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Abstract: The extraction and utilization of non-renewable mineral resources impose significant
transportation and economic challenges in infrastructure construction. At the same time, recycling fly
ash derived from the bottom ash in municipal solid waste incineration residues (MSWIRs) presents a
waste management hurdle. This study investigates the viscoelastic characteristics and mechanical
performances at different scales of asphalt mastic and mixture with fly ash from MSWIRs. Firstly,
Fourier transform infrared spectrometry (FTIR) was adopted to distinguish the physically blended
states of asphalt and fillers. Then, a frequency test using a dynamic shear rheometer (DSR) was
conducted to construct viscoelastic master curves, focusing on asphalt mastic. A dynamic modulus
test characterized the viscoelastic behavior at the asphalt mixture scale. Furthermore, the mechanical
performances of asphalt mixtures were evaluated, including the resilient modulus through indirect
tension tests, moisture susceptibility via the immersed Marshall stability test, and anti-cracking
properties with a low-temperature bending test. The FA incorporation in the mixture decreased
the immersion residual stability by 7.40%, and increased the flexural tensile strength by 5.03%
and the stiffness modulus by 78.67%. The mechanical evaluation of the mixture with FA could
meet the application requirements of the asphalt layer. Finally, statistical analyses were conducted
to present strong correlations (coefficient R2 over 0.70) among the mechanical results. Fly ash in
asphalt mixtures revealed potential as a sustainable approach for waste reuse in road construction.
Additionally, substituting mineral fillers at the mastic scale significantly influences the viscoelastic
characteristics and mechanical performances of asphalt materials at the mixture scale.

Keywords: asphalt pavements; green technologies; waste recycling; fly ash; MSWIRs; viscoelastic
characteristics; mechanical performances

1. Introduction

Fly ash can be mainly classified as coal-burnt fly ash and fly ash derived from the
bottom ash in municipal solid waste incineration residues (MSWIRs) [1,2]. Fly ash derived
from MSWIRs’ bottom ash is a by-product of waste burning in thermal power plants [1].
They are produced through the rapid expansion of some gases (e.g., nitrogen, hydrogen, and
carbon dioxide) in the molten clay mineral droplets during the waste-burning process [2].
MSWIRs have an extremely low density (<0.8 g/cm3), hollow structure, and spherical
particles, making them difficult for landfill disposal [3].

Fly ash has been widely used in civil engineering for pavements, buildings, and
constructions. It is reported to enhance pozzolanic reactions in concrete [4–6]. Road
construction is the main application area of fly ash [7,8]. The rational use of fly ash in
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asphalt can also solve the problems of environmental pollution [9,10] and land resource
occupation [11,12]. Therefore, a systematic evaluation of the properties of asphalt materials
containing fly ash is necessary to facilitate practical applications.

Moreover, the traffic channelization on the expressway is increasing [13]. These
changes in traffic conditions brought critical conditions to asphalt pavements, resulting
in early rutting and damage [14,15]. Therefore, the pavement decay level accelerates, and
the service life is shortened, causing economic losses and constituting safety hazards for
traffic [16,17].

Due to the wide range of factors affecting the thermal and mechanical properties of
asphalt, damage prevention in flexible pavement has emerged as a global challenge [18,19].
In the literature, several studies designed and developed high- and low-temperature
performance tests [20–22] to simulate actual conditions [23]. The dynamic shear rheological
(DSR) method considers the effects of temperature and loading time by measuring the
strain, stress, load frequency, temperature, and time during the test [24]. The rheological
properties of asphalt [24] are evaluated using phase angle, modulus, rutting factor, fatigue
factor, loss factor (damping), viscosity, and compliance.

In the realm of asphalt mixture testing, standard procedures such as the rutting
test are commonly employed to evaluate the high-temperature performance of asphalt
mixtures. However, field applications have revealed that even when the results of rutting
tests conform to specified standards, the guarantee of high-temperature stability in the
pavement during service remains uncertain [25]. According to an NCHRP report, the flow
number (Fn) describes the boundary points of the second and third stages in the permanent
strain curve of the asphalt mixture [26,27]. The greater the Fn, the smaller the creep damage
probability, and the results of the flow number test correlate with the rut depth [28,29].

Simple performance metrics cannot describe asphalt behavior [30], and the viscoelas-
tic characteristics and phase transformation of asphalt have to be evaluated in the full
temperature range [31] by varying its composition [32]. The incorporation of fly ash as min-
eral powder modifies the properties at the scale of the asphalt mastic and mixture [33,34].
The mechanical properties of concrete will also change accordingly [35,36]. In previous
studies, fly ash has been applied to cement concrete, and its hydration reaction has been
tested [37,38]. Yinfei et al. investigated the application of fly ash as a filler in asphalt
mixtures and focused on the service performance [3]. The stiffness of cement concrete and
the flexibility of asphalt concrete result in different mechanical properties, and the role
of fly ash in them must be assessed according to the constitutive differences between the
various materials [39].

Therefore, this study investigates the feasibility of reusing fly ash from MSWIRs in
asphalt pavements by investigating its viscoelastic [40] characteristics and mechanical
performances at different scales of mastic and mixture. Based on an equal volume concept,
fly ash was incorporated into the mixture as a filler to replace the limestone filler, and five
kinds of asphalt mixtures were prepared. Fourier transform infrared spectrometry was
adopted to distinguish the physically blended states of asphalt and fillers. Then, a frequency
test was conducted to establish the viscoelastic master curves from the perspective of
asphalt mastic. The dynamic modulus test described the viscoelastic behavior at the scale
of the asphalt mixture. The mechanical performances of asphalt mixtures were evaluated
comprehensively, including the resilient modulus with an indirect tension test, the moisture
susceptibility with an immersed Marshall stability test, and anti-cracking properties with a
low-temperature bending test.

2. Materials and Methods
2.1. Materials
2.1.1. Aggregates and Fillers

In this study, the limestone filler (LF) and fly ash (FA) from MSWIRs were used as the
mineral powder for asphalt. LF (density equal to 2.77 g/cm3) and FA (density equal to
0.72 g/cm3) were passed at 0.075 mm sieve, according to T 0352-2000 [41]. The surface and
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particle characteristics of the two fillers were measured using scanning electron microscope
(SEM) with a magnification of 800 times (Figure 1). In addition, limestone (0–2.36 mm par-
ticle size) and diabase aggregates (2.36–13.2 mm particle size) were added to the mixtures.
The mixtures were composed of 42.6% diabase aggregates (9.5 to 13.2 mm), 29.4% diabase
aggregates (2.36 and 9.5 mm), and 17.5% limestone aggregates (0 to 2.36 mm).
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Figure 1. SEM picture with 800× magnification. (a) Limestone filler; (b) fly ash.

2.1.2. Bitumen

Table 1 lists the basic properties of PG 76-22 bitumen used in this study [42].

Table 1. Properties of PG 76-22 bitumen.

Property Unit Result Technical Requirement Standard

Penetration, 25 ◦C, 100 g/5 s 0.1 mm 68 60–80 T 0604 [42]
Softening point ◦C 49.3 ≥45 T 0606 [42]
Ductility, 5 ◦C cm >100 ≥100 T 0605 [42]

Specific gravity g/cm3 1.087 - T 0603 [42]

2.1.3. Asphalt Mastic and Mixture

The asphalt mixture SMA-13 [43] was used in this study. Table 2 lists the aggregate
gradation of SMA-13 for the asphalt mixture. The control groups were set up to evaluate
the impact of fly ash replacing mineral powder as a filler on the mixture performance
according to [44].

Table 2. Aggregate gradation of asphalt mixture.

Sieve size/mm 16.0 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075
Passing ratio/wt.% 100 90.3 63.0 26.8 17.4 15.3 13.4 11.2 10.8 9.8

Mastic #0 to Mastic #4 were prepared in this study. Based on an equal volume concept,
FA filler replaced LF in the mastics and mixtures (Table 3).

Table 3. Filler volume ratio in asphalt mastic and mixture.

Mastic Type Mixture Type LF FA

Mastic #0 Mixture #0 100% 0%
Mastic #1 Mixture #1 75% 25%
Mastic #2 Mixture #2 50% 50%
Mastic #3 Mixture #3 25% 75%



Buildings 2024, 14, 672 4 of 17

2.2. Test Methods
2.2.1. Fourier Transform Infrared (FTIR) Spectrometry

In this study, the attenuated total reflection Fourier transform infrared spectrometer
(ATR-FTIR Bruker TENSOR 27, SpectraLab Scientific Inc., Markham, ON, Canada) allowed
the investigation of molecular-level modification mechanisms in emulsified asphalt. This
was achieved by analyzing variations in the absorption spectrum, which reflect changes in
functional groups and their concentrations. The ATR-FTIR scans were conducted with a
resolution of 4 cm−1, covering a spectral range from 500 cm−1 to 3000 cm−1. This technique
was pivotal in quantitatively assessing the changes in specific functional groups, thereby
elucidating the chemical properties of the emulsified asphalt.

2.2.2. Frequency Sweep Test

The mechanical behavior of viscoelastic materials can be expressed as a function
of temperature and time domains. The frequency sweep test was performed at 40 ◦C,
60 ◦C, and 80 ◦C with 0.1–100 Hz frequency range and 1% strain to investigate the linear
viscoelastic behavior. Based on the principle of time–temperature equivalence, a reference
temperature is selected, and the phase angle or dynamic modulus curves of asphalt at other
different temperatures are translated into a smooth curve through calculation of the shift
factor (αT) from Equation (1) [3].

logαT =
C1(T − T0)

C2 + T − T0
(1)

where T is the test temperature; T0 is the reference temperature; and C1 and C2 are
fitting constants.

The reduction frequency (fr) and the actual loading frequency (f) at T are calculated
according to Equation (2) [3].

lg fr = lg f + lgαT = log f +
Ea

19.14714

(
1
T
− 1

T0

)
(2)

where Ea is the activation energy.
After applying the shift factor αT , the least squares method was used to fit the Sig-

moidal equation [27] and obtain the master curve (Equation (3)).

lg|E∗| = θ+
α − θ

1 + eβ+γ·lg fr
(3)

where E* is the measured dynamic modulus; θ is the minimum value of the dynamic
modulus; α is the maximum value of the dynamic modulus; and β and γ are regression
parameters representing the shape of the dynamic modulus master curve.

The master curves of asphalt mastics were also established by applying a double-
logistic model [27] according to Equation (4).

δ = δp − δpH
(

fr − fp
)(

1 − e
−(SRlog (

fr
fp
))

2
)
+ δLH

(
fp − fr

)(
1 − e−(SLlog (

fp
fr
))

2
)

(4)

where δ is the phase angle; H is the Heaviside step function; δp is the plateau of δ; fp is the
frequency as δp occurred; SR is the right master curve slope of δ beside plateau and SL is
the left master curve slope of δ beside plateau.

2.2.3. Dynamic Modulus Test

According to AASHTO TP 62-07 [45], the dynamic modulus test of asphalt mixture
was conducted within frequency ranges from 0.1 Hz to 25 Hz at −10 ◦C, 4.4 ◦C, 21.1 ◦C,
37.8 ◦C, and 54.4 ◦C. The testing process in Figure 2 consisted of a stress control method
with cylindrical specimens formed by a rotary compactor and cut into standard specimens
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(i.e., 150 mm high and 100 mm diameter). Three sensors were attached to the side of the
specimen at 120◦ intervals and 100 mm spacing.
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2.2.4. Resilient Modulus Test

The design method of asphalt pavements usually adopts the elastic layered system
theory, based on the assumption of material isotropy [43]. However, the actual stress state
of asphalt pavements exhibited a difference between the upper (compression stress zone)
and bottom layer (tension stress zone) [46]. According to ASTM D7369-20 [47], the resilient
modulus of the asphalt mixture was measured with the indirect tension module test. The
test was performed at 5 ◦C, 25 ◦C, and 40 ◦C at 1 Hz frequency intervals with a Universal
Testing Machine (UTM) (Figure 3). Two linear variable differential transducers (LVDTs)
were used to monitor the horizontal deformation caused by vertical semi-sinusoidal loads
on the diametric plane of samples. The resilient modulus Mr was calculated according to
Equation (5).

Mr =
F(v + 0.2734)

H × L
(5)

where F is the maximum repeated vertical force, H is the recoverable deformation, L is the
specimen thickness, and v is the Poisson ratio (i.e., 0.35 for asphalt).

2.2.5. Immersed Marshall Stability Test

Moisture damage is one of the major diseases of asphalt pavements [48]. It occurs when
asphalt pavement is subjected to water or freeze–thaw cycles. Due to the dynamic load
of vehicles, the moisture entering the pavement gaps generates dynamic water pressure
or vacuum negative pressure suction [49]. At the interface of the aggregate, the adhesion
of the asphalt is reduced, and the bonding force is gradually lost [29]. The process results
in potholes, pushing, blistering, and deformation of the asphalt layer. The immersed
Marshall stability test allowed calculating the immersion residual stability index (MS0) of
the specimens according to T 0709-2011 [42] (Equation (6)):

MS0 =
MS1

MS
× 100 (6)

where MS1 is the stability after 48 h of water immersion at 60 ◦C, and MS is the
initial stability.

2.2.6. Bending Test

Pavement crack is a common disease that leads to a significant reduction in mixture
strength and affects the performance of the pavement until its destruction [50]. The bending
test is generally used to evaluate the low-temperature crack resistance of asphalt mixture.
The bending test at −10 ◦C according to T 0715-2011 [42] allowed the calculation of the
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tensile properties and cracking performance at low temperatures. Prismatic specimens
were subjected to a three-point bending test at a 50 mm/min loading rate until failure
(Figure 4).

Buildings 2024, 14, x FOR PEER REVIEW 6 of 18 
 

 

Figure 3. Resilient modulus test. (a) Testing device; (b) data acquisition interface. 

2.2.5. Immersed Marshall Stability Test 

Moisture damage is one of the major diseases of asphalt pavements [48]. It occurs 

when asphalt pavement is subjected to water or freeze–thaw cycles. Due to the dynamic 

load of vehicles, the moisture entering the pavement gaps generates dynamic water 

pressure or vacuum negative pressure suction [49]. At the interface of the aggregate, the 

adhesion of the asphalt is reduced, and the bonding force is gradually lost [29]. The 

process results in potholes, pushing, blistering, and deformation of the asphalt layer. The 

immersed Marshall stability test allowed calculating the immersion residual stability 

index (MS0) of the specimens according to T 0709-2011 [42] (Equation (6)): 

MS� =
MS�

MS
× 100 (6)

where MS1 is the stability after 48 h of water immersion at 60 °C, and MS is the initial 

stability. 

2.2.6. Bending Test 

Pavement crack is a common disease that leads to a significant reduction in mixture 

strength and affects the performance of the pavement until its destruction [50]. The 

bending test is generally used to evaluate the low-temperature crack resistance of asphalt 

mixture. The bending test at −10 °C according to T 0715-2011 [42] allowed the calculation 

of the tensile properties and cracking performance at low temperatures. Prismatic 

specimens were subjected to a three-point bending test at a 50 mm/min loading rate until 

failure (Figure 4). 

Figure 3. Resilient modulus test. (a) Testing device; (b) data acquisition interface.

Buildings 2024, 14, x FOR PEER REVIEW 7 of 18 
 

 

Figure 4. Bending test. (a) Before failure; (b) after failure. 

The bending strength (RB), maximum bending strain (B), and the bending stiffness 

modulus (SB) were calculated according to Equations (7) to (9), respectively. 

RB =
3���

2�ℎ�
 (7)

ɛB =
6ℎ�

��
 (8)

SB =
��

ɛ�

 (9)

where L, h, and b are the support span, depth, and width of the specimen, respectively, 

PB is the maximum load on the deflection curve, and d is the maximum deflection. 

2.3. Statistical Analysis 

In this study, statistical analysis was conducted with the Pearson correlation test. At 

a significance level of 5%, Equation (10) gave the correlation coefficient (R2): 

�� =
∑ (�� − ��)�

��� × (�� − ��)

�∑ (�� − ��)��
��� × �∑ (�� − ��)��

���

 
(10)

where n is the number of samples, Xi and Yi are the values of the two variables under 

investigation, respectively, and ��  and ��  are the average values of the two variables, 

respectively. 

3. Results and Discussions 

3.1. FTIR Spectrum 

Figure 5 shows the FTIR spectra of limestone and fly ash fillers with wavenumbers 

between 400 and 4000 cm−1. 

Figure 4. Bending test. (a) Before failure; (b) after failure.

The bending strength (RB), maximum bending strain (εB), and the bending stiffness
modulus (SB) were calculated according to Equations (7) to (9), respectively.

RB =
3LPB

2bh2 (7)
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εB =
6hd
L2 (8)

SB =
RB
εB

(9)

where L, h, and b are the support span, depth, and width of the specimen, respectively, PB
is the maximum load on the deflection curve, and d is the maximum deflection.

2.3. Statistical Analysis

In this study, statistical analysis was conducted with the Pearson correlation test. At a
significance level of 5%, Equation (10) gave the correlation coefficient (R2):

R2 =
∑n

i=1
(
Xi − X

)
×
(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2 ×
√

∑n
i=1
(
Yi − Y

)2
(10)

where n is the number of samples, Xi and Yi are the values of the two variables under inves-
tigation, respectively, and X and Y are the average values of the two variables, respectively.

3. Results and Discussions
3.1. FTIR Spectrum

Figure 5 shows the FTIR spectra of limestone and fly ash fillers with wavenumbers
between 400 and 4000 cm−1.
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Figure 5. FTIR spectra of limestone and fly ash.

LF had strong sharp absorption peaks near 700 cm−1 and 850 cm−1 and a strong
smooth absorption peak near 1450 cm−1 and 1800 cm−1. Moreover, there was a weak
sharp absorption peak near 2490 cm−1, a weak small peak continuously distributed near
2830–2970 cm−1, and a weak smooth absorption peak near 3400 cm−1. On the other hand,
fly ash had weak, rounded absorption peaks with smaller openings near 830 cm−1 and
1640 cm−1. Additionally, there was a weak, rounded absorption peak with a large opening
near 1120 cm−1 and 3410 cm−1.

The FTIR spectra of asphalt without filler, mastic #0 with LF, and mastic #4 with FA
are shown in Figure 6.

Asphalt mastic #0 and mastic #4 had very similar absorption peaks near wave numbers
1380 cm−1, 1460 cm−1, 2850 cm−1, and 2920 cm−1. Mastic #0 (Figure 6a) had new absorp-
tion peaks near wave numbers 700 cm−1 and 850 cm−1, showing the specific absorption
characteristics of LF. The FTIR spectrum of mastic #4 (Figure 6b) had no new absorption
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peak in the range of measurement and confirmed the specific absorption characteristic
of FA.
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Mastics with LF and FA had the characteristic absorption peaks of asphalt and mineral
powders. During the mixing process, FA, LF, and bitumen were blended without chemical
reactions, indicating that mineral powder and bitumen are compatible.

3.2. Master Curve of Asphalt Mastics

Figure 7a,b show the establishment process of the master curves of the complex shear
modulus (G*) and the phase angle (δ) of mastic #0.
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Correspondingly, Tables 4 and 5 list the fitting parameters of the master curves of G*
and δ for mastics, respectively. Figure 8 shows the fitting results of the master curves for
various asphalt mastics.

Table 4. Fitting parameters of master curves of G*—asphalt mastics.

Asphalt Mastic FA Content [%] α [kPa] β [kPa] γ [-] θ [-] Ea [J·mol−1] R2 [-]

Mastic #0 0% 11.690 −0.0409 −0.2644 −4.2830 137,720 0.9986
Mastic #1 25% 11.018 0.0577 −0.2602 −4.2881 137,134 0.9986
Mastic #2 50% 10.934 −0.0071 −0.2430 −4.3313 136,914 0.9987
Mastic #3 75% 10.409 −0.0071 −0.2403 −4.8496 136,215 0.9986
Mastic #4 100% 10.318 −0.0056 −0.2146 −5.6574 135,668 0.9987
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Table 5. Fitting parameters of master curves of δ—asphalt mastics.

Asphalt Mastic FA Content [%] δP [◦] lgfP [Hz] SL [-] SR [-] R2 [-]

Mastic #0 0% 87.547 −1.7494 0.0861 −34.514 0.978
Mastic #1 25% 86.898 −1.5687 0.0927 −34.897 0.977
Mastic #2 50% 85.560 −1.5430 0.0933 −35.917 0.969
Mastic #3 75% 84.880 −1.0076 0.1205 −39.221 0.967
Mastic #4 100% 83.862 −0.9510 0.1197 −39.738 0.987
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The complex shear modulus increased with the frequency; the phase angles performed
a plateau zone at low-frequency zones and then decreased slightly. Asphalt mastics
exhibited different rheological behaviors with varying the filler and frequency range.
The ability of the asphalt mixture to resist deformation was reduced when FA replaced
LF. Reducing δ at high temperatures was beneficial because it meant that FA improved
the elastic behavior of mastics. However, the reduction in δ at low temperatures was
unfavorable because FA also reduced the viscous behavior of mastics and increased the
occurrence of low-temperature cracks.

3.3. Master Curve of Asphalt Mixtures

Figure 9a and 9b show G* and δ for mixture #0 with varying temperatures,
respectively.
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The dynamic modulus of mixture #0 decreased with a frequency reduction or a
temperature increase. Under a long-term load or high-temperature conditions, the internal
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friction between the aggregate skeletons weakened and the material showed viscous
characteristics [51]. As the load frequency decreased or temperature increased, the dynamic
modulus of the asphalt mixture decreased, the asphalt viscosity increased, and the phase
angle increased. At test temperatures of −10 ◦C and 4.4 ◦C, the trend in δ change for the
mixtures aligned with the expected pattern. However, an anomaly was observed at 21.1 ◦C,
where δ decreased with an increasing loading frequency, contrary to expectations. Similarly,
at temperatures of 37.8 ◦C and 54.4 ◦C, δ displayed trends that defied the anticipated
behavior (Figure 9). This deviation can be attributed to the components of the asphalt
mixtures (Figure 10).
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Figure 10. Scan photo of asphalt mixture.

Asphalt, as a temperature-sensitive viscoelastic material, will transform into a fluid at
high temperatures and reduce its ability to resist deformation. Therefore, the composite
viscoelastic properties of the asphalt mixture will undergo corresponding transformations.
At low temperatures and high frequencies, the asphalt mortar affects the viscoelastic
properties of the mixture. In contrast, at higher temperatures and lower frequencies, the
asphalt mortar softens, and the impact of the mineral skeleton on the mixture’s viscoelastic
properties becomes significant. Given that mineral aggregates behave almost as ideal elastic
materials with a nearly zero phase angle, the overall phase angle of the asphalt mixture
exhibited a declining trend with a decreasing loading frequency.

Tables 6 and 7 list the fitting parameters of the master curves of G* and δ of asphalt
mixtures, respectively.

Table 6. Fitting parameters of master curves of G*—asphalt mixtures.

Asphalt Mixture FA Content [%] lgα [kPa] β [kPa] γ [-] θ [-] Ea [J·mol−1] R2 [-]

Mixture #0 0% 11.690 −0.0409 −0.2644 −4.2830 137,720 0.9986
Mixture #1 25% 11.018 0.0577 −0.2602 −4.2881 137,134 0.9986
Mixture #2 50% 10.934 −0.0071 −0.2430 −4.3313 136,914 0.9987
Mixture #3 75% 10.409 −0.0071 −0.2403 −4.8496 136,215 0.9986
Mixture #4 100% 1.8853 −0.1852 −0.4830 2.1199 137,720.0 0.9901

Correspondingly, the master curves of G* and δ for asphalt mixtures are shown in
Figures 11a and 11b, respectively.
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Table 7. Fitting parameters of master curves of δ—asphalt mixtures.

Asphalt Mixture FA Content [%] δP [◦] lgfP [Hz] SL [-] SR [-] R2 [-]

Mixture #0 0% 34.4776 0.4265 12.6456 −14.7866 0.907
Mixture #1 25% 33.4462 0.4208 11.1975 −12.2452 0.892
Mixture #2 50% 32.6620 0.4087 9.7683 −9.4306 0.892
Mixture #3 75% 30.7931 0.3952 9.4315 −8.8752 0.892
Mixture #4 100% 29.5642 0.3504 8.4593 −7.2625 0.894
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Figure 11. Master curves of asphalt mixtures. (a) Complex shear modulus; (b) phase angle.

At each temperature and frequency, the G* and δ of the SMA-13 with FA were smaller
than those of mixture #0. Therefore, the effects of fly ash on the viscoelastic characteristics
of asphalt materials presented a high consistency at the mastics scale and the mixture scale.

3.4. Resilient Modulus

The resilient modulus of asphalt mixtures revealed the effect of FA on the mechanical
properties (Figure 12).
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As the test temperature increased from 5 ◦C to 40 ◦C, the Mr of mixture #0 decreased
from 12,651 MPa to 1442 MPa because the test temperature impacted the asphalt’s viscoelas-
tic properties. In addition, mixture #0 had a higher resilient modulus than mixtures with FA.
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For example, the resilient modulus of the asphalt mixture at 25 ◦C reduced from 3374 MPa
(Mixture #0) to 3196 MPa (Mixture #1), 3014 MPa (Mixture #2), 2854 MPa (Mixture #3), and
2730 MPa (Mixture #4). The LF exhibited strong interfacial bonding with asphalt, and FA
resulted in the stripping of asphalt. Therefore, the increasing FA content would generate
deterioration in the interfacial bonding strength and a reduction in the resilient modulus of
the asphalt mixture.

3.5. Moisture Stability

Figure 13a shows the Marshall stability and flow value of asphalt mixtures; Figure 13b
plots the Marshall modulus and immersion residual stability.
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Figure 13. Marshall stability test: (a) Marshall modulus and flow values, (b) Immersion
residual stability.

Whatever the bathing period, the addition of FA caused a decrease in Marshall
stability and an increase in flow value (Figure 13a). Therefore, the Marshall modulus
and immersion residual stability were reduced (Figure 13b), with an immersion residual
stability decrease of 1.3% (Mixture #1), 2.3% (Mixture #2), 5.4% (Mixture #3), and 6.8%
(Mixture #4), respectively.

3.6. Low-Temperature Performance

The bending test results are shown in Figure 14.
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Figure 14. Bending test results at low temperature.
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When FA completely replaced LF, the failure strain was reduced from 5051 µε to
3633 µε, and the bending failure stiffness modulus was increased from 1550 MPa to
1805 MPa. All the mixtures complied [42] in terms of the minimum εB (i.e., 2500 µε).

4. Statistical Analyses

In this study, SPSS 2022 software was applied to perform a Pearson correlation test
on viscoelastic parameters (i.e., αT , γ, δp, lgfp, SL, and SR in Figure 15a to Figure 15f,
respectively) at asphalt mastic and mixture scales.

According to Figure 15, the viscoelastic parameters on the master curve of asphalt
mastics were consistent with the results of the master curve of the asphalt mixture, present-
ing a strong correlation value (R2 no less than 0.70). Moreover, the performance indices
correlations confirmed the effect of FA on asphalt. Therefore, substituting mineral fillers
significantly influences the viscoelastic characteristics and mechanical performances of
asphalt materials at the mixture scale.
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Figure 15. Correlation analysis of viscoelastic characteristics between asphalt mastics and asphalt 

mixtures: (a) α value, (b) γ value, (c) δP value, (d) lgfP value, (e) SL value, and (f) SR value. 
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5. Conclusions

This study evaluated the feasibility of reusing fly ash from MSWIRs in asphalt pave-
ments by investigating its viscoelastic characteristics and mechanical performances at
different scales of mastic and mixture. Based on the findings, this research draws the
following main conclusions:

1. Fly ash from MSWIRs and bitumen are physically blended without obvious chemical
reactions during the modification process, indicating that fly ash exhibits compatibility
with bitumen as a mineral powder;

2. The replacement of mineral powder by fly ash reduces the high- and low-temperature
properties of the asphalt mixture. The activation energy of asphalt mixture re-
quired for deformation reduced from 208,069 J·mol−1 (Mixture #0) to 137,720 J·mol−1

(Mixture #4);
3. Fly ash improves the elastic component of asphalt mortar but reduces its ability to

resist deformation and damage. The phase angle plateau value of asphalt mastics
reduced from 87.547◦ (Mastic #0) to 83.862◦ (Mastic #4);

4. The immersion residual stability decreased by 7.40%. The incorporation of fly ash will
reduce the moisture stability of the asphalt mixture;

5. Although the flexural tensile strength increased by 5.03%, the failure strain decreased
by 41.15% and the stiffness modulus increased by 78.67%. The moisture stability and
low-temperature performance of the mixture with FA can still meet the specification
requirements of the asphalt layer;

6. There were strong correlations (R2 over 0.70) between the viscoelastic parameters
of asphalt mastics and mixtures. Substituting mineral fillers at the mastic scale
significantly influences the viscoelastic characteristics and mechanical performances
of asphalt materials at the mixture scale.

It is advisable for subsequent studies to engage in comprehensive long-term perfor-
mance evaluations of the on-site test sections. Additionally, assessing the environmental
impacts through detailed Life Cycle Assessment (LCA) methodologies will be crucial in
understanding the broader ecological consequences.
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