GGBS in concrete. They used various combinations of SF and GGBS
(by using a constant W/B of 0.45) and found cement replacement with 30% GGBS and 10%
SF to be the optimum dosage for the CS and TS of concrete. SP has very little influence on
concrete strength, which is also observed in experimental studies [99]. The effect of coarse
and fine aggregates greatly depends on their shape, size, and type; however, an increase
in the coarse-to-fine aggregate ratio increases the CS and TS of concrete, which is evident
from experimental studies [100]. Finally, the CS and TS of the concrete increased with its
age, which is in line with the available literature [101]. For example, Suda and Rao reported
that the CS and TS of ternary blended concrete incorporated with SF and GGBS increased
with age [55]. Based on the parametric analysis, it can be concluded that the recommended
models are appropriate and consistent when predicting CS and TS.
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Figure 24. Parametric analysis of the CS input parameters.
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Figure 25. Parametric analysis of the TS input parameters.
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4. Conclusions

This study used three machine learning algorithms, namely ANN, ANFIS, and GEP
algorithms, to develop a mathematical formulation for accurate predictions of the CS and
TS of concrete containing binary SCMs (SF and GGBS). An extensive database considering
the eight most influential input parameters was used for developing the models. The
predictive accuracy of the recommended models was evaluated by using several statistical
measures, performance indices, and external experimental validation criteria. In addition
to that, sensitivity and parametric analyses were performed to determine the coherence
of the best-proposed model with the published literature. Based on these analyses, the
following key findings and recommendations can be drawn.

(a) The statistical analysis indicated that in all developed models (ANN, ANFIS, and
GEP), the projected values are very near to actual values for both the CS and TS
models.

(b) The performance index of the ANN, ANFIS, and GEP models created for CS and TS is
less than 0.15, indicating that these models are classified as excellent. Furthermore, it
can be noted that the OF values obtained from the ANN, ANFIS, and GEP models
for CS are 0.042, 0.031, and 0.062, respectively, and for the TS models, these values
are 0.029, 0.009, and 0.035, respectively. The OF values for all cases are close to zero,
demonstrating the validity of the proposed models while controlling the overfitting.

(c) The comparative analysis showed that ANFIS models exhibit higher predictive per-
formance compared to ANN and GEP models. The mean R2 values of all three testing
conditions (training, testing, and validation) for the CS models are 0.988 (ANFIS),
0.944 (ANN), and 0.887 (GEP), whereas these are 0.998 (ANFIS), 0.954 (ANN), and
0.903 (GEP) for the TS models.

(d) Based on the MAE values, the ANFIS models showed enhanced performance by 29%
and 48%, as compared to the CS models of ANN and GEP, respectively, whereas
the ANFIS models for TS showed better predictive performance by 35% and 49%
compared to the ANN and GEP models. However, the GEP models showed superior
performance compared to the ANFIS and ANNs with respect to the closeness of the
statistical measure values between the training, validation, and testing sets for both
the CS and TS models.

(e) GEP is an evolutionary technique that also gives a simple empirical formula for
forecasting the CS and TS. This approach significantly diminishes the overall time
needed to estimate CS and TS compared with conventional testing procedures, i.e.,
the evaluation process can be completed at a significantly faster rate. Therefore,
the application of the presented equations gives a viable and quick method for the
estimation of the CS and TS of concrete containing SF and GGBS.

(f) External validation based on experimental investigations showed strong evidence for
the applicability of the proposed models, with an R2 of 0.88 and error percentages of
less than 10%.

(g) The sensitivity analysis revealed the significance of the input variables to be in the
following increasing trend: W/B (27.9%) > age (18.1%) > C (12.6%) > CA (11%) > SF
(10.1%) > GGBS (8.1%) > FA (8%) > SP (4.2%) for the CS models, whereas this was
W/B (25.6%) > age (17.6%) > C (12.3%) > CA (11.5%) > SF (11.5%) > GGBS (9.5%) > FA
(7.8%) > SP (4.1%) in the case of the TS models. These findings are highly comparable
with the actual database. The parametric study showed that all of the input variables
consistently follow the trend mentioned in the experimental database.

(h) The developed models successfully fulfilled various criteria that were considered for
their external validation.

Finally, it can be deduced that soft computing techniques can provide an efficient
basis to promote the utilization of industrial waste in civil engineering applications. The
GEP models that have been suggested here have the potential to serve as a standard for
forecasting the CS and TS of concrete containing GGBS and SF. Additionally, they may
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be employed during the initial stages of designing concrete mixes. This can play a key
role in sustainable development, as green concrete reduces energy usage, greenhouse gas
emissions, disposal, and building costs by using leftover industrial wastes. The findings
of this study emphasize the significance of AI techniques as robust and efficient tools for
addressing complex challenges in the field of cement-based composites. However, the
applicability of the suggested GEP formulations for CS and TS is constrained solely to the
range of the input parameters in their corresponding databases. Under this limitation, it is
possible to make further adjustments to the existing forecasting models by incorporating
an increased number of data points. In addition, the outcomes of this study should be
validated by using the increased database for external validation and also by comparing
with other machine learning algorithms such as MLPNN, MEP, MLR, DT, SVM, and
ensemble methods.
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CS Compressive strength
TS Tensile strength
SCMs Secondary cementitious raw materials
GGBS Ground granulated blast furnace slag
ML Machine learning
SF Silica fume
OF Objective function
MAE Mean absolute error
RF Random forest
SVM Support vector machine
MEP Multi-expression programming
RMSE Root mean square error
ANN Artificial neural network
DT Decision tree
GEP Gene expression programming
MLPNN Multilayer perception neural network
OF Objective function
MEP Multi-expression programming
ANFIS Adaptive neuro-fuzzy logic inference system
DL Deep learning
PI Performance index
SA Sensitivity analysis
R2 Coefficient of determination
MSE Mean square error
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93. Güllü, H.; Fedakar, H.İ. On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and
steel fibers via artificial intelligence. Geomech. Eng. 2017, 12, 441–464. [CrossRef]

94. Hakeem, I.Y.; Althoey, F.; Hosen, A. Mechanical and durability performance of ultra-high-performance concrete incorporating
SCMs. Constr. Build. Mater. 2022, 359, 129430. [CrossRef]

95. ACI Committee 363. ACI PRC-363-10 Report on High-Strength Concrete; American Concrete Institute: Farmington Hills, MI, USA,
2010.

96. Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model. 2002, 20, 269–276. [CrossRef] [PubMed]
97. Alavi, A.H.; Ameri, M.; Gandomi, A.H.; Mirzahosseini, M.R. Formulation of flow number of asphalt mixes using a hybrid

computational method. Constr. Build. Mater. 2011, 25, 1338–1355. [CrossRef]
98. Cyr, M. Influence of supplementary cementitious materials (SCMs) on concrete durability. In Eco-Efficient Concrete; Woodhead

Publishing Series in Civil and Structural Engineering: Toulouse, France, 2013; pp. 153–197. [CrossRef]
99. Chu, S.H. Effect of paste volume on fresh and hardened properties of concrete. Constr. Build. Mater. 2019, 218, 284–294. [CrossRef]
100. Meddah, M.S.; Zitouni, S.; Belâabes, S. Effect of content and particle size distribution of coarse aggregate on the compressive

strength of concrete. Constr. Build. Mater. 2010, 24, 505–512. [CrossRef]
101. Samad, S.; Shah, A. Role of binary cement including Supplementary Cementitious Material (SCM), in production of environmen-

tally sustainable concrete: A critical review. Int. J. Sustain. Built Environ. 2017, 6, 663–674. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.conbuildmat.2010.04.011
https://www.researchgate.net/publication/253404813_A_GENE_EXPRESSION_PROGRAMMING_SYSTEM_FOR_TIME_SERIES_MODELING
https://www.researchgate.net/publication/253404813_A_GENE_EXPRESSION_PROGRAMMING_SYSTEM_FOR_TIME_SERIES_MODELING
https://doi.org/10.1016/j.jenvman.2021.112420
https://www.ncbi.nlm.nih.gov/pubmed/33831756
https://doi.org/10.1007/s40010-020-00709-6
https://doi.org/10.1016/j.jhazmat.2019.121322
https://www.ncbi.nlm.nih.gov/pubmed/31604206
https://doi.org/10.1016/j.gsf.2019.12.003
https://doi.org/10.1016/j.nanoso.2018.12.001
https://doi.org/10.1080/17486025.2014.921333
https://doi.org/10.1016/j.matpr.2023.10.093
https://doi.org/10.1016/j.conbuildmat.2022.129023
https://doi.org/10.12989/gae.2017.12.3.441
https://doi.org/10.1016/j.conbuildmat.2022.129430
https://doi.org/10.1016/S1093-3263(01)00123-1
https://www.ncbi.nlm.nih.gov/pubmed/11858635
https://doi.org/10.1016/j.conbuildmat.2010.09.010
https://doi.org/10.1533/9780857098993.2.153
https://doi.org/10.1016/j.conbuildmat.2019.05.131
https://doi.org/10.1016/j.conbuildmat.2009.10.009
https://doi.org/10.1016/j.ijsbe.2017.07.003

	Introduction 
	Research Methodology 
	Data Collection 
	Overview of Soft Computing Techniques 
	Artificial Neural Networks 
	Adaptive Neuro-Fuzzy Inference System (ANFIS) 
	Gene Expression Programming (GEP) 

	Model Structures 
	Model Validation 
	Statistical Validation 
	Experimental Validation 


	Results and Discussion 
	Performance Assessment of ANN Models 
	Performance Assessment of ANFIS Models 
	GEP Model Development and Performance Assessment 
	Experimental Validation 
	Workability 
	Compressive Strength 
	Comparison of Experimental Results with Proposed Models 

	Statistical Evaluation and Comparative Analysis of Models 
	Validation of GEP-Based Equations 
	Sensitivity and Parametric Analyses 

	Conclusions 
	References

