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Abstract: Unbonded steel-mesh-reinforced rubber bearings (USRBs) have been proposed as an
alternative isolation bearing for small-to-medium-span highway bridges. It replaces the steel plate
reinforcement of common unbonded laminated rubber bearings (ULNR) with special steel wire
meshes, resulting in improved lateral properties and seismic performance. However, the impact of
this novel steel wire mesh reinforcement on the ultimate compression capacity of USRB has not been
studied. To this end, theoretical and experimental analysis of the ultimate compression capacity of
USRBs were carried out. The closed-form analytical solution of the ultimate compression capacity of
USRBs was derived from a simplified USRB model employing elasticity theory. A parametric study
was conducted considering the geometric and material properties. Ultimate compression tests were
conducted on 19 USRB specimens to further calibrate the analytical solution, considering the influence
of the number of reinforcement layers. An efficient solution for USRBs’ ultimate compression capacity
was obtained via multilinear regression of the calibrated analytical results. The efficient solution
can simplify the estimation of USRBs’ ultimate compression capacity while maintaining the same
accuracy as the calibrated solution. Based on the efficient solution, the design process of a USRB with
a specific ultimate compression capacity was illustrated.

Keywords: compression capacity; unbonded steel-mesh-reinforced rubber bearing; fiber-reinforced
rubber bearing; analytical analysis; ultimate compression test; bearing design; seismic isolation

1. Introduction

The unbonded laminated rubber bearing (ULNR) has been widely used in short-to-
medium-span highway bridges in China for decades due to its cost-effectiveness, ease of
manufacturing, and seismic isolation capacity [1–4]. The ULNR is laminated with natural
rubber layers and rigid steel plate reinforcement. The term “unbonded” refers to the bear-
ings being directly placed on top of the piers and having no bonding with the structures.
This boundary condition helps reduce bearing costs and construction labor. However, it
also introduces the problem of bearing sliding when shear deformation exceeds a certain
threshold. This sliding behavior, characterized by zero yielding stiffness, cannot be con-
trolled once it is initiated [5]. Moreover, the deformation threshold for ULNRs is relatively
limited because only the rubber layer can provide lateral deformation, while the rigid steel
plate reinforcement cannot contribute to it. During the 2008 Mw 7.9 Wenchuan earthquake,
excessive sliding deformation of ULNRs was widely witnessed in highway bridges, which
led to girder dislocation and even span collapse [6,7]. To address this problem, we came up
with using the flexible steel woven wire mesh as an alternative reinforcement for the ULNR
to increase its lateral deformation threshold before sliding [8–10]. We named the bearing
the unbonded steel-mesh-reinforced rubber bearing (USRB). The flexible reinforcement
enables USRB to display rolling-like deformation under lateral loading. Specifically, the
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vertical surface of the bearing will incline and bend towards the horizontal plane, while the
top and bottom surfaces will roll off from the horizontal plane. Owing to the characteristic
rolling deformation, the reinforcement layers can participate in the deforming, thereby in-
creasing the lateral deformation capacity. Additionally, this rolling behavior can reduce the
lateral stiffness of the bearing. Lateral cyclic loading tests have confirmed that the rolling
of USRBs is stable and USRB can provide a larger lateral deformation capacity compared to
ULNR [8,9]. Shaking table tests have been carried out in Tongji University to compare the
seismic performance of USRBs and ULNRs in a two-span continuous girder bridge [9,10].
The results show that USRBs, with their reduced lateral stiffness, can mitigate more lateral
force transmitted from superstructure to substructure compared to ULNR-isolated systems.
Meanwhile, USRBs exhibited the ability to sustain larger structural relative displacements
during strong ground motions.

Similar to the USRB, the Fiber-Reinforced Elastomeric Isolator (FREI) also applies
flexible reinforcement, such as glass fiber sheets, carbon fiber sheets, and carbon fiber
reinforced polymer plates [11–16]. It can also display rolling deformation. However,
FREIs are manufactured through the cold vulcanization process, where a curing rubber
adhesive is used to bond the rubber and reinforcement. The cold bonding of FREIs would
result in delamination damage between rubber and fiber reinforcement under large shear
deformation. In contrast, the USRB employs hot vulcanization to guarantee a strong bond
between the steel mesh and rubber layers. Additionally, the apertures presented in the steel
mesh increase the adhesive area, further strengthening the bond.

During severe earthquakes such as the 1985 Nahanni, 1994 Northridge, and 1995 Kobe
events, it has been observed that the vertical ground motion may significantly exceed
the horizontal ground motion [17]. This elevated vertical motion can greatly amplify the
axial forces experienced by the bearings and substructures [18]. As a result, the most
recent code in China [19] has increased the vertical design load of isolation bearings by
a factor of three. Under these circumstances, FREIs may not provide satisfactory vertical
compression capacity due to unreliable bonding between fiber reinforcement and rubber, as
indicated by previous research on their ultimate compression capabilities (e.g., a maximum
capacity of 16 MPa for carbon-fiber-reinforced bearing) [20–22]. In contrast, USRBs exhibit
an average ultimate compression capacity of 52 MPa during the prototype testing stage [9].
This higher capacity of USRBs makes them a promising solution for bearings with flexible
reinforcement for meeting the increased vertical design load requirements mandated by
the current code. However, a thorough investigation on the ultimate compression capacity
of USRBs has not been conducted. In this regard, this paper presents the analytical and
experimental studies conducted to assess the ultimate compression capacity of USRBs.

Previous research on the vertical mechanics of bearings with flexible reinforcement
were mainly focused on the vertical stiffness or the effect of vertical load on lateral
performance [23]. Based on the study of bonded rubber blocks’ compression [24,25],
Kelly [26] first analyzed the vertical stiffness of multilayered rubber bearings with rigid
reinforcement. Various bearing cross-section shapes were examined, including circular,
square, and annular. Then, Kelly [11] developed the approach for infinitely long-strip-
fiber-reinforced bearings considering the flexibility of fiber reinforcements. The developed
approach was later applied by Tsai and Kelly [27–29] to predict the compression stiffness
of rectangular and circular fiber-reinforced bearings. Kelly and Takhirov [30] further pro-
moted the analytical method to include the influence of rubber compressibility for the
fiber-reinforced bearings with large shape factors. Over the last decade, the approach has
been expanded to include bearings with a general cross-sectional shape [31] or with zero
Poisson’s ratio reinforcements [32]. However, despite the systematic research conducted on
the vertical stiffness, ultimate compression capacity as one important factor of the vertical
mechanics of bearings also needs to be analyzed. Our research aims to fill in this gap by
developing a theoretical solution for USRBs’ compression capacity to guide their further
optimal design.
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The prototype testing [9] showed that the steel woven wire mesh reinforcement of
USRBs experienced tensile failure under ultimate compression loading. This indicates that
the ultimate compression capacity of USRBs can be obtained by analyzing the internal force
of the reinforcement, which forms the basis of this study.

This paper presents an analytical solution for the ultimate compression capacity of
rectangular unbonded steel-mesh-reinforced rubber bearings. A parametric study was
then conducted to investigate the relative importance of various geometric parameters and
material properties on compression capacity. To include the effect of the number of rein-
forcement layers, the analytical solution was further calibrated with ultimate compression
test results of 19 USRB specimens. To facilitate engineering application, an efficient solution
for the ultimate compression capacity of USRBs was obtained via multiple linear regression.
Based on the above research, a preliminary design process of USRBs to meet a specific
ultimate compression capacity requirement was provided. This study fills in the gap of
analytical analysis on the ultimate behavior of USRBs under compression, and provides a
basis for enhancing existing USRBs’ compression capacity, which play an important role in
ensuring the seismic resilience of highway bridges.

2. Mechanics of Rectangular USRBs under Compression
2.1. Hypothesis

Unbonded steel-mesh-reinforced rubber bearings (USRBs) consist of alternating rubber
layers and steel mesh reinforcement. All rubber layers in the bearing are assumed to have
the same deformation and stress distribution under vertical compression loading. To
simplify the analysis, only one rubber layer is studied, as shown in Figure 1. The steel mesh
reinforcement is treated as a continuous solid layer with an equivalent thickness to maintain
the same tensile stress in the discrete wire mesh. The value of the equivalent thickness will
be discussed in Section 2.3. All materials, including rubber and steel reinforcement, are
regarded as linearly elastic so that the linear elastic theory can be applied. The theoretical
analysis is based on the following assumptions [11]: (a) the vertical line before loading
becomes a parabola after loading; (b) the horizontal plane section before loading remains
plane after loading; and (c) the stress state in the rubber is dominated by internal pressure, p.

Figure 1. Deformation of a single steel-mesh-reinforced rubber layer under compression: (a) con-
figuration of the reinforced rubber layer; (b) illustration of the deformation in the x–z plane; and
(c) illustration of the deformation in the y–z plane.

2.2. Equilibrium in the Rubber Layer

The single rubber layer reinforced by two steel mesh reinforcements is shown in
Figure 1a. The rubber layer has a thickness of t, a width of 2a, and a length of 2b, where
a ≤ b. It is firmly bonded with the top and bottom steel reinforcement layers, each with an
equivalent thickness of ts. The Cartesian coordinate system (x, y, z) is located at the center
of the rubber layer. A vertical compressive load P is applied to the whole pad along the
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z-axis. Under load P, the rubber layer bulges laterally with the extension of the flexible steel
mesh reinforcement, as illustrated in Figure 1b,c. The displacement of any one point (x, y, z)
in the rubber layer along the x-, y-, and z-axis is denoted as u(x, y, z), v(x, y, z), and w(x, y, z),
respectively, and is expressed in the form of Equation (1). According to assumption (a),
the side profile of the rubber layer should be quadratic along z. The u0(x, y) and v0(x, y)
denote the maximum bulging deformation of rubber along the x- and y-axis, respectively,
compared with the reinforcement. The u1(x, y) and v1(x, y) represent the tensile deformation
of the reinforcement along the x- and y-axis, respectively, which is constant throughout the
thickness. According to assumption (b) that the horizontal plane remains plane, w(x, y, z)
can be simplified to w(z). ∆t is the compression deformation of the rubber layer under
vertical load P. 

u(x, y, z) = u0(x, y)(1 − 4z2

t2 ) + u1(x, y)
v(x, y, z) = v0(x, y)(1 − 4z2

t2 ) + v1(x, y)
w(x, y, z) = w(z)

(1)

The equilibrium equations for the stress in the rubber layer are shown in Equation (2),
where τxy = τyx, τyz = τzy, and τxz = τzx, according to the reciprocal theorem of
shear stress.

σxx,x + τyx,y + τzx,z = 0
τxy,x + σyy,y + τzy,z = 0
τxz,x + τyz,y + σzz,z = 0

(2)

As stated in assumption (c), the stress state of rubber is dominated by the internal
pressure p, such that the difference between the normal stress σ and −p is of the order
pt2/a2 [27]. And, the shear stresses τxz, τyz generated by the reinforcement are considered
to be of order pt/a, while the in-plane shear stress τxy is of order pt2/a2 [27]. Considering
the rubber layer thickness t is one to two orders of magnitude smaller than the width of
rubber layer 2a, the stress in the rubber can be approximated by

σxx ≈ σyy ≈ σzz ≈ −p
τxy = 0

(3)

Then, Equation (2) can be reduced to

p,x = τxz,z
p,y = τyz,z

(4)

Assuming that the rubber is compressible and has a bulk modulus of K, the volumetric
strain of the rubber layer under the stress state of Equation (4) can be determined by

εxx + εyy + εzz = − p
K

(5)

where the normal strain is calculated by εxx = u,x, εyy = v,y, and εzz = w,z, according to
the strain-displacement equations of elasticity. Equation (5) is also the strain compatibility
equation of the rubber layer and will be applied to solve the stress solution of p in this study.

Substituting Equation (1) into Equation (5) and integrating from z = −t/2 to z = t/2,
we can calculate the strain compatibility equation in terms of displacement:

2
3
(u0,x + v0,y) + u1,x + v1,y = εc −

p
K

(6)

where εc is the vertical compression strain of the rubber layer and is defined in Equation (7).
It is noted that εc is positive in the case of compression.

εc =
∆t
t

= −
[

w( t
2 )− w(− t

2 )

t

]
(7)
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Due to the linearly elastic behavior of rubber, the shear stress τ in the rubber layer
satisfies the following constitutive law:

τxz = Gγxz
τyz = Gγyz

(8)

where G is the shear modulus of rubber, and the shear strain γ can be determined by the
following strain-displacement equations:

γxz = u,z + w,x = −8u0
z
t2

γyz = v,z + w,y = −8v0
z
t2

(9)

Substituting Equation (9) into Equation (8), the shear stress τ in the rubber can be
expressed in terms of displacement:

τxz = −8Gu0
z
t2

τyz = −8Gv0
z
t2

(10)

Considering the relationship between p and shear stress τ in Equation (4), the above
equation is substituted into Equation (4) to obtain the expression of internal pressure p in
terms of displacement.

p,x = − 8Gu0
t2

p,y = − 8Gv0
t2

(11)

Differentiating Equation (11) with respect to x and y, respectively, leads to

u0,x = − t2

8G p,xx

v0,y = − t2

8G p,yy
(12)

2.3. Equilibrium in The Reinforcement Layer

Figure 2 exhibits the configuration of real steel woven wire mesh reinforcement. It
is made up of separate steel wires woven in orthogonal directions, without bonding at
the intersections. These steel wires have the same diameter of ds, and the apertures in the
mesh reinforcement have the same dimension of w × w. However, the mesh structure of
the reinforcement makes it difficult to analyze its mechanical response. To address this, in
the analytical model, the steel mesh reinforcement is simplified to a continuous solid layer
with an equivalent thickness ts. The value of ts is determined by ensuring that the tensile
stress in the continuous solid layer remains equivalent to that in the original discrete steel
wires. Since these steel wires have no bonding at the intersections, the deformation of steel
wires in one direction does not cause the deformation of steel wires in the perpendicular
direction. The Poisson’s ratio of the equivalent solid layer should be zero, as well as the
in-plane shear stress in the reinforcement. Similar properties can be found in fiber cloth
reinforcement [31,33]. Moreover, with a zero Poisson’s ratio, the tensile force generated
by rubber bulging in the reinforcement layer is independently borne by the reinforcing
wires in each of the two directions. To maintain the same stress, the solid layer should
have the same cross-sectional area (or volume) as the total area (or volume) of all the
wires in one direction, as illustrated in Figure 2b. The equivalent thickness ts is calculated
to be πd2

s /[4(ds + w)], which is only related to the characteristics of mesh reinforcement.
Finite element analysis was then conducted in ANSYS 15.0 [34] on a specific bearing with
different forms of reinforcement, but the same load and boundary conditions were used
to validate this simplification method. More details about the validation of this method
can refer to [35]. Figure 3 compares the stress in the two forms of reinforcement. It shows
that the axial tensile stress in the mesh reinforcement has almost the same distribution and
ranges with the normal stress in the solid reinforcement, demonstrating the validity of the
simplification method.
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Figure 2. Configuration of the steel woven wire mesh reinforcement: (a) a sample of the mesh
reinforcement, and (b) the dimensions of the steel wire diameter ds, aperture size w, and equivalent
reinforcement thickness ts.

Figure 3. Comparisons of tensile stress between mesh reinforcement and continuous solid reinforce-
ment in a specific bearing under a compressive load of 5 MPa: (a) axial tensile stress in the wires
along two directions; (b) normal stress in the solid reinforcement along the x direction; and (c) normal
stress in the solid reinforcement along the y direction. (Bearing planar dimension: 200 mm × 200 mm,
rubber layer thickness: 2 mm, ds: 0.8 mm, ts: 0.19 mm).

Figure 4 illustrates the internal force and stress in an infinitesimal dx by dy area of
the equivalent continuous solid reinforcement. Fxx, Fyy denote the normal forces of the
reinforcement per unit length in the x and y directions, respectively. τxz, τyz are the shear
stresses on the reinforcement surfaces, which are generated by the rubber layers bonded at
the top and bottom of the reinforcement.

Figure 4. The stress in the simplified continuous solid reinforcement.

The equilibrium equations of reinforcement are as follows:

dFxxdy +
(

τxz|z=−t/2 − τxz|z=t/2

)
dxdy = 0 (13)

dFyydx +
(

τyz
∣∣z=−t/2 − τyz

∣∣
z=t/2

)
dxdy = 0 (14)
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Substituting Equation (10) into Equations (13) and (14), and then applying Equation (11)
to eliminate u0 and v0, the expressions of Fxx and Fyy in terms of p are obtained:

Fxx,x = tp,x (15)

Fyy,y = tp,y (16)

Considering the linearly elastic behavior of steel mesh reinforcement, the tensile strains
u1,x and v1,y in the reinforcement along the x- and y-axis, respectively, are linearly related
to the corresponding internal force Fxx and Fyy:

u1,x = Fxx
Ests

v1,y =
Fyy
Ests

(17)

where Es is the elastic modulus of the steel wire, and ts is the equivalent solid reinforcement thickness.
Integrating Equations (15) and (16) with respect to x and y, respectively, and then

combining with Equation (17) lead to the following:

u1,x = t
Ests

p + f (y)
v1,y = t

Ests
p + g(x)

(18)

2.4. Approximate Boundary Conditions

No force is applied at the rubber layer’s side surface and the reinforcement’s end.
Thus, the force boundary conditions of the rubber layer and the reinforcement should
satisfy the following equations, respectively:

p(±a, y) = 0 y ∈ [−b, b]
p(x,±b) = 0 x ∈ [−a, a]

(19)

Fxx(±a, y) = 0 y ∈ [−b, b]
Fyy(x,±b) = 0 x ∈ [−a, a]

(20)

Considering Equation (17), the boundary conditions of internal force in Equation (20)
are transformed into the boundary conditions of strain:

u1,x(±a, y) = 0 y ∈ [−b, b]
v1,y(x,±b) = 0 x ∈ [−a, a] (21)

2.5. Solution of Pressure

Substituting the boundary conditions of Equations (19) and (21) into Equation (18),
the following are obtained:

f (y) = 0g(x) = 0

Then, the relationship between the strain and stress of the reinforcement in Equation (18)
can be reduced to

u1,x = t
Ests

p
v1,y = t

Ests
p

(22)

Replacing Equations (12) and (22) into the strain compatibility equation of Equation (6),
a differential equation in terms of p can be obtained:

p,xx + p,yy −
24G
Estst

p − 12G
Kt2 p = −12Gεc

t2 (23)

Two constants are introduced here:

α =

√
12G
Estst

(24)



Buildings 2024, 14, 839 8 of 20

β =

√
12G
Kt2 (25)

And Equation (23) is changed to the following form:

p,xx + p,yy − (2α2 + β2)p = −12Gεc

t2 (26)

The two constants α and β indicate the ductility of reinforcement and the compress-
ibility of rubber, respectively. The reinforcement is more flexible at a higher value of α.
When α is reduced to zero, the reinforcement will behave like the rigid steel plate applied in
common bearings. In the same way, the larger the β, the more pronounced the compression
of the rubber volume. When β becomes zero, the rubber turns incompressible.

To determine the solution of pressure p from Equation (26) with the boundary condition
of Equation (19), p is assumed to be a function of a specific form [11,25,32,33] that satisfies
the required boundary conditions. Then, the problem of solving the differential equation
can be transformed into a problem of solving the unknown coefficients in the specific
function. A double Fourier series form solution of p [32] is applied in this study. The internal
pressure p(x, y) and the constant term on the right-hand side in Equation (26) are expressed
by the double Fourier series with unidentified coefficients pnm and anm, respectively:

p(x, y) =
∞

∑
n,m=1

pnm cos(
nπ

2a
x) cos(

mπ

2b
y) (27)

−12Gεc

t2 =
∞

∑
n,m=1

anm cos(
nπ

2a
x) cos(

mπ

2b
y) (28)

where n and m are odd numbers to satisfy the boundary conditions in Equation (19). The
coefficient anm can be determined as follows:

anm =
1
ab

∫ a

−a

∫ b

−b
(−12Gεc

t2 ) cos(
nπ

2a
x) cos(

mπ

2b
y)dydx = − 192Gεc

mnπ2t2 (29)

Substituting Equations (27)–(29) into Equation (26), the coefficient pnm in Equation (27)
is obtained:

pnm =
192Gεc

mnπ2t2
1

( nπ
2a )

2 + (mπ
2b )2 + 2α2 + β2

(30)

From Equations (27) and (30), the internal pressure p can be expressed by

p(x, y) =
∞

∑
k=1;n,m=2k−1

192Gεc

mnπ2t2

cos( nπ
2a x) cos(mπ

2b y)

( nπ
2a )

2 + (mπ
2b )2 + 2α2 + β2

(31)

Integrating p over the upper surface of the rubber layer leads to the relationship
between the vertical resultant force P and the rubber layer’s vertical compression strain εc.
Then, εc can be expressed as follows:

εc =
π4t2P

3072Gab

[
∞

∑
k=1;n,m=2k−1

1
m2n2

1

( nπ
2a )

2 + (mπ
2b )2 + 2α2 + β2

]−1

(32)
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2.6. Internal Forces in The Reinforcement

The internal force in the reinforcement Fxx and Fyy can be obtained by substituting
the expression p in Equation (27) into Equation (15) and integrating with respect to x and
y, respectively:

Fxx = t
∞
∑

n,m=1
pnm cos( nπ

2a x) cos(mπ
2b y) + C1(y)

Fyy = t
∞
∑

n,m=1
pnm cos( nπ

2a x) cos(mπ
2b y) + C2(x)

(33)

where C1(y) and C2(x) should be equal to zero in agreement with the boundary condition
of Fxx and Fyy in Equation (20). Fxx and Fyy are reduced to the following:

Fxx = Fyy = t
∞

∑
n,m=1

pnm cos(
nπ

2a
x) cos(

mπ

2b
y) (34)

Substituting the expression of pnm into Equation (34), Fxx and Fyy follow

Fxx = Fyy =
∞

∑
k=1;n,m=2k−1

192Gεc

mnπ2t
cos( nπ

2a x) cos(mπ
2b y)

( nπ
2a )

2 + (mπ
2b )2 + 2α2 + β2

(35)

Finally, combining Equations (32) and (35), the internal forces of the reinforcement per
unit length in the x and y directions, respectively, are provided in terms of vertical load P:

Fxx = Fyy = π2tP
16ab

[
∞
∑

k=1;n,m=2k−1

1
m2n2

1
( nπ

2a )
2+(mπ

2b )2+2α2+β2

]∑ 1

×[
∞
∑

k=1;n,m=2k−1

1
mn

cos( nπ
2a x) cos(mπ

2b y)

( nπ
2a )

2+(mπ
2b )2+2α2+β2

] (36)

The above equations demonstrate that the internal force of steel mesh reinforcement is
positively correlated with the vertical load P and the individual rubber thickness t. Still, it
is also negatively correlated with the flexibility of reinforcement and the compressibility
of rubber.

Figure 5 plots the distribution of Fxx and Fyy over the cross-section of a USRB under
a vertical compression of 70 MPa. The configurations and material properties of the
investigated USRB are listed in Table 1, where a is half bearing width, b is half bearing
length, t is the rubber layer thickness, ds is steel wire diameter, w is the aperture dimension
of steel wire mesh reinforcement, G is the rubber shear modulus, K is the rubber bulk
modulus, and Es is the reinforcement elastic modulus.

Figure 5. Distribution of Fxx and Fyy over the reinforcement cross-section.
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Table 1. Configurations and material properties of the USRB.

a b t ds w G K Es

mm mm mm mm mm MPa MPa MPa

200 200 2.0 0.8 1.8 1.0 2000 2 × 105

It can be seen from Figure 5 that Fxx and Fyy are identical. It implies that the internal
forces of reinforcement at a given point are the same in the x and y directions. In addition,
Fxx and Fyy reach their maximum Fxxmax and Fyymax at the center of the cross-section, where
x = 0 and y = 0. As a result, it is anticipated that the failure of USRBs is initiated by the
tensile failure of the reinforcement at the center.

3. Analytical Solution of Ultimate Compression Capacity of Rectangular USRBs

According to a previous test study, when USRBs’ vertical pressure load reaches pu,
the reinforcement’s maximum tensile stress σmax reaches the steel wire’s ultimate tensile
strength fu. As such, further investigation is conducted to explore the analytical solution
for the ultimate compression capacity pu, building upon the above analysis of the internal
force F in the mesh reinforcement.

The resultant force P of the upper surface corresponding to the ultimate compressive
loading pu is

P = 4abpu (37)

Substituting the above equation into Equation (36) under the condition of x = 0 and y = 0,
the maximum internal force of reinforcement per unit length Fmax at load pu is obtained:

Fxxmax = Fyymax = Fmax = π2tpu
4

[
∞
∑

k=1;n,m=2k−1

1
m2n2

1
( nπ

2a )
2+(mπ

2b )2+2α2+β2

]−1

×[
∞
∑

k=1;n,m=2k−1

1
mn

1
( nπ

2a )
2+(mπ

2b )2+2α2+β2

] (38)

As previously stated, the tensile stress in the continuous solid layer remains equivalent
to that in the original discrete steel wires. Then, the relationship between the maximum
tensile stress of steel wires σmax and the maximum internal force of reinforcement Fmax is
determined as

σmax =
Fmax

ts
=

4Fmax(ds + w)

πd2
s

(39)

Substituting the expression of Fmax at load pu into the above equation, the expression
of the maximum tensile stress of reinforcement σmax at ultimate load pu is obtained:

σmax =
πtpu(ds + w)

d2
s

[
∞

∑
k=1;n,m=2k−1

1
m2n2

1

( nπ
2a )

2 + (mπ
2b )2 + 2α2 + β2

]−1

×
[

∞

∑
k=1;n,m=2k−1

1
mn

1

( nπ
2a )

2 + (mπ
2b )2 + 2α2 + β2

] (40)

A commonly used characteristic parameter A0 that measures the open area of the
steel mesh reinforcement is defined in Equation (41) [36]. It is the ratio of the area of total
apertures to the area of steel mesh reinforcement. A0 is a critical parameter commonly
listed in the specification table of steel wire mesh.

A0 = 100(
w

w + ds
)

2
(41)
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As previously mentioned, the maximum tensile stress of reinforcement σmax is equal to
the tensile strength fu of steel wires at the vertical load of pu. From Equations (40) and (41),
the ultimate compression capacity pu of rectangular USRBs is expressed by

pu = fuds
πt (1 −

√
A0
100 )

[
∞
∑

k=1;n,m=2k−1

1
m2n2

1
( nπ

2a )
2+(mπ

2b )2+2α2+β2

]

×
[

∞
∑

k=1;n,m=2k−1

1
mn

1
( nπ

2a )
2+(mπ

2b )2+2α2+β2

]−1 (42)

The analytical solution of pu implies that pu is affected by the configurations of USRBs
and the material properties of rubber and steel mesh reinforcement, including bearing
width a, bearing length b, rubber layer thickness t, reinforcement wire diameter ds, reinforce-
ment open area ratio A0, reinforcement elastic modulus Es, reinforcement tensile strength
fu, rubber shear modulus G, and rubber bulk modulus K. To further study the influence
of these factors/parameters, a series of USRB samples, with different configurations and
material properties, are compared on their theoretical ultimate loading capacity pu. The
benchmark values for each impact factor are listed in Table 1, and the benchmark value
for A0 is 48. Figure 6a–d compare the variations in USRBs’ normalized ultimate compres-
sion capacity pu/ fu with different factors, whose values range from 0.5 to 2.0 times the
benchmark values.
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Figure 6. Variation in the normalized ultimate compression capacity pu/ fu with different factors
including (a) bearing width a (unit: mm) and the length-to-width ratio b/a; (b) rubber layer thickness
t (unit: mm) and reinforcement wire diameter ds (unit: mm); (c) reinforcement wire diameter ds and
the reinforcement open area ratio A0; and (d) normalized reinforcement elastic modulus Es/G and
normalized rubber bulk modulus K/G.

The results in Figure 6 show that the ultimate compression capacity pu of USRBs
is positively correlated with bearing width a, the bearing length-to-width ratio b/a, and
reinforcement wire diameter ds. In contrast, it is negatively correlated with rubber layer
thickness t, the reinforcement open area ratio A0, the normalized reinforcement elastic
modulus Es/G, and the normalized rubber bulk modulus K/G. The results in Figure 6 are
consistent with previous test observations [9], where USRB specimens with larger plan
areas (i.e., a), larger steel wire diameters (i.e., ds), and smaller rubber layer thickness
(i.e., ts) exhibited higher compression capacities pu. The effects of Es and K demonstrate
that the reinforcement flexibility and rubber compressibility would enhance the bearings’
ultimate compression capacity. In addition, the influence of t, ds, and A0 are prominent
among all the factors, whereas the effect of Es/G and K/G are negligible. Furthermore,
the comparisons between each two factors indicate that increasing bearing width a is
more effective in enlarging pu than increasing the length-to-width ratio b/a (Figure 6a).
Analogously, to enlarge pu, decreasing rubber layer thickness t is more efficient than
increasing the reinforcement wire diameter ds (Figure 6b), and increasing ds is more efficient
than reducing the reinforcement open area ratio A0 (Figure 6c).
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4. Ultimate Compression Test Results of USRB

A total of 19 USRB specimens [9], as listed in Table 2, were tested to validate the
analytical solutions for ultimate compression capacities pu. During the tests, the specimens
exhibited continuous cracking sounds, and cross-sectional inspection after tests confirmed
the fracture of steel wires in the reinforcement. This demonstrates that the failure of
USRB under compression originates from the fracture failure of steel wires. Therefore,
it is reasonable for the analytical USRB model to consider the compressive stress at the
fracture of steel mesh reinforcements as the ultimate strength pu. Material properties of
rubber and the geometric characteristics of steel mesh reinforcement were provided by the
manufacturers. The shear modulus (G) and bulk modulus (K) of rubber were 1.0 MPa and
2000 MPa, respectively. Axial tensile tests were carried out on the steel wires to obtain their
elastic modulus (Es) and tensile strength (fu). The measured stress–strain curves for three
steel wire specimens are displayed in Figure 7. According to Figure 6d, Es demonstrates
negligible influence on the compression capacity. The elastic modulus (Es) was then decided
by the secant modulus E1, E2, and E3 to simulate the stress and strain responses at tensile
failure. The average Es and fu for the steel wire are 7250 MPa and 1450 MPa, respectively.
The pu analytical solutions were derived using Equation (42) and are listed in Table 2.

Table 2. Configurations of tested USRB specimens.

No. a
(mm)

b
(mm)

ds
(mm)

t
(mm) ns A0

pu_test
(MPa)

pu_analytical
(MPa)

1 69 94 0.8 3.3 5 48 50 70
2 95 120 0.8 2.5 21 48 70 109
3 95 120 0.8 2.5 21 48 68 109
4 95 120 0.8 2.5 21 48 68 109
5 95 120 0.8 3 17 48 59 86
6 95 120 0.8 3 17 48 64 86
7 95 120 0.8 3 21 48 71 86
8 95 120 0.8 3 21 48 66 86
9 95 120 0.8 3 21 48 67 86

10 95 120 0.8 3.5 15 48 50 70
11 95 120 0.8 3.5 15 48 51 70
12 95 120 0.8 3.5 21 48 30 70
13 95 120 0.8 3.5 21 48 51 70
14 95 120 0.8 4 13 48 42 59
15 95 120 0.8 4 13 48 41 59
16 117 142 0.8 3.6 13 48 50 71
17 120 145 0.6 5.6 9 56 17 26
18 140 190 0.8 2.8 7 48 76 101
19 140 190 0.8 3.8 5 48 60 69

Notes: a: half bearing width; b: half bearing length; ds: steel wire diameter; t: individual rubber layer thickness; ns:
number of reinforcement layers; A0: reinforcement open area ratio; pu_test: ultimate compression capacity test
results; pu_analytical: ultimate compression capacity analytical solutions.

Figure 7. Measured stress–strain curves for steel wire during tensile material test.
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Figure 8 compares the analytical solutions of ultimate compression capacities (pu)
with corresponding test results. The analytical solution significantly overestimates the
test results, with a mean absolute error (MAE) of 23.1 MPa and a root-mean-square error
(RMSE) of 25.0 MPa. This significant discrepancy is attributed to the simplification of the
USRB analytical model, which assumes equal mechanical performance for all rubber layers.
However, Tsai [37] analyzed the fiber-reinforced bearings with multiple rubber layers, and
found that the mechanical performance of each rubber layer is not the same. Moreover, test
results show that USRB specimens with more reinforcement layers ns (or rubber layers)
tend to have lower pu results. For example, specimen No. 12 is identical to specimen No.
11 except having more reinforcement layers (i.e., 21 layers) than No. 11 (i.e., 15 layers). The
pu of No. 12 is smaller (30 MPa) compared to that of No. 11 (50 MPa). This might be due
to the fact that bearings with more rubber or reinforcement layers tend to suffer buckling
failure or eccentric compression. This finding suggests that the number of reinforcement
layers ns or rubber layers has an impact on the ultimate compression capacity, whereas the
simplified analytical model with only one rubber layer (ns = 2) cannot consider this impact.
Figure 9a further demonstrates the correlation between estimation errors (i.e., difference
between pu analytical solution and test result) and the difference in reinforcement layer
number between test specimens and the analytical model ns − 2, with larger ns causing
higher discrepancy. Therefore, calibration of the pu analytical solution based on the test
results is necessary to account for the effect of ns on the ultimate compression capacity.
Notably, pu analytical results with the same ns were averaged on their errors in Figure 9.

Figure 8. Comparisons between the test results (pu_test) and analytical solutions (pu_analytical) of
USRBs’ ultimate compression capacity.

Figure 9. Influence of number of reinforcement layers ns on the estimation errors of pu analytical
solutions compared to pu test results: (a) the variation in analytical solution errors with ns, and (b) the
relationship between ns and the ratio of pu test results to pu analytical solutions.

Despite the significant discrepancy of the pu value, pu analytical solutions can capture
the variation in pu with rubber thickness t. Figure 10 illustrates the correlation between
rubber layer thickness t and pu from test results. It shows that pu decreases significantly as
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t increases. This aligns with previous finite element model analysis results [38]. Figure 10
also compares the variation in pu with t between the analytical solution and test results. The
trend of analytical solutions is consistent with that of test results despite the discrepancy
in values.

Figure 10. Comparison between the influence of rubber layer thickness on pu test results and
pu analytical results.

As stated above, the different values of ns between the analytical model and real USRB
specimens leads to the error of pu analytical solutions. Calibration was conducted to include
the effect of ns in the analytical solution. When the tested USRB specimen has the same
reinforcement layer number as the simplified analytical model (i.e., ns = 2), its ultimate
compression capacity should be equal to the analytical solution. An assumption was then
made that the pu_test should be equal to pu analytical solutions when ns = 2. Based on
engineering judgements, the relation between pu_test/pu_analytical should follow

ln
(

pu_test
pu_analytical

)
= m0 ln

(ns

2

)
(43)

Figure 9b presents the relationship between ns and the average ratio of pu test results
to pu analytical solutions (pu_test/pu_analytical) at each ns level. The coefficient m0 in
Equation (43) is determined to be −0.18 from the linear regression results. It leads to

pu_test =
(ns

2

)−0.18
pu_analytical (44)

The calibration term in Equation (44) was introduced in the pu analytical solution in
Equation (42) to improve accuracy. The calibrated analytical solution of ultimate compres-
sion capacity pu yields to the following:

pu =
( ns

2
)−0.18 fuds

πt (1−
√

A0
100

)[
∞
∑

k=1;n,m=2k−1

1
m2n2

1
( nπ

2a )
2+(mπ

2b )2+2α2+β2

]
×[

∞
∑

k=1;n,m=2k−1

1
mn

1
( nπ

2a )
2+(mπ

2b )2+2α2+β2

]−1 (45)

The calibration term (ns/2)−0.18 is consistent with the test results that ns is negatively
correlated with pu. Figure 11 compares the pu_calibrated values with the pu_test results for
all specimens, demonstrating a strong fit for the regression set. The mean absolute error
and root-mean-square error of pu_calibrated compared to pu_test are 4.9 MPa and 6.8 MPa,
respectively, significantly reducing the estimation error compared to the analytical results
(i.e., MAE = 23.1 MPa, RMSE = 25.0 MPa) in Figure 8.
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Figure 11. Comparisons between the test results and calibrated analytical results of USRBs’ ultimate
compression capacity.

It should be noted that the pu calibrated solution presented here is intended to estimate
the exact ultimate compression capacity of USRBs, rather than its lower bound. Thus, the
reliability of the pu calibrated solution is not the main concern. The pu calibrated solution
proposed here can be applied during the preliminary design stage for the optimization
design of USRBs by providing a close estimation of pu. The actual ultimate compression
capacity of an optimized USRB prototype should always be examined via tests before
USRBs are applied in structures.

5. An Efficient Solution for the Ultimate Compression Capacity of Rectangular USRB

To facilitate engineering applications, an efficient solution of pu was proposed by
considering all important parameters:

pu = n0 fu

(ns

2

)−0.18( a
t

)n1
(

b
a

)n2
( t f

t

)n3
(

1 −
√

A0

100

)(
G
Es

)n4
(

G
K

)n5

(46)

where ni (i = 0~5) are coefficients to be determined by the multiple linear regression with a
large set of calibrated analytical pu results.

The efficient solution accounts for four geometric parameters (a, b/a, t, and ds) and four
material parameters (A0, G, Es, and K). To determine the coefficients, various USRB samples
with different configurations and material properties were analyzed for their ultimate
compression capacities. The number of reinforcement layers ns in all samples was set to
2 to eliminate its influence. Table 3 summarizes the geometric configurations and material
properties of these samples, covering a range of values for parameters such as bearing
width a, length-to-width ratio b/a, rubber layer thickness t, reinforcement wire diameter
ds, reinforcement open area ratio A0, rubber shear modulus G, reinforcement elastic mod-
ulus Es, and rubber bulk modulus K. These parameters were varied at different levels to
cover all possible cases and broaden the application of pu efficient solutions. The samples
consisted of 58 combinations of these parameters. Limitations were applied to ensure the
reasonableness of the bearing configurations. These included not exceeding the maximum
cross-section area for small-to-medium-span highway bridges (700 mm × 700 mm for un-
bonded laminated rubber bearings as per the Ministry of Transport of the People’s Republic
of China, 2004), ensuring that the rubber layer thickness is greater than the reinforcement
thickness, and matching the reinforcement open area ratio to the reinforcement thickness
according to the steel woven wire mesh reinforcement specification table [36].
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Table 3. Various configurations and material properties of USRBs.

a
(mm) b/a t

(mm)
ds

(mm)
A0
(%)

G
(MPa)

Es
(MPa)

K
(MPa)

50 1.00 1 0.02 25 0.4 2.00 × 103 1000
125 1.25 2 0.50 40 0.8 5.00 × 104 2000
200 1.50 3 1.00 55 1.2 1.00 × 105 4000
275 1.75 4 1.40 70 1.6 1.50 × 105 6000
350 2.00 5 2.00 86 2.0 2.00 × 105 8000

A total of 182,875 USRB samples with reasonable configurations were studied. The
pu calibrated solution was applied to calculate the calibrated analytical pu for these samples
using Equation (45), where fu takes the mean value of 1450 MPa. Multiple linear regression
was conducted on the calibrated pu results and corresponding factors to obtain the constant
coefficients in Equation (46). The least square method minimized the sum of squared errors
to determine the coefficients: n0 = 0.688, n1 = 0.192, n2 = 0.100, n3 = 0.950, n4 = 0.067, and
n5 = 0.038. This leads to the efficient solution of pu:

pu = 0.688 fu

(ns

2

)−0.18( a
t

)0.192
(

b
a

)0.100( ds

t

)0.950
(

1 −
√

A0
100

)(
G
Es

)0.067(G
K

)0.038
(47)

Figure 12 compares the estimated pu (empirical pu) from Equation (47) with the cal-
ibrated analytical pu results. The mean absolute error (MAE) value and mean squared
error (MSE) value of the multiple linear regression are 3.9 and 45.2, respectively, with a
coefficient of determination, R2, close to 1.0. This implies that the efficient solution of pu in
Equation (47) reasonably predicts the calibrated analytical pu from Equation (45).

Figure 12. Comparison between efficient solution and analytical solution of pu.

Considering the wide range of USRBs investigated in terms of configurations and
material properties, the generalized efficient solution of pu in Equation (47) can be used
for all USRBs. Figure 13 compares the empirical pu results, calibrated analytical pu results,
and test pu results for the specimens in Table 2. The empirical pu results coincide with the
calibrated analytical solutions and accurately predict the majority of the test pu results. The
mean relative error for the empirical pu results is 25%. Therefore, the efficient solution of
pu in Equation (47) can serve as a simple method to estimate the ultimate compression
capacity of USRBs in practical engineering applications.

Moreover, the regressed coefficients in Equation (47) also indicate the relative impor-
tance of each factor for the compression capacity, with a larger value representing higher
correlation. The regression results align with the parametric study in Figure 6, where the
correlation between each parameter with compression capacity, arranged in descending
order, is as follows: t, ds, A0, a, ns, a/b, G, Es, and K.
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Figure 13. Comparisons of ultimate compression capacities among empirical, calibrated analytical,
and test results.

6. Preliminary Design of USRB

In this section, we illustrate the optimization design process of USRBs during the
preliminary design stage, using the proposed analytical solutions. The cross-section size
(a and b) is determined based on the weight of superstructures. The bearing height H is set
according to the seismic deformation demand. Material properties, including the rubber
shear modulus G, rubber bulk modulus K, steel mesh elastic modulus Es, tensile strength fu,
and steel mesh open area ratio A0, are typically provided by the manufacturers. Geometric
parameters like individual rubber thickness t, reinforcement wire diameter ds, and the
number of reinforcement layers ns, can be decided based on the ultimate loading carrying
capacity requirement of USRBs.

For example, consider the design of USRBs in a single-span simply supported girder
bridge. The bridge’s superstructure is supported by twenty USRBs, with ten at each end.
The total vertical design load is 2100 tons, considering both dead and live loads. The
maximum relative seismic displacement between the girder and substructure is 120 mm.

Using the given information, the vertical load per USRB is 1050 kN, and the lateral
deformation capacity of all USRBs should exceed 120 mm. Based on design criteria, the
vertical design pressure is set at 10 MPa [39], and the lateral deformation capacity is
1.65 times the bearing height H [8,9]. Consequently, the cross-section of the bearing 2a × 2b
and height H are determined to be 300 mm × 350 mm and 75 mm, respectively.

The ultimate loading capacity requirement for USRBs is 70 MPa, matching the standard
for unbonded laminated rubber bearings [39]. By substituting known parameters into
Equation (45) and assuming material properties from Section 4, the rubber layer thickness t,
reinforcement wire diameter ds, and the number of reinforcement layers ns must satisfy the
following equation:

pu = 0.688 × 1450 ×
( ns

2

)−0.18
(

150
t

)0.192(
175
150

)0.100( ds
t

)0.950
(

1 −
√

48
100

)(
1

7250

)0.067(
1

2000

)0.038

≥ 70MPa
(48)

which leads to
t ≤ 4.41 × d0.832

s n−0.158
s (49)

On the other hand, the rubber layer thickness t can be determined by the following:

t =
H − 2c0 − 2nsts

ns − 1
(50)

where c0 is the top/bottom rubber cover thickness, and ts is the equivalent thickness of
mesh reinforcement illustrated in Figure 2. In this case, ts is calculated to be 0.241 ds.
Substituting Equation (50) into Equation (49), the relation between ds and ns is obtained:

0.483dsn1.158
s + 4.41d0.832

s ns − (H − 2c0)n0.158
s − 4.41d0.832

s ≥ 0 (51)
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To ensure a standard ultimate compression capacity of over 70 MPa, the minimum
number of reinforcement layers ns can be estimated using Equation (51), considering a pre-
determined reinforcement wire diameter ds obtained from the steel wire mesh specification
table. Typically, ns is minimized to reduce the cost and weight of USRBs. Subsequently, the
rubber layer thickness t can be calculated using Equation (50).

In this example, ds is initially set at 1 mm. Given a bearing height H of 75 mm and
a top/bottom rubber cover thickness c0 of 2.5 mm, Equation (51) estimates a minimum
of 13 reinforcement layers ns. The corresponding ds is 2 mm. By using Equation (50),
t is calculated to be 4.8 mm. The estimated ultimate compression capacity with this
configuration is 77.6 MPa, meeting the required minimum of 70 MPa.

Following the above design process, the geometric configuration of USRB is deter-
mined, which satisfies both the lateral deformation and the vertical loading requirements.
However, this design process does not address the seismic effectiveness of the bearing,
which needs further structural dynamic analysis.

7. Conclusions

This study theoretically analyzed the ultimate compression capacity of the unbonded
steel-mesh-reinforced rubber bearings (USRBs). Based on previous studies on fiber-reinforced
rubber bearings, a simplified USRB analytical model, consisting of a single rubber layer and
two flexible steel mesh reinforcements, was investigated for its performance under vertical
compression, assuming that all materials are linearly elastic and the rubber is compressible.
The closed-form solution of the internal force of the steel mesh reinforcement was derived via
the stress method of elasticity theory. The analytical solution of USRBs’ ultimate compression
capacity pu was deduced from the fact that USRBs will suffer compression failure when the
steel wire in the reinforcements breaks at its tensile strength. A parametric study on the
influence of individual rubber thickness, bearing width, length-to-width ratio, reinforcement
wire diameter, reinforcement open area ratio, reinforcement elastic modulus, and rubber bulk
modulus was carried out to provide suggestions on improving USRBs’ ultimate compression
capacity. Furthermore, the analytical solution of pu was calibrated by the test results of 19 USRB
specimens to consider the influence of the number of reinforcement layers ns. Based on the
calibrated pu solution, an efficient solution of simplified form for the ultimate compression
capacity was promoted, employing multiple linear regression with the calibrated analytical
pu results of 182,875 USRB samples. Finally, the design process of USRBs with specific ultimate
compression capacity was illustrated based on the proposed efficient pu solution. From the
above investigations, the following main conclusions can be drawn:

1. The failure of USRBs is initiated by the tensile failure of reinforcement at the center, since
Fxx and Fyy reach their maximum Fxxmax and Fyymax at the center of the cross-section.

2. The ultimate compression capacity pu of USRB is positively correlated with the bear-
ing width a, bearing length-to-width ratio b/a, and reinforcement wire diameter ds.
In contrast, it is negatively correlated with rubber layer thickness t, reinforcement
open area ratio A0, normalized reinforcement elastic modulus Es/G, and normalized
rubber bulk modulus K/G. Decreasing the rubber layer thickness t, increasing the
reinforcement wire diameter ds, and reducing reinforcement open area ratio A0 can
significantly enhance pu, while increasing the reinforcement flexibility and rubber
compressibility have a negligible effect. In addition, increasing bearing width a is more
effective in enlarging pu than increasing the length-to-width ratio b/a, and increasing
ds is more efficient than reducing the reinforcement open area ratio A0.

3. The influence of rubber layer thickness on the ultimate compression capacity in test
results coincides with that of analytical results. However, a significant difference was
observed between the pu analytical solutions and pu test results due to the simplifica-
tion of USRB’s analytical model, which cannot account for the effect of the number of
reinforcement layers on pu, as observed in the tests.

4. The pu calibrated solution incorporates the influence of the number of reinforcement
layers ns and improves the estimation accuracy of the pu test results. The calibrated
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solution was found to reduce the mean absolute error of the pu analytical solution
from 23.1 MPa to 4.9 MPa.

5. The regressed efficient solution of pu has a simpler form but the same accuracy as
the calibrated solution in predicting the ultimate compression capacity, which could
facilitate the preliminary design of USRBs in practical engineering.
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