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Abstract: An investigation was carried out to study the influence of two types of anti-washout
admixtures (AWAs) on the performance of underwater concrete, specifically, workability and washout
resistance. The tested AWAs were hydroxypropyl methylcellulose (HPMC) and polyacrylamide
(PAM) as nonionic AWAs and carboxymethyl starch (CMS) and polyanionic cellulose (PAC) as anionic
AWAs. Rheological properties (slump and slump flow), washout resistance, and compressive strength
were measured to evaluate the properties of the fresh and hardened concrete. The results indicate
that anionic AWAs are more effective at improving workability and strength than nonionic AWAs in
anti-washout underwater concrete. When the nonionic AWA dosage exceeded 0.3% (W/C = 0.45), the
fluidity and air content were negatively impacted. Additionally, nonionic AWAs more readily alter
the morphological structure of cement paste, affecting cement particle hydration and underwater
concrete properties. Regarding the mechanical properties, compared with those of concrete without
AWAs and with nonionic AWAs, the 28-day compressive strength of concrete with anionic AWAs
reached 37 MPa, an increase of 151% and 131%, respectively. Compared with nonionic AWAs,
concrete with anionic AWAs is more stable.

Keywords: anti-washout admixture; underwater concrete; anionic; nonionic

1. Introduction

Underwater concrete construction presents significant challenges due to the washout
of cementitious materials and loss of workability. Anti-washout admixtures (AWAs) are
commonly used to enhance the cohesion and washout resistance of underwater concrete [1].
AWAs can be categorized as nonionic (e.g., HPMC, PAM) or anionic (e.g., PAC, CMS), de-
pending on their ionic nature. Nonionic AWAs utilize hydrogen bonding and entanglement
to increase viscosity and reduce washout [2]. Anionic AWAs utilize charge neutralization
and interparticle bridging. While both types increase cohesion, their effects likely differ.
This study aimed to compare the effects of nonionic and anionic AWAs on key properties of
underwater concrete, including its workability, washout resistance, strength development
and microstructure. Expanding the understanding of AWA mechanisms will enable more
optimized specifications and designs of underwater concretes [3,4].

Underwater concretes will be prepared with two concentrations of nonionic AWAs
(HPMC and PAM) and two concentrations of anionic AWAs (PAC and CMS). Workabil-
ity will be assessed via slump flow and viscosity measurements [5]. The compressive
strength development will be measured at standard curing ages. Microstructural character-
istics will be examined by scanning electron microscopy (SEM) to visualize flocculation
mechanisms [6].

It is hypothesized that nonionic AWAs will provide superior workability retention
but potentially inferior strength development compared to anionic alternatives. Anionic
AWAs are expected to show higher washout resistance, attributable to their stronger inter-
particle bonding [7–9]. Both classes are expected to demonstrate flocculation and viscosity
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enhancements relative to plain underwater concrete, but potentially through disparate
mechanisms that are observable at the microscale. In conjunction with the experimental
program, molecular dynamics (MD) simulations will be performed to elucidate AWA–
cement–water intermolecular interactions at the nanoscale and microscale [10,11]. These
simulations can solve Newton’s equations of motion for matrix components to determine
atomic trajectories and reveal transient binding phenomena [12,13].

Both nonionic and anionic AWA polymer chain configurations will be constructed
within representative cement pore fluid models under shear flow. Nonbonded interaction
parameters will be assigned between chain atoms and ionic species per the established
force field [14]. Transport properties such as shear viscosity and self-diffusion coefficients
will be extracted from the model to correlate with rheology tests. Particle residence times
near polymer chains will provide further evidence of flocculation tendencies. Simulations
will also probe the differences between intrachain hydrogen bonding for nonionic polymers
and interchain ionic bonding for anionic variants [15–18]. The extent, duration, and
dynamics of these atomic interactions are expected to govern macroscale washout resistance
behavior. Sensitivity analyses will map the bonding affinity with the polymer charge
density, molecular weight, and shear rate [19].

By connecting molecular configurations and kinetics to bulk phenomena, the sim-
ulations will offer unique insights into AWA mechanisms that are difficult to capture
experimentally [20,21]. The visualization and quantification of transient binding dynamics
will support the interpretation of bulk property measurements. The models can also be used
to screen AWA molecular architectures to guide the design and synthesis of next-generation
admixtures [22]. This work provides a side-by-side quantitative comparison between
nonionic and anionic AWAs regarding key underwater concrete performance attributes.
An enhanced understanding of the governing mechanisms will help concrete specialists
select suitable AWAs tailored to specific application requirements [23–25]. Characterizing
the interactions between distinct AWA chemistries and cement systems will enable further
material innovations and structural applications of underwater concrete.

2. Experimental Sections
2.1. Materials

All the AWAs and equipment were received from Qingdao Kremer New Building
Materials Technology Co., Ltd., Qingdao, China. The degree of substitution (DS) was above
0.2 for CMS. The apparent viscosity of PAC was 15 mPa·s. The surface tension of the 2%
HPMC solution ranged from 42 to 56 dyn·cm−1. The average molecular weight of PAM
was 5,000,000–6,000,000. All chemicals used were of analytical grade [26].

Shanshui 42.5 Portland cement with a blade fineness of 311 m2/kg was utilized to
prepare the concrete test specimens used for determining the concrete properties. The
chemical composition of the cement is shown in Table 1. The water reduction rate was 40%
for the polycarboxylate superplasticizer.

Table 1. Chemical composition of the studied cement.

CaO SiO2 Al2O3 Fe2O3 MgO SO3 K2O Na2O P2O5 CaO Free Ignition Loss

55.85% 22.91% 7.12% 3.36% 3.28% 2.30% 0.69% 0.22% 0.19% 1.25% 1.44%

2.2. Mixing Procedures and Concrete Mix

The mixing protocols and processes have a large influence on the fluidity and workabil-
ity of UWC, particularly when AWAs and superplasticizers are added. Potential chemical
and physical interactions, such as cement hydrates, the adsorption of superplasticizers, and
AWA crosslinking in UWCs, will be greatly affected [27]. When AWAs and superplasticizers
are mixed with cement mortar slurry, the cement particles are wrapped by AWAs, so the
amount of superplasticizer that is adsorbed decreases, which results in a slow setting [28].
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To maximize the synergy and combination of admixtures, and limit experimental
errors, the mixing procedure was performed as follows:

Step 1: All the cement and coarse and fine aggregates were dry-mixed for 1 min.
Step 2: The water and superplasticizer were mixed to the solution. The solution was added

to the mixture uniformly within 30 s while stirring for 2 min.
Step 3: The AWAs were added to the mixtures and stirred for 1 min.

The stirring speed was 42 r·min−1, and the UWC was mixed without stopping.
In the mixing process, nonionic AWAs generate many bubbles in concrete, which are

not conducive to sinking of the UWC.

2.3. Cement Mortar Test
2.3.1. Fluidity and Fluidity Loss

The fluidity of cement mortar can not only reflect the viscosity and washout resistance
of the UWC but can also reflect the workability and fluidity loss as a reference [29]. Thus,
to study the fluidity and fluidity loss of different UWCs, cement mortar was tested to
determine the optimal dosage of AWAs [30].

Standard sand was used in the test, and the W/C was 0.5 [31–33].
With an increase in the dosage of AWAs from 0 to 1.2% (Figures 1 and 2), the fluidity

of the cement mortar sharply decreases, especially at low dosages. However, the decrease
in the fluidity of the mortar with nonionic AWAs is significantly greater than that with
ionic AWAs. In addition, the fluidity loss after two hours shows that there is an opposite
trend in fluidity loss between the two kinds of AWAs before a dosage of 0.9%, and the
fluidity loss with CMS is relatively lower and more stable [34]. Additionally, the fluidity
loss of UWC with AWAs was even less than that of non-AWA UWC at some dosages, which
indicated that AWAs retain water in UWC and reduce fluidity loss, or that the fluidity
of UWC is so low that it reaches the lower limit. In practical tests, when the dosage of
nonionic AWAs reaches 0.9%, the cement mortar is too sticky to meet the fine workability
requirements of UWC; thus, the dosage of AWAs is limited to between 0.1 and 0.6% in
UWC [35]. According to the fluidity test, the average fluidity decreases by 45.1% and 37.5%
with the use of nonionic and anionic AWAs, respectively, which shows that anionic AWAs
have a less negative impact on the flow properties of concrete [36,37].
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Figure 1. Fluidity and fluidity loss of cement paste with CMS, PAC, HPMC, and PAM.
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Figure 2. The fluidity loss after two hours.

2.3.2. pH Factor Test and Stream Test

Considering the greater impact of coarse aggregate on the test results, the anti-washout
resistance was tested with mortar. A 100 g sample of cement mortar was added to a beaker
containing 300 mL of water. After 3 min of precipitation, most of the sediments sank to the
bottom. The pH factor test has been proposed for determining the washout resistance of
UWC in Japan [1]. However, the flocculating states significantly differ between AWAs alone
and mortar without AWAs [38]. The interfaces between the supernatant and suspension
were not obvious, and the concentrations of the suspensions also differed (Figure 3). Thus,
separating the supernatant solution from the suspension is difficult, and this phenomenon
leads to instability and inaccuracy in the pH factor test. Finally, the pH of the supernatant
solution was measured, which was relatively clear [39]. The higher the pH is, the greater
the washout. When the AWCA dosage increased, the pH of the supernatant solution
decreased. Before a dose of 0.6% was reached, the test results indicated that the washout
resistance was affected, in order of importance, by the dosage of HPMC, PAM, PAC, and
CMS (Figure 4) [40].
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The stream test was first developed in Belgium. This method simulates the water flow
and reduces the impact of the experimental error; thus, it is closer to the actual situation [41].

The test procedure involved the use of a 70 mm long guttering channel set at a slope
of 15◦ to the horizontal (Figure 5). A sample of cement mortar was placed 300 mm from the
raised end of the channel, and 100 mL of water was poured into the pipe three times [42].
Then, the mass loss of the mortar was measured. In addition, the pH of the turbid liquid
was measured as a control.
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With an increase in the dosage of AWAs from 0 to 1.2%, the fluidity of the cement
mortar sharply decreases, especially at low dosages. The curves plateau when the AWAs
dose is greater than 0.6% (Figure 6), and the washout resistance of the cement mortars with
these three kinds of AWAs is similar. However, before a dose of 0.6% was reached, the
HPMC performed better.
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For the comprehensive analysis of the results of the fluidity test and washout resistance
test, the dosages of AWAs in the UWC were set at 0.1%, 0.3%, and 0.6%, and the mix
proportions adopted for the UWC are listed in Table 2.

Table 2. The mix proportions of UWC.

W/C
Cement
(kg/m3) Water (kg/m3)

Sand
(kg/m3)

Aggregate (kg/m3) Superplasticizer
(kg/m3)2/16 mm 16/26.5 mm

0.45 467 210 690 618 412 8.41

The change trends of the pH are similar to those of mass loss; however, the former are
more unstable than the latter, which is mainly due to the differences in flocculation. Even
though the supernatant of the cement slurry without AWAs was relatively clear, the pH was
almost 12. Since there is no binding effect of AWA, Ca2+ and OH− are more likely to spread
easily from cement paste to water, and the suspension layer, which has a low strength after
hardening, is also thicker [43]. The supernatants from AWAs are more turbid than those
from other media, but because of the flocculation of AWAs, the cement particles are bound
to the flocculation structure, increasing the difficulty of ion migration. Furthermore, the
amount of these suspended particles was low; thus, the pH of the supernatant decreased.
There are relatively large fluctuations in the pH of the samples with HPMC and PAM. The
anionic groups in anionic AWAs adsorb cement particles to enhance flocculation, while
the ionic AWAs can only fasten cement particles by adhering to a mass of spatial mesh
structure. Therefore, ionic flocculation is poor and impedes cement hydration [44]. Overall,
the linear correlation between pH and mass loss was greater for the sample with CMS
than for the other samples, and the anionic AWAs were better and more stable than the
ionic AWAs.

A comparison of the pH factor test and steam test results revealed that although they
both had the same effect on the dosage of AWAs and had an anti-dispersion effect, the
pH factor test was more unstable. In the horizontal comparison, the results of the steam
test reflect the actual mass loss of the cement paste and more closely reflect the actual
anti-dispersing ability of AWAs. The mass loss of paste with HPMC and PAM is greater
than that with CMS and PAC. However, the results of the pH factor test are completely
opposite to those of the steam test (Figure 5). The pH of the turbid liquids improved slightly
but still deviated from the actual values.
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2.4. Slump and Slump Flow of UWC

The slump and slump flow of the UWC were subsequently tested, and the results are
presented in Table 3. (The slump is the vertical drop length, while the slump flow is the
horizontal expansion diameter of the UWC).

Table 3. The slump and slump flow of UWC.

AWA-Dosage (%) Non-AWA HPMC PAM PAC CMS

0.1
Slump 205 180 165 195 190
Slump flow 345 275 . . . 290 300

0.3
Slump 205 150 145 165 185
Slump flow 345 . . . . . . 250 290

0.6
Slump 205 . . . . . . 140 175
Slump flow 345 . . . . . . . . . 275

At an AWA dosage of 0.6%, concrete with AWAs can hardly flow. Even at a dosage
of 0.1%, the fluidity of the concrete was strongly impacted by the AWA, but bleeding or
segregation did not occur. The comprehensive results show that slump and slump flow
are affected, in order of importance, by PAM, HPMC, PAC, and CMS. Additionally, it is
difficult for PAM to adapt to the mixing of concrete.

2.5. SEM Analysis of UWC

A certain amount of cement paste was taken during the process of UWC mixing, after
which the samples were immediately dried and observed via SEM. The sample without
AWAs started hydrating. There were thin layers of Aft and C-S-H gel on the surfaces
of the cement particles (Figure 7) [45]. The sample with PAM also started hydrating but
more slowly than the sample without AWA because the PAM network structures did not
fully cover the cement particles and only the boundaries were covered, which resulted in
hydration in the middle areas of the cement particles (Figure 8) [46]. The samples with
HPMC, CMS, and PAC were almost not hydrated. Most of the cement particles were
covered by AWAs, which caused a slow setting of the UWC. In addition, a large number
of communication pores formed in the paste sample with HPMC (Figure 9), which may
be the reason for its lower compressive strength. The influence of CMS and PAC on the
pore structure is less than that of HPMC (Figures 10 and 11). Nonionic types like HPMC
and PAM appeared to wrap around the cement grains, creating a physical barrier that
retards dissolution and alters the hydration kinetics. This disruption in hydration can
lead to heterogeneous microstructural development and potential defects. In contrast,
anionic AWAs like CMS and PAC enabled particle binding without excessively coating
surfaces, allowing for more regulated hydration and microstructure formation. These
insights from SEM analysis inform the understanding of setting/hardening kinetics and
mechanical property development in underwater concrete containing different AWAs.
The main adhesion parts are the edges and the contact points between cement particles;
therefore, they play positive roles in bridging cement paste. In summary, anionic AWAs
can lead to slow UWC setting for wrapping effects, but they have less of an effect on the
later hydration and pore structure. The ionic AWAs are denser and thicker than the anionic
AWAs, and the fibers overlap each other to form well-like structures. A large number of
communication pores are present in these structures. In addition, these well-like structures
reduce the surface energy and formation energies of crystals of cement hydration products,
thereby inducing the growth of crystals along these structures. In the end, the internal
structures of the UWC change, and many harmful pores are formed.
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The network structures formed by HPMC demonstrate characteristic features of non-
ionic association, enabled by hydrogen bonding between chains localized near particle sur-
faces. These intertwined polymeric matrices are looser and more open than anionic AWAs,
as reflected by their high porosity and pore interconnectivity. Fluid transport through these
networks is possible, even though diffusion is slowed. A subsequent strength reduction
may arise as the networks remain partially intact during cement hydration, generating
persistent flaws.

The extended fibrous morphology of the HPMC and related well-like structures
suggest that the templates are capable of topologically guiding hydrate crystal growth. As
demonstrated by analogous polymer–silica systems, the high-surface-area interfaces that
are presented can thermodynamically stabilize certain crystal polymorphs and orientations
while hindering others. The pores generated along such organic–inorganic composites thus
have a high probability of persisting as flaws in the hardened cement matrix [47]. This
finding illustrates how even ostensibly inert polymeric AWAs are capable of profoundly
altering cement microstructures and developmental pathways.

Overall, integrating microscopic and nanoscopic tools such as SEM with tailored
simulations and analytical models can substantially improve the mechanistic interpretations
of macroscale AWA performance. These connections may catalyze the innovation of
next-generation admixtures via the incorporation of molecular architecture considerations
during their design. The spatial and temporal control of local interactions afforded by
rational AWA engineering promises to unlock further possibilities for underwater concrete
and construction.
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2.6. Compressive Strength

Figures 12–14 show the compressive strength of the UWC with different dosages of
AWAs. The Non and the Non (normal) are the controlled trials without AWAs, which are
formed underwater, and the ordinary method, respectively. The early strength (3 days) of
the UWC with AWAs is generally lower than that of those without AWAs (Figures 12–14),
but the later strength is greater. With increasing AWA dosage, the strength decreases
because of the negative effect of AWAs on the early hydration of cement.

Buildings 2024, 14, 817 11 of 19 
 

2.6. Compressive Strength 
Figures 12–14 show the compressive strength of the UWC with different dosages of 

AWAs. The Non and the Non (normal) are the controlled trials without AWAs, which are 
formed underwater, and the ordinary method, respectively. The early strength (3 days) of 
the UWC with AWAs is generally lower than that of those without AWAs (Figures 12–14), 
but the later strength is greater. With increasing AWA dosage, the strength decreases be-
cause of the negative effect of AWAs on the early hydration of cement. 

The excessive network formation and high interhydroxide bonding of HPMC are re-
flected in the lowest later-age strength. The hydrogen-bonded chains likely remain par-
tially intact during maturation, manifesting as flaws with a reduced load-bearing capacity. 
These persistent organic phases scattered among hydration products also disrupt matrix 
continuity and stress transfer. Conversely, the ionic bonding interactions of anionic AWAs 
appear less stable in high-pH pore fluid, enabling debonding and dissolution over time. 
The carboxyl groups of CMS, in particular, display an affinity for Ca2+ ions, initially form-
ing adsorbed surface layers. The subsequent complex fracture then exposes the particle 
surface to reaction progression. This eventual decrease in polymer barrier properties is 
consistent with the high late-age strength that is attained [48]. 

By comparing PAC and CMS, the additional hydroxyl groups of the cellulosic CMS 
enabled greater initial hydration retardation from hydrogen bonding. This imparts a 
higher workability retention. However, the dual hydroxyl and carboxyl functionalities 
also introduce the competing effects of pore structure disruption and delayed debonding 
[49]. Optimizing this balance between early particle association and longer-term matrix 
incorporation is necessary for strength enhancement. 

In summary, anionic AWAs exhibit superior strength development, attributable to 
their temporally regulated cement hydration. This contrasts with the uncontrolled pore 
structure modifications induced by nonionic stabilization [50]. Manipulating the ionic 
character and solubility of AWAs has emerged as a promising route for balancing the de-
mands of underwater concrete rheology, setting, and structural performance. 

 
Figure 12. The compressive strength of UWC at an AWCA dosage of 0.1%. 

Non Non(normal)CMS PAC PAM HPMC
0

5

10

15

20

25

30

35

40

45

C
om

pr
es

si
ve

 s
tr

en
gt

h 
(M

Pa
)

Dosage-0.1(wt.%)

 3days
 7days
 28days

Figure 12. The compressive strength of UWC at an AWCA dosage of 0.1%.
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The excessive network formation and high interhydroxide bonding of HPMC are
reflected in the lowest later-age strength. The hydrogen-bonded chains likely remain
partially intact during maturation, manifesting as flaws with a reduced load-bearing
capacity. These persistent organic phases scattered among hydration products also disrupt
matrix continuity and stress transfer. Conversely, the ionic bonding interactions of anionic
AWAs appear less stable in high-pH pore fluid, enabling debonding and dissolution over
time. The carboxyl groups of CMS, in particular, display an affinity for Ca2+ ions, initially
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forming adsorbed surface layers. The subsequent complex fracture then exposes the particle
surface to reaction progression. This eventual decrease in polymer barrier properties is
consistent with the high late-age strength that is attained [48].
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By comparing PAC and CMS, the additional hydroxyl groups of the cellulosic CMS
enabled greater initial hydration retardation from hydrogen bonding. This imparts a
higher workability retention. However, the dual hydroxyl and carboxyl functionalities
also introduce the competing effects of pore structure disruption and delayed debond-
ing [49]. Optimizing this balance between early particle association and longer-term matrix
incorporation is necessary for strength enhancement.

In summary, anionic AWAs exhibit superior strength development, attributable to
their temporally regulated cement hydration. This contrasts with the uncontrolled pore
structure modifications induced by nonionic stabilization [50]. Manipulating the ionic
character and solubility of AWAs has emerged as a promising route for balancing the
demands of underwater concrete rheology, setting, and structural performance.

2.7. Chemical Structures and Chemical Bonds of AWAs

The impacts of the molecular structure and polar groups of AWA on flocculation
are quite different. These four kinds of AWAs are linear, but the length and shape of the
molecular chains and functional groups dissociated in water are different. The length
of the amide group in PAM is approximately 0.15 nm, the main chain is short, and the
branched chain is longer, so the molecules are relatively tough. Moreover, there are –COOH
and –NH2 groups, which have greater rigidity and toughness; therefore, PAM molecules
have a greater influence on the fluidity of concrete. HPMC and PAC have the same
main chain, but their functional groups are different. The molecular weight of HPMC is
approximately 10,000–1,500,000 Da, the molecular chain can easily reunite to a ring form,
and it appears as a beam-like structure with a collection of many monofilament fibers.
Thus, the proportion of effective flocculation of HPCM is small; however, these structures
affect the internal pore structures of concrete. Although PAC has the same main chain as
HPMC, its molecular weight is only approximately 17,000 (when n is approximately 100).
Therefore, the molecular chains of PAC are not easily intertwined, and the –CH2COONa
on the glucose ring will repel PAC molecules with the same charge.

The molecular structure of CMS is different from that of the other CMSs (Figure 15).
First, the main chain is short, but the branched chains are longer and softer because they are
connected by single bonds, so the chains are easier to rotate. In addition, negative charges
promote the dispersion of CMS, and flocculation structures are more likely to be net rather
than linear. Therefore [51], the proportion of effective flocculation is greater.
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3. Molecular Dynamics Simulation
3.1. Model Construction

The CSH nanocone substrates were made of an ideal CSH model, namely, a tobermorite
unit cell with a size of 22.32 Å × 22.16 Å × 22.77 Å. First, the unit cell was enlarged 5 times
along the z-direction, and part of the substrate was cleaved from the plane (0 0 1), leaving
the C-S-H base located in the lower half (Figure 16). Then, the constructed AWAs were
placed 5 Å above the C-S-H substrate surface to ensure that organic molecules could be
spontaneously adsorbed on the C-S-H substrate under natural conditions.
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3.2. Details

In this work, we used the ClayFF force field and CVFF force field [52] to simulate the
interaction between C-S-H and the AWAs. Its accuracy has been proven for various cement
hydrates and their interfaces.

LAMMPS (LAMMPS v1.2. https://github.com/lammps/lammps Release Stable
release 2 August 2023, accessed on 14 March 2024), a large-scale molecular simulation
software package, can simulate the molecular dynamics of organic–inorganic systems well.
The whole simulation was run at a temperature of 300 K, a pressure of 1 atmosphere, and a
time step of 1 fs. The whole system was under the NVT ensemble for 4 ns until the system
reached equilibrium. The trajectory of atoms for the whole simulation was registered every
1 ps for data analysis [53].

3.3. Local Structure Analysis

The adsorption interactions between four AWAs and the major cement hydration
product C-S-H were studied using molecular dynamics simulation methods, and the effects
of additive functional groups on adsorption interactions were explained through simulation.
First, the radial distribution function (RDF) curves between the atoms/ions of different
molecular systems and the C-S-H interface were calculated. As shown in Figure 17a [54],
there are obvious characteristic peaks within 2.45 Å between the CMS molecules and the
C-S-H interface; these peaks are attributed to the interactions between the oxygen atoms
in the organic molecules and the hydrogen atoms in the hydroxyl groups on the C-S-H
surface. The peak value indicates that hydrogen bonds can be formed between them. The
characteristic peak at 4 Å indicates that there are indirect interactions between them. In
addition, the calcium ions in the C-S-H substrate can also form ionic interactions with the
oxygen atoms in the molecules. However, compared with the results of previous studies,
the position of this peak was slightly more biased toward the right side of the coordinate
axis. This shows that the ionic interactions do not occur within the process range. The local
structure is displayed in Figure 17b.
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For the HPMC molecules, the peak corresponding to hydrogen bonding occurred at
2 Å, indicating that the hydrogen bonding interactions between the HPMC molecules and
the C-S-H substrate were more pronounced. For the mutual interaction between calcium
cations, the RDF curves in Figure 18a show that the RDF peak value of Ca-O is located at
approximately 4.8 Å, which far exceeds the range of Ca-O ionic interactions [55]. There are
almost no short-range interactions between them. Therefore, the main interaction between
the HPMC molecules and the C-S-H substrate is dominated by hydrogen bonding, and the
interaction diagram is shown in Figure 18b.
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Regarding the interaction between PAC molecules and the C-S-H substrate, as shown
in Figure 19a, similar to those between HPMC molecules and the C-S-H substrate, the
mutual interaction between PAC molecules and the C-S-H substrate is also dominated by
hydrogen bonding [56]. The ionic bonding range of Ca-O also far exceeded its theoretical
range, indicating that there are similar indirect interactions between them. A schematic
diagram of the intermolecular interactions is shown in Figure 19b.
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Finally, as shown in Figure 20, regarding the interaction between the PAM molecule
and the C-S-H substrate, first, the oxygen atom in the PAM molecule can effectively form
a Ca-O ionic interaction with the calcium ion in the C-S-H substrate. In addition, for the
point interaction, there is an obvious peak within 2.4 Å, which is the hydrogen bonding
range, indicating that there could also be hydrogen bonding interactions between them,
and the shoulder peak near 4 Å shows that PAM molecules can effectively form close-range
hydrogen bonds with the hydrogen atoms in the C-S-H substrate. The interactions between
the PAM molecules and the C-S-H substrate are richer in form and stronger in intensity [57].
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term matrix incorporation. 
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vations targeting the ionic character, solubility, and nano-to-microscale interactions 
of AWA with cement promise continued advancements. According to the fluidity 
test, the average fluidity decreases by 45.1% and 37.5% with nonionic and anionic 
AWAs, respectively, which shows that anionic AWAs have a less negative impact on 
the flow properties of concrete. 
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4. Conclusions

This comparative study between nonionic and anionic AWAs revealed significant
differences in performance, attributable to the underlying interaction mechanisms with
cementitious systems.

(1) Compared with extensive surface adsorption, anionic AWAs demonstrate less deterio-
ration in terms of workability owing to the interparticle binding locations for nonionic
variants. The hydrogen-bonded networks formed by nonionic AWAs also disrupt
pore structure development and hydration kinetics. These effects persist, manifesting
in substantial late-age strength reductions.

(2) Conversely, the ionic bonding of anionic AWAs appears more temporally regulated,
with delayed debonding enabling hydration progression. The carboxyl–hydroxyl
functionalities provide an optimal balance between early flocculation and longer-term
matrix incorporation.

(3) While nonionic AWAs exhibit stability due to their viscous entangled associations,
particulate systems are prone to flow-induced disruption without stabilizing particle
charges. Compared with condensed anionic landscapes, looser polymer assemblies
also risk contaminant transport.

(4) Anionic AWAs exhibit superior performance for underwater concrete because of their
balanced rheology, cohesion, reduced defects, and ultimate strength. Further innova-
tions targeting the ionic character, solubility, and nano-to-microscale interactions of
AWA with cement promise continued advancements. According to the fluidity test,
the average fluidity decreases by 45.1% and 37.5% with nonionic and anionic AWAs,
respectively, which shows that anionic AWAs have a less negative impact on the flow
properties of concrete.
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