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Abstract: Tumushuke, a significant node of “the China–Pakistan Economic Corridor” and “the
Silk Road Economic Belt”, is strategically located in the southern region of Xinjiang. Due to the
widespread distribution of its salty soils, concrete construction safety is significantly compromised.
The construction of this project used sulfate-resistant cement, which was costly to construct. Six
groups with varying sulfate immersion concentrations were set up to perform sulfate erosion tests
and sulfate freeze–thaw coupling tests, respectively, based on the survey of the distribution of sulfate
concentration in the area. The Tumushuke area’s concrete erosion kinds were classified using a
microanalysis of the degraded concrete. The findings indicate that the concrete primarily exhibits
gypsum-type erosion when the sulfate concentration is greater than 20,000 mg/kg, ettringite–gypsum-
type erosion when the sulfate concentration is between 15,000 and 20,000 mg/kg, and ettringite-
gypsum-type erosion when the sulfate concentration is less than 15,000 mg/kg. The erosion product,
carbon–sulfur silica-calcite, also occurs under sulfate freeze–thaw coupling. In the Tumushuke area,
ettringite-type erosion damage is primarily found in low-sulfate areas in the southwest and a small
portion of the northeast. In contrast, higher-sulfate areas in the central northward area are primarily
affected by ettringite–gypsum and gypsum-type erosion damage. The results of this study can
provide a basis for adopting different anti-sulfate erosion measures for engineering construction in
different regions.

Keywords: Tumushuke area; concrete; sulfate erosion; types of erosion damage

1. Introduction

The most popular building material in engineering is concrete, but environmental
conditions can quickly reduce its strength and lifespan. Xinjiang is located in the hinterland
of the Eurasian continent, and the area of saline soil accounts for 22.01% of the total area of
saline soil in China. It is the area of China where saline soils are most widely distributed,
where there are the most varieties of salinization, and where soil salt buildup is the highest.
Saline soils, because of their high SO2−

4 content, seriously affect the longevity and safety of
concrete constructions [1,2] and seriously jeopardize the service life of concrete buildings in
the area [3–5]. The Tumushuke area is situated in southern Xinjiang. It is a significant node
in “the China–Pakistan Economic Corridor” and “the Silk Road Economic Belt”. The region
has a diverse climate and a wide distribution of saline soil. The region is very strongly
represented by the use of sulfate-resistant cement for engineering and construction, and the
high cost of engineering and construction, which will be very representative of the study
of sulfate erosion in southern Xinjiang. Therefore, the Tumushuke area was chosen as the
study area. A survey of SO2−

4 and Cl− in the area’s soils indicated that the soils were all
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sulfite saline soils. Its soils were extremely saline in terms of SO2−
4 and Cl−, and both peak

concentrations occurred in the northeastern part of Tumushuke [6], and by investigating the
distribution of sulfate throughout the region, different sulfate concentration gradients were
taken to analyze the sulfate erosion products at different concentrations and to classify the
type of sulfate erosion in different areas. Finally, different anti-erosion measures were taken
for different erosion products. This will be important in reducing the cost of construction
and guiding the construction of projects in the Tumushuke area.

The process of erosion damage caused by SO2−
4 in the soil on concrete is quite com-

plicated; the two primary types of damage are chemical and physical erosion damage [7].
When the concrete goes from a wet to a dry condition, sulfate hydrate precipitates within
the pores, causing physical erosion damage. Its crystal volume expands throughout the
crystallization process, which breaks down the structure of the concrete by producing a
tremendous pressure inside the pores known as the crystallization pressure [8]. As far as
chemical erosion is concerned, one of the important factors is external sulfate erosion. A
large body of research on sulfate attack on concrete has been conducted in the last few
decades [9–11], with some findings indicating that gypsum (CaSO4·2H2O) and ettringite
(3CaO·Al2O3·3CaSO4·32H2O) are the most often occurring products of sulfate attack [12,13].
In addition, carbon–sulfur silica-calcite-type erosion (TSA) occurs in addition to ettringite
erosion and gypsum-type erosion [14]. The parameters for TSA are more complicated
than those for ettringite and gypsum erosion; it needs temperatures below 15 ◦C and the
presence of CO2−

3 in the concrete aggregate [15]. However, TSA-type erosion damages the
concrete structure by directly dissolving the C-S-H gel and lowering the internal bonding
of the concrete rather than significantly expanding the concrete. Thus, in sulfate-rich en-
vironments, chemical erosion is thought to be the primary cause of concrete performance
decline [16].

It has been shown that the sulfate concentration in the environment affects the type
of erosion products [17]. Thus, to classify the type of erosion and investigate the types of
erosion products under various sulfate concentrations, the sulfate concentration in saline
soils in the Tumushuke area can be graded. This will create a database for the prevention
and control of concrete sulfate erosion damage in the future. The Tumushuke area is a
seasonal permafrost region, and freeze–thaw cycles and sulfate erosion both harm concrete
in this area. The predominant type of cement used in local engineering construction is anti-
sulfate cement, which has a cost per m3 of concrete that is approximately 100¥ more than
that of regular silicate concrete. Consequently, thorough the investigation and examination
of concrete materials in the context of sulfate erosion and the freeze–thaw cycle under the
coupling effect of the erosion type is particularly important for taking various anti-sulfate
erosion measures during the project’s subsequent construction to lower project costs while
also having a significant practical meaning.

2. Test Method
2.1. Design of Test Scheme

A prior study [6] found that the Tumushuke area’s saline soils were primarily sulfite
saline soils, with 29,380 mg/kg of SO2−

4 being the highest concentration in this area. The
trend of “high in the east and low in the west” and “high in the north and low in the south”
was generally evident in the horizontal distribution of soil salinity, with the northeastern
region of Tumushuke exhibiting the highest concentration. Its specific distribution is shown
in Figure 1.

The concrete structures in the Tumushuke area of Xinjiang, which is part of the
seasonal permafrost region and experiences a high degree of day-to-night temperature
differential due to its perpetual drought and low rainfall, are vulnerable to both soil erosion
from SO2−

4 and freezing–thawing damage. Consequently, six groups of sulfate leaching
solutions were made up of varying concentrations of 0 mg/kg, 5000 mg/kg, 10,000 mg/kg,
15,000 mg/kg, 20,000 mg/kg, and 30,000 mg/kg based on the study and measurement of
SO2−

4 concentration in saline soils in the Tumushuke area. Upon reaching the designated
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curing age, the specimens were split into six groups and submerged in the six concentrations
of prepared solutions, with the specimens positioned at least 20 mm below the liquid’s
surface. Every 30 days, the soaking solution was changed, and every 7 days, the soaking
solution’s pH was determined. The specimens were cured for 28 days in a standard curing
box. After being removed from the curing box, the specimens were submerged in water
for 4 days. Following this, the water on the specimens’ surface was wiped off, and the
pertinent data were measured. Using the “fast freezing method” described in GB-T50082-
2009 [18], every twenty-five freeze–thaw cycles, the test blocks were taken out, any water
that had formed on the surface was wiped away with a towel, and the test blocks’ mass,
dynamic elastic modulus, and compressive strength were measured. After that, it was
installed once again for freeze–thaw cycles to complete the sulfate freeze–thaw coupling
test and the entire immersion test of concrete. Owing to the Tumushuke area’s 138 mg/L
groundwater sulfate concentration and the high concentration of SO2−

4 in the soil, the
total concentration of the soaking solution equaled the total concentration of sulfate in
the groundwater before and after sulfate was added when using groundwater to soak the
concrete. After 28 days of curing, the constructed concrete specimens were submerged
in various sodium sulfate solution concentrations for 270 days. XRD, SEM, and IR (The
D/max-2550 X-ray diffraction (XRD) with the angular range of 5–60◦ and a minimum
scanning step size of 0.01◦ was provided by Rigaku Corporation in Tokyo Metropolis
Akishima-shi, Japan. The SU8000 cold field emission scanning electron microscope from
Hitachi, Chiyoda-ku, Tokyo, Japan, was used to measure microstructure. The VERTEX 70v
Fourier-transform infrared spectroscopy (FTIR) made by Bruker Corporation in Billerica,
MA, USA, with a wave number range of 400–4000 cm−1 and a distinguishability of 1 cm−1

was used to determine the functional group of hydrations.) The analyses of the erosion
products were then used to identify the kind of sulfate erosion that had occurred in the
Tumushuke area.
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Figure 1. SO2−
4 distribution of surface soil in the Tumushuke area [6].

To conduct the sulfate erosion test, the specimens that have reached the required
curing age are divided into six groups and submerged in the six concentrations of prepared
solutions, with the specimens submerged at least 20 mm below the liquid’s surface. The
soaking solution was changed every 30 days and removed for testing. In the Tumushuke
area, the freeze–thaw minimum temperature of −25 ◦C was selected due to the extremely
low temperature of −24.2 ◦C. To perform the sulfate freeze–thaw coupling test, we used
the “fast freezing method” described in GB-T50082-2009 [18].

2.2. Test Raw Materials

The test used P·O42.5 ordinary silicate cement, and Table 1 displays the pertinent in-
dices. The coarse aggregate was chosen from continuous graded gravel with lengths
of 5–20 mm and 20–40 mm; the corresponding indices are shown in Tables 2 and 3.
Tables 4 and 5 display the pertinent indices for the fine aggregate, which was chosen
to be coarse sand with a fineness modulus of 3.4. Anhydrous sodium sulfate served
as the erosion solution solute, while high-performance polycarboxylic acid was used as
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the water reduction agent, and regular tap water served as the test water. According to
GB/T50081-2019 “Standard for test method of mechanical and physical performance on
concrete” [19], the size of coarse aggregate was less than 40 mm, the test molding size was
100 mm × 100 mm × 100 mm, and the concrete mark was selected as C30. Table 6 displays
the quantity of concrete materials utilized.

Table 1. Fundamental chemical and physical characteristics of cement technical indicators.

Item Standard
Consistence/%

Initial Setting
Time/min

Final Setting
Time/min

Compressive Strength/MPa Break off Strength
/MPa

3 d 28 d 3 d 28 d

Technology Index 27.4 ≥45 ≤600 ≥17.0 ≥42.5 ≥3.5 ≥6.5
P·O42.5 27.4 181 227 29.4 46.5 6.0 8.9

Table 2. Coarse aggregate indicators.

Item Soil Content/% Mud Content
/%

Crush Value
/%

Apparent Density
/(kg/m3)

Quality Index ≤1.0 ≤0.5 ≤12 ≥2600
5–20 mm Gravel 0.6 0.3 9.5 2720

20–40 mm Gravel 0.6 0.4 — 2740

Table 3. Coarse aggregate particle gradation.

Nominal Particle Size/mm 80.0 63.0 50.0 40.0 31.5 25.0 20.0 16.0 10.0 5.00 2.50

Standard Particle Grading
Range Cumulative Sieve
Residue/%

/ / / 0~10 / / 80~100 / 95~100 / /

Actual Cumulative Sieve
Residue/% / / / 2 39 64 83 91 98 100 100

Table 4. Fine aggregate performance indicators.

Item Soil Content Mud Content
/%

Apparent
Density/(kg/m3)

Volume
Density/(kg/m3)

Technology Index ≤3.0 ≤1.0 ≥2500 ≥1400
Fine Aggregate 2.9 0.7 2720 1690

Table 5. Fine aggregate particle gradation.

Nominal Particle Size 10.0 mm 5.0 mm 2.50 mm 1.25 mm 630 µm 315 µm 160 µm

The Standard Requires
Cumulative Sieve
Residue/%

I 0 10~0 35~5 65~35 85~71 95~80 100~90
II 0 10~0 25~0 50~10 70~41 92~70 100~90
III 0 10~0 15~0 25~0 40~16 85~55 100~90

Actual Cumulative Sieve Residue/% 0 5 31 51 72 87 100

Table 6. Proportioning of concrete.

Supplies
Crushed Coarse Aggregate

/(kg/m3)
Fine Aggregate

/(kg/m3)
Cement
/(kg/m3)

Water
/(kg/m3)

Admixture
/(kg/m3)

Dosage 1000 840 425 180 5
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3. Analysis and Discussion of Results
3.1. Concrete Strength
3.1.1. Full Immersion Test of Concrete

Figure 2 displays the results of testing on the fully immersed concrete’s compressive
strength. With increasing erosion age, the concrete specimens’ compressive strengths first
showed an increasing tendency before declining. During the initial phase of erosion, the
hydration of the concrete specimen was enhanced by the reaction between sulfate and
cement hydration, which generated some ettringite to fill the pores of the concrete specimen.
The expanding internal stress that results did not cause the concrete specimen to crack
because it had not yet reached the concrete’s tensile strength. Rather, ettringite crystals
were packed into the interior pores of the concrete specimens, increasing their density and
strengthening the porous skeletal structure. Thus, early in the immersion process, there was
an increase in compressive strength. However, as the erosion age increased, the hydration
reaction inside the specimen continued unabatedly, producing an increasing number of
erosion products inside the concrete specimen. As a result, the internal stress within the
concrete expanded quickly until it surpassed its tensile strength, causing the specimen to
develop microcracks that caused the compressive strength to decrease once more as the
erosion age increased. Simultaneously, the specimen’s internal microcracks facilitated the
infiltration of external sulfate ions into the concrete. This cycle was repeated, eventually
leading to a macrostructure deformation of the concrete and producing macroscopic large
cracks, spalling, and other surface phenomena. This resulted in a decrease in the specimen’s
macro-mechanical deformation properties, a reduction in its toughness, an increase in its
rigidity, and a shift in the damage pattern from dilative shear failure to brittle failure.
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In comparison to immersion for 0 d, the specimens’ compressive strength decreased by
1.57%, 2.90%, 3.90%, 4.22%, 4.49%, and 7.98% at the erosion age of 270 d. That is, after about
120 d, the higher the sulfate concentration, the smaller the compressive strength values of
the eroded concrete specimens, and the higher the sulfate concentration, the longer the age
of erosion, and the faster the rate of compressive strength decrease.

3.1.2. Concrete Sulfate Freeze–Thaw Coupling Tests

As illustrated in Figure 3, specimens of concrete exhibit a slight gain in compressive
strength at 25 freezing and thawing cycles, which is followed by a drop in the specimen’s
compressive strength as the number of cycles increases. The increase in compressive



Buildings 2024, 14, 729 6 of 18

strength at 25 freeze–thaw cycles is due to the reaction of sulfate with cement hydration to
form the hydration products ettringite and gypsum, which in turn fill the pores within the
concrete and are not sufficient to cause expansion cracks in the specimens. On the other
hand, a higher densification of the specimen will lead to a higher compressive strength. At
225 cycles of freeze–thaw, the specimens’ compressive strengths are 74.19%, 71.89%, 69.34%,
68.38%, 66.09%, and 64.93% of their original strengths, in that order. It is evident that the
specimen’s compressive strength value steadily drops as the sulfate solution concentration
rises; in other words, the greater the sulfate solution concentration, the lower the specimen’s
compressive strength value during the freeze–thaw cycle test.
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3.2. Analysis of X-ray Diffraction Results
3.2.1. Full Immersion Test of Concrete

The XRD test results are shown in Figure 4. It is evident that the concrete specimens
that were cured with deionized water for 28 days contained SiO2, CaCO3, Ca(OH)2, and
small ettringite diffraction peaks. Additionally, aggregates were the primary cause of the
CaCO3 and SiO2 diffraction peaks, which were relatively high and stable. The Ca(OH)2
diffraction peaks, on the other hand, became weaker and the diffraction peaks of ettringite
and gypsum manifestly strengthened after the specimens were submerged in the sulfate
solution for 270 days. This was because of a chemical reaction that occurred between the
sulfate that entered the concrete’s interior and the cement’s hydration products. In the
process, the specimen’s Ca(OH)2 was consumed, and erosion products like ettringite and
gypsum were produced. These products showed up macroscopically as the specimen
deteriorated and was destroyed [20,21]. Soaking in the sulfate-containing (138 mg/L) local
groundwater produced ettringite diffraction peaks in concrete specimens with an SO2−

4
concentration of 0 mg/kg.

XRD reveals comparatively low-intensity diffraction peaks of gypsum and ettringite
in concrete specimens at 270 days of specimen immersion under low concentrations of
sulfate solution immersion, and the diffraction peaks of the erosion products are gradually
enhanced with the increase in sulfate concentration. This is caused by the formation of
ettringite (10–50 nm) in the concrete’s tiny pores when the concentration of external sulfate
rises. This creates a stress of approximately 8 MPa, which is greater than the substrate’s
tensile strength (3–4 MPa), and it also raises the cement’s expansion pressure [22]. The
intensity of the diffraction peaks of ettringite reduced marginally while the intensity of
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the characteristic peaks of gypsum increases dramatically when the SO2−
4 concentration is

greater than 15,000 mg/kg. The reason for this is that the specimen’s Ca(OH)2 is consumed
by the sulfate solution in the pores due to the high sulfate environment. This lowers the
pH of the pore solution inside the concrete, causes the C-S-H to break down unstably, and
dissolves a significant amount of calcium ions [23–26]. These calcium ions react with SO2−

4
in the pores to form gypsum, thus leading to a significant increase in gypsum content.
Studies by Ma X and Liu F. also demonstrated that pores with sizes ranging from 10 to
70 nm filled one after the other during immersion and that higher sulfate solutions caused
the pores to fill more quickly [27,28]. The high sulfate solution causes increased sulfur
content along the diffusion direction for the same immersion duration. Distributed cracks
also continue to grow into continuous microcracks and continue to deposit gypsum in the
cracks. As a result, concrete specimens show primarily gypsum-type erosion in situations
with high sulfate content.
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3.2.2. Concrete Sulfate Freeze–Thaw Coupling Tests

The concrete specimens were subjected to the sulfate freeze–thaw coupling test, and the
results showed that the concrete’s erosion products changed according to the same rule as in the
full immersion test with 225 freeze–thaw cycles and varying sulfate immersion concentrations.
Figure 5 illustrates how the intensity of the Ca(OH)2 diffraction peaks progressively reduced
as the immersion period increased, while the ettringite and gypsum diffraction peaks were
enhanced. This suggested that the Ca(OH)2 within the concrete specimens undergoes a chemical
reaction with the sulfate within the pores during the freeze–thaw cycle, which consumes a
significant amount of Ca(OH)2 and lowers its concentration. At the same time, erosion
products such as ettringite and gypsum are also generated [29,30]. Furthermore, because
of the concrete’s very sluggish chemical attack, the diffraction peaks for gypsum had sub-
stantially lower intensities than the diffraction peaks in the full immersion test. Because
SO2−

4 ions from the external sulfate environment enter the concrete specimen’s interior,
during freeze–thaw cycles, more slowly, the concentration of diffusible SO2−

4 ions in the
specimen is low, making it challenging to form stable gypsum crystals in this environ-
ment [31,32]. Nevertheless, gypsum forms when the concrete specimen’s diffusible SO2−

4
ion concentration rises due to the specimen’s deteriorating structure.

Unlike the sulfate full immersion test, the sulfate freeze–thaw coupling condition
exposes the concrete specimens to low temperatures for an extended period. In this
scenario, the hydration products of the cement react with the Ca2+, SO2−

4 , and CO2−
3 in

the concrete specimens’ pore fluid to produce carbon–sulfur calcium silica [33]. Figure 5
also shows a double-headed peak at 9◦ and 16◦, as well as a carbon–sulfur silica-calcite
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diffraction peak at 23.5◦. Thus, combined sulfate freeze–thaw action causes carbon–sulfur
silica-calcite erosion in concrete.
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3.3. Infrared Spectral Analysis
3.3.1. Full Immersion Test of Concrete

According to currently available research [34,35], [AlO6] occurs at approximately
850 cm−1, the S-O stretch occurs at approximately 1100 cm−1, and the O-H stretch occurs
at approximately 3600–3200 cm−1. The bands that occur at 1420, 874, and 710 cm−1 and are
attributed to the asymmetric v3 and symmetric v2 and v4 of C-O allow one to identify the
CO2−

3 . The appearance of the C-O bands at 1465 and 874 cm−1 confirms the carbonation of
the ettringite [36]. Figure 6 displays the results of infrared spectrogram tests conducted to
further identify the kind of erosion products after the concrete specimens were submerged
for 270 days at various sulfate concentrations. The appearance of C-O vibrational stretching
peaks at 423 cm−1 and 715 cm−1 can be observed, suggesting the existence of CO2−

3
group-containing compounds in the specimens. This is a result of calcium carbonate
being the primary component of aggregate. The existence of several SO2−

4 -containing
groups in the specimen was indicated by the appearance of an S-O vibrational stretching
peak at 1134 cm−1. An Al-O vibrational stretching peak at 848 cm−1 suggests that the
sample contains [AlO6] groups. The above illustrates the generation of calcite and gypsum
inside the concrete specimens following their 270-day immersion in a sulfate environment.
Moreover, the vibrational telescoping peaks of the individual chemical bonds gradually
increased as the sulfate concentration increased, indicating an increase in the content of the
individual substances.

Stretching vibration bands produced by the OH groups in portlandite at 3642 cm−1

and stretching and bending vibration bands ascribed to water at 3435 and 1634 cm−1

are reported in the literature that is currently available [37–39]. Therefore, the typical
vibrational peak of the water molecule is located at about 3450 cm−1. Concrete, on the
other hand, is a mixture of minerals such as calcium hydroxide, gypsum, ettringite, and
calcium silicate hydrate that include water molecules but do not mix with them in the same
way, causing their vibration peaks to fluctuate in location.

3.3.2. Concrete Sulfate Freeze–Thaw Coupling Tests

The infrared spectra of the concrete sulfate freeze–thaw coupling test conditions are
displayed in Figure 7. The C-O expans ion vibration peaks that can be noticed at 1426 cm−1

and 717 cm−1 show that calcium carbonate is present inside the concrete specimens. The
peak of the S-O stretching vibration, which showed the existence of gypsum inside the
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specimen, is observed at 1113 cm−1. Furthermore, the occurrence of the Al-O stretching
vibration peak at 849 cm−1 indicates the presence of calcite in the erosion product. In
contrast to the sulfate full immersion test following sulfate freeze–thaw coupling, the
specimen has a distinctive SiO6 vibrational peak at 501 cm−1. Moreover, at sulfate im-
mersion concentrations of 20,000 mg/kg and 30,000 mg/kg, the distinctive vibrational
peaks of SiO6 are also visible in 752 cm−1. Generally speaking, Si in materials containing
Si is paired with other atoms or groups in a tetra-coordinated form; currently, the only
material containing six-coordinated Si in a cement-based material system is carbon–sulfur
silica-calcite [40]. Hence, under sulfate freeze–thaw coupling conditions, carbon–sulfur
silica-calcite formation occurs, which is in line with the XRD findings.
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3.4. SEM & EDS Analysis 
3.4.1. Full Immersion Test of Concrete 
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are also initial micro-cracks existing. The concrete specimens have a significant amount of 
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3.4. SEM & EDS Analysis
3.4.1. Full Immersion Test of Concrete

Figures 8 and 9 (The energy spectrum plot on the right is obtained from the black dots
in the red box.) display the SEM and EDS of the immersed concrete. The erosion products
are primarily found in the interfacial zone and pores/cracks of the concrete specimens. This
is mostly because the matrix of concrete is comparatively more porous than that of mortar,
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which facilitates the passage of calcium ions, phases containing aluminum, and sulfate
ions. The buildup of erosion products causes the internal concrete specimen expansion
strains, microcracks, and bonding of the internal concrete material to decrease. As a result,
cracks appear, the concrete specimen’s macroscopically mechanical strength declines, and
its microstructural strength is compromised. As can be seen from Figures 8 and 9, when
the SO2−

4 concentration is 0 mg/kg, the concrete specimens are well hydrated after 28 days
of curing, and the internal micro-morphology is structurally dense, but there are also initial
micro-cracks existing. The concrete specimens have a significant amount of intact Ca(OH)2
crystals, as well as a substantial number of flocculent hydration products (C-S-H) filling
the pores and microcracks within them, according to SEM imaging.

Buildings 2024, 14, x FOR PEER REVIEW 10 of 18 
 

Hence, under sulfate freeze–thaw coupling conditions, carbon–sulfur silica-calcite for-
mation occurs, which is in line with the XRD findings. 

3600 3000 2400 1800 1200 6004000 400
Wavenumbers(cm−1)

30,000mg/kg

20,000mg/kg

15,000mg/kg

10,000mg/kg

5000mg/kg

0mg/kg

C-O S-O SiO6
Al-O

SiO6

Tr
an

sm
ita

nc
e

C-O

 
Figure 7. 225 freeze–thaw cycles infrared spectra at various sulfate concentrations. 

3.4. SEM & EDS Analysis 
3.4.1. Full Immersion Test of Concrete 

Figures 8 and 9 (The energy spectrum plot on the right is obtained from the black 
dots in the red box.) display the SEM and EDS of the immersed concrete. The erosion 
products are primarily found in the interfacial zone and pores/cracks of the concrete spec-
imens. This is mostly because the matrix of concrete is comparatively more porous than 
that of mortar, which facilitates the passage of calcium ions, phases containing aluminum, 
and sulfate ions. The buildup of erosion products causes the internal concrete specimen 
expansion strains, microcracks, and bonding of the internal concrete material to decrease. 
As a result, cracks appear, the concrete specimen’s macroscopically mechanical strength 
declines, and its microstructural strength is compromised. As can be seen from Figures 8 
and 9, when the SO  concentration is 0 mg/kg, the concrete specimens are well hydrated 
after 28 days of curing, and the internal micro-morphology is structurally dense, but there 
are also initial micro-cracks existing. The concrete specimens have a significant amount of 
intact Ca(OH)2 crystals, as well as a substantial number of flocculent hydration products 
(C-S-H) filling the pores and microcracks within them, according to SEM imaging. 

   
Figure 8. 0 mg/kg C-S-H gel in the pores of the specimen after 28 days of curing. Figure 8. 0 mg/kg C-S-H gel in the pores of the specimen after 28 days of curing.

Buildings 2024, 14, x FOR PEER REVIEW 11 of 18 
 

  
Figure 9. The Ca (OH)2 crystal in the specimen after 28 days of curing at 40 mg/kg. 

The EDS energy spectra and microscopic morphology of concrete specimens sub-
merged in various sulfate concentration solutions for 270 days are displayed in Figures 
10–15. It can be observed that the acicular ettringite in the concrete pores is fibrously con-
nected at low sulfate concentrations. Ettringite crystals gather in huge quantities in the 
pores and fissures at the boundary when the sulfate concentration rises, mostly as clusters 
or needle-like multiple interwoven roots. This ettringite in clusters has an excellent crys-
talline shape, grows from the pore’s edge to its interior, absorbs water easily, enlarges, 
and frequently forms clusters perpendicular to the fissure’s surface. This results in high 
internal tensions, which weaken the aggregate’s attachment to the concrete specimen’s 
paste and deteriorate qualities of the concrete. In the later stages of erosion, swelling ma-
terials continue to form, and the stresses induced by ettringite and gypsum are transferred 
to the cement matrix, leading to interfacial cracking [41]. Simultaneously, as the specimens 
gradually develop more fractures, more SO  ions diffuse into the interior of the con-
crete, and more erosion products are formed. 

  
Figure 10. Micro-products of 270 days soaking at a concentration of 0 mg/kg. 

  

Figure 11. Micro-products of 270 days soaking at a concentration of 5000 mg/kg. 

0 2 4 6 8 10

Ca

O

Energy [kev]

0 2 4 6 8 10

C

O

Al
Si

S     

Ca

Ca

Energy [kev]

0 2 4 6 8 10
Energy [kev]

Ca

AlSi

O

S

Figure 9. The Ca (OH)2 crystal in the specimen after 28 days of curing at 40 mg/kg.

The EDS energy spectra and microscopic morphology of concrete specimens submerged
in various sulfate concentration solutions for 270 days are displayed in Figures 10–15. It can
be observed that the acicular ettringite in the concrete pores is fibrously connected at low
sulfate concentrations. Ettringite crystals gather in huge quantities in the pores and fissures
at the boundary when the sulfate concentration rises, mostly as clusters or needle-like
multiple interwoven roots. This ettringite in clusters has an excellent crystalline shape,
grows from the pore’s edge to its interior, absorbs water easily, enlarges, and frequently
forms clusters perpendicular to the fissure’s surface. This results in high internal tensions,
which weaken the aggregate’s attachment to the concrete specimen’s paste and deteriorate
qualities of the concrete. In the later stages of erosion, swelling materials continue to form,
and the stresses induced by ettringite and gypsum are transferred to the cement matrix,
leading to interfacial cracking [41]. Simultaneously, as the specimens gradually develop
more fractures, more SO2−

4 ions diffuse into the interior of the concrete, and more erosion
products are formed.

Additionally, it is evident from Figures 10–12 that ettringite erosion products in the
form of needles occur in the pores of the concrete specimens, primarily exhibiting ettringite-
type erosion when the sulfate content falls below 15,000 mg/kg. In addition, the amount of
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ettringite increases with the concentration of exogenous sulfate. As the sulfate concentration
increases, the amount of ettringite somewhat reduces, the lamellar erosion products grow,
and the sulfate content rises inside the concrete specimen. The erosion products inside the
concrete specimens were primarily gypsum and ettringite, indicating gypsum–ettringite-
type erosion, at sulfate concentrations of 15,000–20,000 mg/kg. A significant amount
of lamellar and short columnar gypsum is created inside the specimen at sulfate ion
concentrations of 20,000–30,000 mg/kg because of the high sulfate circumstances that cause
the concrete specimen to produce a significant amount of gypsum. Large amounts of
gypsum are produced by the concrete sample, as seen in Figures 14 and 15, and the EDS
spectra of the short and medium columnar erosion products reveal that Ca, S, and O make
up the majority of their composition. This suggests that the short columnar crystals are
composed primarily of gypsum and exhibit gypsum-type erosion.
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Figure 10. Micro-products of 270 days soaking at a concentration of 0 mg/kg.
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Figure 11. Micro-products of 270 days soaking at a concentration of 5000 mg/kg.
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Figure 12. Micro-products of 270 days soaking at a concentration of 10,000 mg/kg.



Buildings 2024, 14, 729 12 of 18

Buildings 2024, 14, x FOR PEER REVIEW 12 of 18 
 

  
Figure 12. Micro-products of 270 days soaking at a concentration of 10,000 mg/kg. 

  

Figure 13. Micro-products of 270 days soaking at a concentration of 15,000 mg/kg. 

  

Figure 14. Micro-products of 270 days soaking at a concentration of 20,000 mg/kg. 

  

0 2 4 6 8 10

C

O

Al
Si

S

Ca

Energy [kev]

0 2 4 6 8 10
Energy [kev]

Ca

S
Si

Al

O

C

0 2 4 6 8 10
Energy [kev]

O Ca

S

0 2 4 6 8 10

O

S

Ca

Energy [kev]

Figure 13. Micro-products of 270 days soaking at a concentration of 15,000 mg/kg.
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Figure 15. Micro-products of 270 days soaking at a concentration of 30,000 mg/kg.

As illustrated in Figure 16, many petal-like crystals are also discovered in micro-
morphological studies at a concentration of 30,000 mg/kg on the concrete specimen’s
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edge. Based on energy spectrum research, the composition of these petal-like crystals is
primarily Na, S, and O, suggesting that they are crystals of sodium sulfate. This suggests
that, particularly at high concentrations of sulfate solution, the process of sulfate assault
is also followed by the crystallization of sodium sulfate, as seen by the white coating of
crystalline salt that covers the outside of the concrete test samples.
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Figure 16. Microscopic analysis of boundary crystal of 30,000 mg/kg concrete specimen.

The erosion products within the concrete specimens are primarily ettringite at low
sulfate concentrations (<15,000 mg/kg), according to a combination of XRD, infrared spec-
troscopy, and scanning electron microscopy (SEM). Inside the concrete specimen, gypsum
starts to form as the sulfate content progressively rises. The primary erosion products
found within the specimen are gypsum and ettringite. Short columnar and lamellar gyp-
sum products are visible inside the concrete specimens once the concentration reaches
20,000 mg/kg, and the XRD gypsum diffraction peak intensity is noticeably increased.

3.4.2. Concrete Sulfate Freeze–Thaw Coupling Tests

Concrete damage from freeze–thaw cycles primarily takes the form of surface spalling
and interior disintegration [42]. Freeze–thaw cycles in the concrete specimen cause the
water within its pores to expand and freeze, creating microcracks in the internal structure
that allow SO2−

4 from the environment to enter the interior of the concrete [43,44]. Thus,
when concrete specimens are exposed to sulfate freeze–thaw coupling, the deterioration of
the specimens is also more noticeable.

Upon 225 cycles of freezing and thawing at six different sulfate concentrations, the
concrete specimens exhibited noticeable fractures, as depicted in Figure 17, and many
needle-shaped, short columnar crystals surfaced at the crack’s periphery. The SEM reveals
that the products were calcite and gypsum. The appearance of these fissures in the concrete
specimens made it easier for environmental SO2−

4 to infiltrate the inside of the specimens.
SO2−

4 infiltrated the concrete specimens’ pores by differential pressure infiltration. This
resulted in a rise in the concentration of SO2−

4 in the concrete specimens’ pores, as well as
an increase in the number of ettringite crystals and the formation of gypsum crystals. The
large-scale growth of its products occurred mostly in the pores and boundaries of concrete,
where they coexisted with fractures. Microcracks in the concrete specimen occurred when
the expansion stress of the erosion products surpassed the tensile strength of the specimen.
The specimen’s internal cracks enlarged and widened as the coupling action went on,
damaging the concrete specimen’s structure and drastically lowering its strength.

Low temperature creates a generative setting for paired sulfate freeze–thaw conditions
of carbon–sulfur calcium silica [45]. The XRD and infrared physical phase analysis un-
equivocally demonstrates that the freeze–thaw environment inside the concrete specimens
produced carbon–sulfur silica-calcite. Yet, chalcocite, which likewise has acicular and
clustered crystal structures, and carbon–sulfur silica-calcite share a very similar crystal
structure. All that is different, though, is that the carbon–sulfur silica-calcite crystals are
shorter than the ettringite crystals. The concrete had a significant number of needle-like,
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clustered crystals, all of which were less than 5 µm, as seen in Figure 18. By using EDS
energy spectral spot scanning, the primary compositions of Ca, Si, Al, S, O, and C show
that these small crystals are carbon–sulfur silica-calcite crystals.
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Figure 17. SEM images of concrete specimens after 225 freeze–thaw cycles. (a) 0 mg/kg;
(b) 5000 mg/kg; (c) 10,000 mg/kg; (d) 15,000 mg/kg; (e) 20,000 mg/kg; (f) 30,000 mg/kg.
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Figure 18. SEM images of concrete specimens after 225 freeze–thaw cycles at 30,000 mg/kg.
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3.5. Classification of Concrete Sulfate Erosion Damage Types in Tumushuke Area

The sulfate freeze–thaw coupling test and the total immersion test were conducted using
six sets of sulfate solutions varying in concentration: 0 mg/kg, 5000 mg/kg, 10,000 mg/kg,
15,000 mg/kg, 20,000 mg/kg, and 30,000 mg/kg. It was discovered that when the sulfate
content was less than 15,000 mg/kg, the concrete specimens primarily exhibited ettringite-
type erosion. Under the full immersion test circumstances, ettringite predominated in the
erosion products. At 15,000–20,000 mg/kg, the specimens had an ettringite–gypsum type
of erosion, and at 20,000–30,000 mg/kg, gypsum predominated in the erosion products,
and the specimens displayed a gypsum-type of erosion. A small amount of ettringite and
gypsum, as well as carbon–sulfur calcium silica, was produced by the concrete specimens’
reaction with the carbonate within the concrete during the sulfate freeze–thaw coupling test
conditions. The specimens also primarily displayed carbon–sulfur silica-calcite-type ero-
sion. To categorize the several types of sulfate erosion damage that concrete buildings in the
Tumushuke area would be largely subjected to, the test results were thoroughly examined.
According to the sulfate concentration distribution map for the Tumushuke area, the soil has
a high concentration of SO2−

4 , which is very caustic to the concrete buildings in the region.
Most of the locations have sulfate concentrations of less than 15,000 mg/kg [6], meaning
that calcareous erosion is the primary kind of erosion damage to concrete. These regions
are mostly located in the Tumushuke area’s southwest and northeastern sections, with the
central–northern region, which is distinguished by ettringite–gypsum- and gypsum-type
erosion, possessing higher sulfate concentrations. The distribution of its types is shown in
Figure 19.
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4. Conclusions and Perspectives

The study area was the Tumushuke area in southern Xinjiang, and the full sulfate im-
mersion and sulfate freeze–thaw coupling test procedures were applied. The microstructure
of concrete was investigated using SEM, XRD, infrared analysis, and other microanalytical
instruments, and the physical phase composition of erosion products in various erosion
conditions was ascertained to categorize the type of erosion damage. The findings of the
study may have significant engineering applications in lowering project costs and using
various anti-sulfate erosion strategies during the development of future projects.

(1) Concrete displays three different types of erosion: ettringite-type erosion occurs when
the sulfate concentration is less than 15,000 mg/kg, ettringite–gypsum erosion occurs
between 15,000 and 20,000 mg/kg, and gypsum erosion predominates when the
concentration exceeds 20,000 mg/kg. Carbon–sulfur silica-calcite erosion will also
occur in concrete under sulfate freeze–thaw coupling.

(2) The Tumushuke area’s southern and northeastern regions have low sulfate concentra-
tions and primarily exhibit ettringite–gypsum-type erosion damage. In contrast, the
center north has high sulfate concentrations and primarily exhibits gypsum-type and
ettringite–gypsum-type erosion damage.
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The paper only investigated the type of concrete erosion at a maximum sulfate con-
centration of 30,000 mg/kg, and only six gradients of the erosion solution were selected.
Subsequently, more concentration gradients could be set, potentially leading to a more
comprehensive delineation of erosion types in different areas throughout the Tumushuke
area. In the future, different anti-erosion measures can be adopted for different areas
according to the division of concrete sulfate erosion types in the Tumushuke area to reduce
the cost of project construction. At the same time, it lays the foundation for the subsequent
adoption of different anti-erosion measures in different engineering and construction areas.
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