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Abstract: Unconfined compressive strength (UCS) is an important parameter of rock and soil me-
chanical behavior in foundation engineering design and construction. In this study, salinized frozen
soil is selected as the research object, and soil GDS tests, ultrasonic tests, and scanning electron
microscopy (SEM) tests are conducted. Based on the classification method of the model parameters,
2 macroscopic parameters, 38 mesoscopic parameters, and 19 microscopic parameters are selected. A
machine learning model is used to predict the strength of soil considering the three-level characteristic
parameters. Four accuracy evaluation indicators are used to evaluate six machine learning models.
The results show that the radial basis function (RBF) has the best UCS predictive performance for
both the training and testing stages. In terms of acceptable accuracy and stability loss, through
the analysis of the gray correlation and rough set of the three-level parameters, the total amount
and proportion of parameters are optimized so that there are 2, 16, and 16 macro, meso, and micro
parameters in a sequence, respectively. In the simulation of the aforementioned six machine learning
models with the optimized parameters, the RBF still performs optimally. In addition, after parameter
optimization, the sensitivity proportion of the third-level parameters is more reasonable. The RBF
model with optimized parameters proved to be a more effective method for predicting soil UCS. This
study improves the prediction ability of the UCS by classifying and optimizing the model parameters
and provides a useful reference for future research on salty soil strength parameters in seasonally
frozen regions.

Keywords: machine learning model; sulfuric salinized frozen soil; unconfined compressive strength;
macro–meso–micro three-level characteristic parameter

1. Introduction

Cold and severe cold regions account for approximately 75% of the total land area
in China [1,2], and over 66% of these regions are salinized [3]. The overlapping part of
these two regions is referred to as the seasonally salinized frozen soil area. These areas are
widely distributed in western, northern and northeastern China [4]. With the increasing
demand for resource development and infrastructure construction in the above-mentioned
areas, research on the physical and mechanical properties of salinized frozen soil has begun.
Additional requirements have been put forward for the bearing capacity of foundation
soil layers and the stability of embankments, foundation pits, and natural soil slopes [5],
especially UCS [6,7], such as how to obtain UCS quickly and accurately. At the same
time, the artificial freezing method is used for reinforcement in offshore and submarine
engineering construction [8]. In the event of a sudden water inrush in a formation rich
in high salinity water, liquid nitrogen freezing is used to rescue the emergency, quickly
forming a freezing curtain to stop the water [9]. In these engineering practices, UCS is
usually used as an index for engineering performance evaluation. Therefore, UCS has
extensive demand in engineering practice and is an important parameter to pay attention
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to in the design and construction of related geotechnical engineering. Studying the UCS of
saline soil under freeze–thaw cycles is of great significance to improving the stability of
related engineering construction.

The freeze–thaw cycle and salinity characteristics are important factors affecting the
UCS of salinized frozen soil. The effect of freeze–thaw cycles on the physical and mechanical
properties of saline soil has been reported in a large number of studies; that is, repeated
freeze–thaw cycles change the soil structure and cause strength damage [10–12]. Salinity
characteristics are mainly expressed in the form of salt type and content [13].

Ultrasonic testing is a test method that indirectly reflects the meso physical and
mechanical characteristics of soil through transmission signal changes. The inhomogeneity
of the medium inside the soil causes the attenuation of the acoustic energy. Thus, ultrasonic
waves can be used to resolve structural defects such as cracks and holes in the soil [14,15],
evaluate the mechanical properties and stability [16–19], and reflect the meso properties of
soil features. However, in current research, only a small number of ultrasound parameters
are usually introduced as the research scope, and there are problems such as the incomplete
utilization of parameters and a small overall number of parameters.

The mechanical properties of porous materials largely depend on their micro pore
structure [20–22]. Therefore, exploring the correlations between pore structure parame-
ters and macro behavior is of great significance for understanding the macro mechanical
properties of porous materials [23]. To date, the rapid development of micro technology
has greatly improved the micro study of soil pore characteristics. For example, through
scanning electron microscopy technology, the geometric shape and size of soil pores can
be directly observed [24–28], and quantitative statistical analysis can be carried out after
combining this technique with relevant image analysis software (Particles (Pores) and
Cracks Analysis System (PCAS) V2.3; Image-ProPlus 5.1; etc.). However, there are few
studies on the quantitative relationships between micro characteristic parameters, macro
mechanical indicators, and related data-driven models.

The traditional method used to determine the UCS of salinized frozen soil is the
uniaxial compression test. Although the results are accurate, the sample preparation period
is long, and operating the equipment is very time-consuming. Therefore, the method
is often limited in engineering practice. Machine learning can be used to analyze large
amounts of data from various sources to achieve a comprehensive prediction of the output
results [29], and compared with experimental methods, it has many advantages, such as
high accuracy, high speed, and low cost [30]. Therefore, a large number of machine learning
models have been developed and used in the field of geotechnical engineering in the past
three decades, including ANNs, SVMs, LSTM, CNNs, and GANs [31]. Table 1 lists the
applications of some machine learning models in soil UCS prediction. However, there
are few reports on UCS prediction of salinized frozen soil. At the same time, in current
research, there are problems such as only using of a single type of parameter, inputting a
small number of parameters into a model, and considering more macro factors and less
combinations of soil meso and micro parameters.

Therefore, in this study, a machine learning model was used to predict the UCS of
salinized frozen soil. Unlike previous machine learning models that only considered
macro parameters as input, in this paper, the model parameter classification method is
applied, and macro, meso, and micro factors are considered. The three-level characteristic
parameters, i.e., the macro, meso, and micro parameters, are obtained through experiments
and used as input parameters, and relevant data-driven models are constructed based on
six machine learning models to obtain a multiscale comprehensive prediction of soil UCS.
Through the analysis of the prediction accuracy, stability, and parameter sensitivity of the
optimal model, the prediction performance of the machine learning model for salinized
frozen soil UCS driven by the three-level characteristic parameters is explored to provide a
new reference for further improving the prediction ability of a model for UCS.
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Table 1. Soil UCS prediction using an artificial intelligence model.

Model Input
Parameters Soil Type Performance Reference

BP; PSO-BP 5 Treated fibrous peat soil BP: R = 0.928; MSE = 2.14
PSO-BP: R = 1.000; MSE = 0.73 Dehghanbanadaki et al. [32]

REG; RDF; BLR 5 Soil improvement such as OPT
REG: R2 = 0.91; RMSE = 0.31
RDF: R2 = 0.89; RMSE = 0.34
BLR: R2 = 0.91; RMSE = 0.31

Eyo and Abbey. [33]

ANN 8 Cohesive soils stabilized with
geopolymer R2 = 0.9808; RMSE = 0.8808 Ngo et al. [34]

KNN; XGB 4 Marl soil treated by cement
and lignosulfonate

KNN: R2 = 0.811;
RMSE = 151.408
XGB: R2 = 0.954;
RMSE = 74.878

Shafiei et al. [35]

RF 7 Geopolymer stabilized
clayey soil R2 = 0.9757; RMSE = 0.9815 Zeini et al. [36]

GB-ML 8 TCEF-soils R2 = 0.900; RMSE = 0.335 Eyo et al. [37]
GB-PSO 12 Australia-EBCA-soils R2 = 0.9655; RMSE = 0.1633 Tran. [38]
BAS-BP 5 CPF soils R = 0.9594; RMSE = 0.1727 Zhang et al. [39]

Note: R: Pearson’s correlation coefficient; R2: determination coefficient; RMSE: root mean square error; MSE:
mean square error; BP: back-propagation; REG: multiple linear regression; RDF: random decision forest; BLR:
Bayesian linear regressor; XGB: extreme gradient boosting; KNN: k-nearest neighbor; RF: random forest; TCEF
Soils: soils treated with calcium-based additives blended with eco-friendly pozzolans; GB-ML: machine learning
using the gradient boosting; Australia-EBCA-Soils: earth building sites in Canberra, Australia; GB-PSO: gradient
boosting machines-particle swarm optimizer; CPF Soils: cement stabilized soil incorporating solid waste and
propylene fiber; BAS-BP: beetle antennae search BP.

The remainder of this article is described below. Section 2, “ Experiment “, intro-
duces the test soil samples and basic characteristics, basic test methods, and test results
in detail. This creates the premise for the subsequent formulation of the basic hypothesis
and basic methods of the methodology. Section 3, “Methodology”, first proposes the ba-
sic hypothesis, the three-level characteristic interaction hypothesis and the basic method,
the new method of parameter expansion classification. Then, based on this, three-level
characteristic parameters of macro–meso–micro were constructed, and a model data set
was created to provide parameters and data sets for the subsequent methodology to be
applied to the model. Section 4, “Methodology applied to models”, describes six machine
learning models to which the methodology is specifically applied. Four statistical indices
are used for model performance evaluation, model analysis process, and hyperparameter
optimization. Section 5, “Results and discussion”, shows the performance evaluation of
six machine learning models for UCS prediction before and after parameter optimization.
The section also contains sensitivity analysis of individual parameters of optimal models,
sensitivity analysis of the third-level parameters of the model, and model comparison and
limitation analysis. Section 6, “Conclusions and summary”, gives the main conclusions.

2. Experiment

The overall experimental process is shown in Figure 1. The wave speed, SEM images,
and UCS are obtained through experimental methods, and the interaction between them
is analyzed.

2.1. Basic Physical Properties of Soil Samples and Sample Preparation

The test soil was obtained from Lanzhou, China. After soil is collected, desalination is
carried out first. The specific process refers to the desalination treatment of loess-like saline
soil provided by Hui Bing et al. [40]. After desalination, air-dry and pass through a 2 mm
sieve for later use. The soil ion content before and after desalination is shown in Table 2,
which meets the relevant test requirements [4,41]. The particle size distribution and basic
physical properties of the soil samples after desalination are shown in Figure 2 and Table 3,
respectively. The test soil sample is silty clay (ASTM D2487-17 (2020) [42]).
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Figure 2. Particle size distribution curve of the soil samples.

Table 3. Basic physical properties of the soil samples.

Physical
Index

Plastic Limit
wP/%

Liquid Limit
wL/%

Plasticity
Index IP/%

Maximum Dry
Density/g·cm−3

Optimum
Moisture
Content/%

Specific
Gravity of

Soil

BET Specific
Surface

Area/m2·g−1

Value 8.38 33.38 24.99 1.68 12.64 2.71 4.86

The control variables of the experimental design are salt content (S) and the number of
freeze–thaw cycles (N). The moisture content of the sample is the optimal moisture content
of 13%, and the dry density is the maximum dry density of 1.68 g/cm3. Add a certain
amount of anhydrous sodium sulfate to the deionized water required for the target water
content to prepare a salt solution, and stir evenly with dry soil. Seal and let stand for 24 h to
distribute water and salt evenly. Use an automatic sample preparation machine to prepare
a sample to be tested with a diameter of 39.1 mm and a height of 80.0 mm.
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The prepared soil samples were immediately wrapped in plastic wrap to prevent
moisture loss. First, we let them stand for 12 h in a foam insulation box, and then put them
into copper-like saturator molds to limit the deformation of the samples in any direction.
Finally, they were put into a programmable ultra-low temperature testing machine for
freeze–thaw cycle testing. Referring to ASTM-D560/D560M (2016) [43], after preliminary
testing, a cycle was set to last 8 h, with freezing and thawing each taking 4 h. The freezing
temperature is −20 and the melting temperature is 20 ◦C.

The salt contents of the test settings are 0%, 0.5%, 1%, and 2%, and the numbers of
freeze–thaw cycles are 0, 1, 3, 5, 10, 20, 30, and 50 times, respectively, with a total of 32 test
types. Each type contains 4 soil samples for parallel testing, totaling 128 soil samples.
Among them, a set of UCS parallel tests was completed on two mechanical test soil samples
that were in a melted state after undergoing freeze–thaw cycle tests. The other two wave
speed test soil samples were subjected to a parallel wave speed test before the start of the
freeze–thaw cycle test, which is called the wave speed test before freezing and thawing
(compressional wave and shear wave speed test before freezing and thawing). After the
target number of freezing and thawing cycles is completed, wait for it to appear in a melted
state and then conduct a parallel wave speed test, which is called the wave speed test after
freezing and thawing (compressional wave and shear wave speed test after freezing and
thawing). Finally, after the wave speed test is completed, it is freeze-dried and subjected to
two sets of (cross-section, longitudinal section) SEM parallel tests.

2.2. Test Methods and Procedures
2.2.1. UCS Test

UCS testing is performed at room temperature (approximately 20 ◦C). Refer to ASTM-
D2166, (2016) [44], with the help of the British GDS triaxial testing system. The testing
equipment mainly consists of three parts: the pressurization system, the back pressure
control system, and the measurement system. The test settings include a strain rate of
1 mm/min, a confining pressure of 0 kPa, a non-consolidated and non-drained method, and
data collection once every 3 s. All results are the arithmetic mean of two parallel samples
from each group. The vertical load range is (50 kPa–500 kPa). The specific process of UCS
test is as follows:

(1) Remove the plastic wrap of the sample, polish the surface to ensure smoothness, and
then start the UCS test.

(2) After the test is completed, the stress–strain data corresponding to the .gds format is
automatically output. Subsequently, through Origin drawing, the peak stress of the
curve is selected as the UCS value of the sample.

2.2.2. Ultrasonic Testing

Ultrasonic testing is performed at room temperature. The RSM-SY5(T) non-metallic
acoustic wave detector developed by the Wuhan Institute of Geotechnical Sciences, Chinese
Academy of Sciences is used. The instrument mainly consists of pressure-bearing trans-
mitting and receiving transducers, acoustic wave detectors, and wires. The wave speed
is measured using the acoustic pulse transmission method, and the compressional and
shear wave transducer frequencies are 50 kHz and 200 kHz, respectively. The parameter
settings before and after freezing and thawing are the same, the compressional wave setting
transmit pulse width is 300, and the gain is 1000 times. The shear wave transmit pulse
width is 300 and the gain is 4000 times. All results are the arithmetic mean of two parallel
samples from each group. The specific process is as follows:

(1) Add a sample with the upper and lower bottom surfaces brushed with Vaseline as
coupling agent. Note that the lower bottom surface of the sample is close to the
receiving transducer, and the upper bottom surface is close to the pressure-bearing
transmitting transducer. After the sample loading is completed, the wave speed
test begins.
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(2) Each test item is drawn and recorded three times as waveform data by the acoustic
wave detector. After the collection is completed, .SHT and .SHD format files are
output. Subsequently, with the help of the oscilloscope software corresponding (RSM
acoustic intensity analysis software, V1.1.220310) to the detector and the initial arrival
wave method [45,46], the wave propagation time and the sample acoustic wave speed
are obtained.

2.2.3. SEM Test

SEM tests were performed at room temperature using Quanta Training-X50 series, an
instrument which mainly consists of three parts: electronic optical system, signal detection
and amplification system, and vacuum and power supply system. The test setting scan
time is 5 us and HV is 20.00 kV. The specific testing process is as follows:

(1) Freeze-dry the sample and obtain a fresh cross-section cube of about 8 mm by cutting
near the middle part of the sample along the direction perpendicular to the Z-axis as a
cross-section sample (The Z-axis is parallel to the height direction of the sample). Cut
along the direction perpendicular to the X and Y axes to obtain a fresh cross-section
cube of about 8 mm as a longitudinal cross-section sample. The sample to be tested is
then fixed on the metal stage, coated, and sent to the sample chamber.

(2) Start the test program and enter relevant test parameters. Focus at high magnification
first, and then look for a suitable area under low magnification conditions. After
selecting the test area, the position will no longer move, and 500X, 1000X, and 2000X
shooting will be performed in sequence.

Through the above SEM test, SEM photos of the same observation point and differ-
ent magnifications of the sample to be tested can be obtained. The acquisition of SEM
characteristic parameters will use PCAS software (Particles (Pores) and Cracks Analysis
System (PCAS) V2.3) [47]. It was jointly developed by Dr. Liu Chun and his team from the
School of Earth Science and Engineering of Nanjing University. It is a piece of software that
specializes in automatic identification, geometric quantification, and statistical analysis of
rock and soil particles, pores, and crack images. The specific process is shown in Figure 3.
According to relevant information [23,48,49] and preliminary tests, the relevant threshold
parameters are determined as follows: threshold: 75; element radius (pixel) 2.1; minimum
area (pixel) 50.
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2.3. Analysis of Test Results
2.3.1. The Impact of Control Factors on UCS

As shown in Figure 4, UCS shows obvious stages of characteristics change as the
number of freeze–thaw cycles increases. Taking N = 5 and 30 as the node, it is divided into
three stages. According to the changes in each stage, the first, second, and third stages are
named adjustment period, dynamic fluctuation period, and stable period.
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As the number of freeze–thaw cycles increases, the overall UCS of the soil decreases.
In the first stage, when there is no salt, UCS first decreases and then increases; when there is
salt, UCS first increases and then decreases, and the overall fluctuation range is large. As the
salt content increases, UCS decreases. In the second stage, UCS decreased significantly as a
whole, with the largest fluctuation. In the third stage, the overall UCS remained basically
unchanged, with the smallest fluctuation. The overall strength increased and decreased
in the first stage, showing that the adjustment and adaptation of the internal soil particles
of the soil caused the strength to fluctuate up and down, so it was named the adjustment
period. In the second stage, the strength was greatly reduced and the deterioration rate
was extremely fast. This corresponds to the abnormal activity or dynamic fluctuation of
the internal characteristics of the soil, causing a rapid decline in strength, so it is named
the dynamic fluctuation period. In the third stage, the strength remained stable and the
deterioration was not obvious, which corresponds to the balance and stability of the internal
characteristics of the soil, so it is named the stable period. As the salt content increases,
the soil UCS decreases overall. When the salt content is 2%, the overall UCS fluctuation
amplitude is small as the freeze–thaw cycle changes, the corresponding adjustment period
will be shortened and ends early, the dynamic fluctuation period will be early and extended,
and the stable period remains unchanged.

2.3.2. Influence of Control Factors on Wave Speed

As shown in Figure 5, the two parameters of compressional wave velocity after
freezing and thawing and shear wave velocity after freezing and thawing also show
obvious stages of characteristics change with the increase in the number of freeze–thaw
cycles. Taking N = 5 and 30 as the node, it is also divided into three stages, corresponding to
the adjustment period, the dynamic fluctuation period, and the stable period. Comparing
the compressional wave velocity of the soil before freezing and thawing, as the number
of freezing and thawing cycles increases, the overall compressional wave velocity after
freezing and thawing decreases significantly in the first stage, and the fluctuations are
strong. In the second stage, the overall trend increases and the fluctuation is the strongest.
The third stage is slightly smaller overall, with the weakest fluctuations. At the same time,
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comparing the shear wave velocity of the soil before freezing and thawing, as the number
of freeze–thaw cycles increases, the overall shear wave velocity after freezing and thawing
increases significantly in the first stage, and the fluctuation is the strongest. Although there
is a decline in the second stage, the overall trend is still increasing and the fluctuations
are strong. The third stage is slightly smaller overall, with the weakest fluctuations. It
shows that the relatively large adjustment changes of the soil particle aggregates and the
internal meso structure of the soil in the first stage are not conducive to the propagation of
compressional waves but are conducive to the propagation of shear waves. After passing
the critical point and reaching the second stage, the most active changes or dynamic
fluctuations of the meso structure are conducive to the propagation of both compressional
and shear waves. In the third stage, the changes in the meso structure tend to stagnate,
resulting in relatively stable changes in compressional and shear wave speeds.
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wave speed before freeze–thaw cycle; (b) Vp2¯compressional wave speed after freeze–thaw cycle;
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As the salt content increases, the compressional and shear wave speeds after freezing
and thawing generally decrease below the initial values. It shows that the compressional
and shear wave speeds generally decrease after the addition of salt, and the presence of
salt will weaken the propagation of wave speed in the soil.

2.3.3. The Influence of Control Factors on SEM Characteristic Parameters

The choice of magnification is very important when performing quantitative analysis
based on SEM images. Even increased magnification may result in a reduced overall
perspective on microstructural characterization. However, this article aims to eliminate as
much as possible the inaccurate identification of the shape of the soil pore system and errors
in parameter statistical analysis caused by insufficient magnification [50]. Therefore, the
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SEM image with the maximum magnification, i.e., 2000X, was selected for microstructural
parameter analysis [51,52].

PCAS analysis of SEM images obtained from SEM experiments can obtain 19 character-
istic parameters, from which the following 4 representative parameters are selected [4,50]
to explore the changes of each parameter with controlling factors. The relevant analysis is
as follows:

(1) Probability entropy

Probabilistic entropy describes the directional characteristics of pore systems.

H = −∑n
i=1 PilognPi (1)

where H is the probability entropy; Pi represents the percentage of pores within a specific
range, and the value of H is between 0 and 1.

(2) Probability distribution index

The probability distribution index describes the area distribution characteristics of the
pore system. Defined by a probability distribution function, it refers to the density of pore
area in a specific area.

F(S) = dN/(N · dS) (2)

where N is the total number of pores and dN is the number of pores within a specific dS.

(3) Fractal dimension

Fractal dimension describes the shape distribution characteristics of the pore system.
It refers to the variation pattern of shape complexity with its area.

log(C) = D f /2 · log(S) + c1 (3)

where c1 is a constant. Plot C − S on log–log coordinates; log(C)–log(S) data will exhibit a
simple near-linear form, with the slope of the approximate line being D f /2.

(4) Porosity

Porosity reflects the absolute volume proportion of pores and changes in the mi-
crostructure of soil particles.

n =
S0

S1
× 100% (4)

where n is the apparent porosity % of the soil and S0 and S1 are the areas of pores and
particles, respectively, µm2.

As shown in Figure 6, the four parameters of probability entropy, probability distri-
bution index, fractal dimension, and porosity all show obvious stages of characteristics
change with the increase in the number of freeze–thaw cycles. Taking N = 5 and30 as the
node, it can still be divided into three stages, which still correspond to the adjustment
period, the dynamic fluctuation period, and the stable period.

As shown in Figure 6a, with the increase in the number of freeze–thaw cycles, the
probability entropy does not change significantly in the first and third stages, and the
fluctuations in the second stage are strong, with an overall slight increase. It shows
that the directionality of the pore system in the first and third stages is strong, and the
directionality of the pore system in the second stage is weakened. The corresponding
directional characteristics of soil particles are strengthened, i.e., part of the surface contact
between soil particles is converted into point contact, which is not conducive to the strength
properties [53].

As shown in Figure 6b, as the number of freeze–thaw cycles increases, the probability
distribution index has no obvious change pattern in the first stage alone, the fluctuation
is the strongest in the second stage, and the fluctuation intensity weakens in the third
stage, but in the second and third stages, the overall decreasing trend of stages is similar.
It shows that in the first order, although the pore system is adjusting, the overall area
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distribution characteristics are relatively stable. The area distribution characteristics of
the pore system in the second and third stages began to continuously weaken, i.e., the
number of small-area pores decreased, and some small pores were converted into large
pores [23]. In particular, the second stage fluctuates the most, indicating that the area of the
pore system has the largest density conversion rate in a specific region, which is the most
detrimental to the strength properties. Although the third stage continued the conversion
trend of the second stage to a certain extent, the adverse effect on strength was weakened
because the conversion rate was significantly reduced.
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As shown in Figure 6c, as the number of freeze–thaw cycles increases, the overall
fractal dimension decreases significantly in the first stage. Starting from the second stage,
the fractal dimensions of the longitudinal and cross sections differentiated, although both
showed an overall fluctuation trend of first increasing and then decreasing in the second
stage, and the fluctuation amplitude was the largest. However, there is an obvious limit
of Df = 1.175. The fractal dimension of the longitudinal section always fluctuates above
the limit, and the fractal dimension of the cross section always fluctuates below the limit.
In the third stage, the differentiation trend of the fractal dimensions in the longitudinal
and cross sections is maintained, but the fluctuation range of the fractal dimensions in the
longitudinal and cross sections is the smallest. It shows that the boundary complexity of
the pore system in the first stage has a weakening trend, and the corresponding boundary
complexity of the soil particles increases as a whole. The soil is in an adjustment and
adaptation period; its strength increases and decreases, and it begins to develop in the
direction of deterioration. There are obvious differences in the boundary complexity of the
pore system on the longitudinal and cross sections in the second stage, even though the
overall fluctuation trends are similar. At the same time, the overall boundary complexity
of the pore system fluctuates the most, and the corresponding contact mode between
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soil particles also changes drastically, resulting in a continuous and substantial reduction
in strength. However, the boundary complexity of the pore system in the longitudinal
section is generally stronger than that in the cross section, or the boundary complexity of
the pore system in the longitudinal section is more sensitive to the soil fluctuation trend.
In the third stage, the boundary complexity of the longitudinal and cross-sectional pore
systems still maintains obvious differentiation, while the overall fluctuation trend is still
similar. This shows that the overall fluctuation of the boundary complexity of the pore
system has slowed down, resulting in the fluctuation of the intensity also becoming stable
simultaneously. However, the situation that the boundary complexity of the pore system in
the longitudinal section is greater than that in the cross section still exists.

As shown in Figure 6d, as the number of freeze–thaw cycles increases, the porosity has
no obvious change pattern in the first stage. Starting from the second stage, the porosity of
the longitudinal and cross sections also shows differentiation, and the overall fluctuation
trends are also different. The overall fluctuation range of the longitudinal section is small,
essentially between 18.5% and 23.5%, while the overall fluctuation range of the cross section
is larger, and the overall range is outside 18.5%–23.5%. In the third stage, the porosity
differentiation in the longitudinal and cross sections disappears, and the overall fluctuation
trend converges. The fluctuation range is the smallest, essentially between 18.5% and 23.5%.
It shows that the absolute volume proportion of pores in the first stage is unstable and the
soil microstructure changes strongly. In the second stage, there are obvious differences in
the absolute volume proportions of the pore system on the longitudinal and cross sections,
and the overall fluctuation trends are different. The overall fluctuations of the pore system
are greater in the cross section than in the longitudinal section. Specifically, the overall
absolute volume ratio of the pore system in the cross section when containing salt is
smaller than that in the longitudinal section. Salt affects the absolute volume proportion of
the pore system and changes in soil microstructure, causing strength to differ according
to salt content. The greater the salt content, the smaller the fluctuation in the absolute
volume proportion of pores, and the smaller the decrease in strength. In the third stage,
the difference in absolute volume proportion of the pore system in the longitudinal section
and cross section disappears. At the same time, the overall fluctuation trend is similar,
the fluctuations are slowing down, and the ability to maintain the current state is strong.
The changes in soil microstructure tend to stagnate, resulting in the basic formation of the
strength pattern of the soil.

This is different from the freeze–thaw cycle that actively changes the soil pore system
directly and affects the SEM characteristic parameters. Salt can only be integrated into the
soil system through crystallization and dissolution, and has an impact with the help of
freezing and thawing. Therefore, salt undergoes crystallization and dissolution under the
action of freeze–thaw cycles, which is generally not conducive to the cementation ecology
within the soil and activates the development of the pore system. Specifically, there is no
obvious pattern in the influence of probability entropy, probability distribution index, and
fractal dimension among SEM characteristic parameters. The second-stage differentiation
effect on the porosity in longitudinal and cross sections is more significant and is sensitive
to the absolute volume change of the pore system. Overall, it is not conducive to the change
of soil microstructure and weakens the fluctuation of strength.

In summary, Table 4 is used to conduct a comparative analysis of changes in soil macro-
scopic (UCS), mesoscopic (wave speed), and microscopic (SEM characteristic parameters)
parameters under the influence of control factors. It was found that the changes in the
three-level parameters can be divided into three stages, and the changes and fluctuations
in each stage have a good correspondence. That is, the subscripts 1, 2, and 3 of each stage
of the three-level parameters have a good correspondence with the subscripts 1, 2, and 3 of
the stages. This shows that the three-level characteristics of salinized soil under the action
of freeze–thaw cycles are not isolated from each other but have some connection. However,
limited by limited experimental data and complex actual changes, it is difficult to conduct
in-depth qualitative research. Faced with this difficulty, an attempt was made to propose a
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hypothesis linking the three-level characteristics of soil. By using new methods to bring
hypotheses into machine learning models, we offer a useful attempt to build data-driven
mathematical models with the help of machine learning models.

Table 4. Comparison of changes in macro (UCS), meso (wave speed), and micro (SEM characteristic
parameters) in three stages.

Stage Macro Meso Micro

Stage 1: Adjustment period I: A1; B1
* I: (A1); (C1)
* II: (A1); (B2)

** I: <A1>; <B1>
** II: <A1>; <B1>
** III: <A1>; <C1>
** IV: <A1>; <B1>

Stage 2: Dynamic
fluctuation period I: A2; B2

* I: (A2); (B2)
* II: (A2); (B1)

** I: <A2>; <B2>
** II: <A2>; <C2>

** III: <A2>; <D2>; <F2>
** IV: <A2>; <E2>; <F2>

Stage 3: Stable period I: A3; B3
* I: (A3); (B3)

* II: (A3); (B3)

** I: <A3>; <B3>
** II: <A3>; <B3>

** III: <A3>; <C3>; <D3>
** IV: <A3>; <C3>

Note: I: UCS; A1: medium fluctuation; B1: decrease first and then increase or increase first and then decrease, i.e.,
both increase and decrease; A2: maximum fluctuation; B2: overall decrease; A3: minimum amplitude fluctuation;
B3: the overall situation remains basically unchanged. * I: compressional wave velocity after freeze–thaw cycle; * II:
shear wave velocity after freeze–thaw cycle; (A1): medium amplitude fluctuation; (B1): overall increase, moderate
amplitude; (C1): overall decrease, moderate amplitude; (A2): maximum fluctuation; (B2): the overall increase is
the largest; (C2): overall decrease, with the largest amplitude; (A3): minimum amplitude fluctuation; (B3): the
overall value remains basically unchanged, with a slight decrease. ** I: probabilistic entropy; ** II: probability
distribution index; ** III: fractal dimension; ** IV: porosity; <A1>: medium fluctuation; <B1>: there is no obvious
development trend overall, and the amplitude is medium; <C1>: overall decrease, moderate amplitude; <A2>:
maximum fluctuation; <B2>: the overall increase is the largest; <C2>: overall decrease, with the largest amplitude;
<D2>: the overall value first increases and then decreases, with the largest amplitude; <E2>: the overall value first
decreases and then increases, with the largest amplitude; <F2>: there is a differentiation between the longitudinal
section and the cross section as a whole; <A3>: minimum amplitude fluctuation; <B3>: the overall situation
remains basically unchanged, with a slight decrease; <C3>: the whole remains unchanged; <D3>: there are
continuous differentiation in longitudinal and transverse sections throughout the whole.

3. Methodology

The overall methodological research is shown in Figure 7. Through the application of
experimental results, basic hypotheses, basic methods, and basic parameters are constructed
to form a database that can be used for subsequent use of machine learning models.
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3.1. Basic Hypothesis-Three-Level Characteristic Interaction Hypothesis

The three-level characteristic interaction hypothesis is shown in Figure 8. The macro
control factors (control variables in this study) affect the macro strength characteristic—
UCS changes. However, this is not a direct effect, i.e., path 1⃝, an inter-mediate path. The
middle path is divided into two parts: paths 2⃝ and 3⃝. Between them, the macro control
factors in path 2⃝ directly affect the meso properties of the soil first, such as causing crack
development and defect derivation at the meso scale (between the centimeter scale of the
macro test and the micron scale of the micro analysis), thus affecting the macro UCS of the
soil. The macro control factors in path 3⃝ directly affect the micro properties of the soil,
such as causing the soil particles on the micron scale inside the soil to become broken and
denuded and the pores to expand or shrink, thereby affecting the macro UCS of the soil.
It is worth noting that paths 2⃝ and 3⃝ are not independent, and the micro properties of
the soil directly affect the meso properties of the soil, i.e., path 4⃝. At the same time, the
meso characteristics restrict the further development of the micro characteristics to a certain
extent, i.e., path 5⃝, forming a complex dynamic equilibrium interaction system as a whole.
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3.2. Basic Methods-New Methods for Parameter Expansion Classification

The core idea of the three-level characteristic interaction hypothesis is that the three-
level characteristics of soil are interconnected, and the interactions on the third-level scale
have a certain synchronicity. Therefore, it is necessary to expand the types and quantities of
parameters and divide the levels of parameters. Based on this, a new method for expansion
classification of machine learning model parameters is proposed. Among them, expansion
refers to this method’s expansion and construction of the number and level of parameters at
the input end of the model. We enrich parameters to ensure that the information supplied
to the model at the input end contains as much and significantly different information
as possible, especially relevant scale differences. Classification refers to this method by
clearly distinguishing and positioning parameters. During the model running process, we
deliberately pay attention to the performance of parameters of different groups and give
the parameters differentiated treatment.

3.3. Macro–Meso–Micro Three-Level Characteristic Parameters
3.3.1. Macro Parameters

The experimental control variables, the content of anhydrous sodium sulfate and the
number of freeze–thaw cycles, are the macro parameters. The parameter codes are shown
in Table 5, and the number of parameters is two.
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Table 5. Macro parameter codes and definitions.

Parameter code X1 X2

Definition S N

3.3.2. Meso Parameters

The ultrasonic characteristic parameters are selected as the meso parameters, the
parameter codes are shown in Tables 6 and 7, and the number of parameters is 38.

Table 6. Ultrasonic velocity codes and definitions.

Parameter code X3 X4 X5 X6

Definition Vp2 Vs2 Vp1 Vs1

Table 7. Codes and definitions of the characteristic parameters derived from the wave velocity.

Parameter Code Definition Parameter Code Definition Parameter Code Definition

X7

∣∣∣Vp1−Vp2

∣∣∣ X19 |µ2| X31

∣∣∣∣1−(
∆Vp/Vp1

)2
∣∣∣∣

X8 |Vs1 − Vs2| X20 V2
p1 X32

∣∣∣1 − (∆Vs/Vs1)
2
∣∣∣

X9

∣∣∣∆Vp/Vp1

∣∣∣ X21 V2
s1 X33 |E2/E1|

X10 |∆Vs/Vs1| X22 |G1| X34 |G2/G1|
X11

∣∣Vp2/Vs2
∣∣ X23 |µ1| X35 |µ2/µ1|

X12
∣∣Vp2−Vs2

∣∣ X24 |E2−E1| X36 |∆E/E1|
X13

∣∣∆Vp−∆Vs
∣∣ X25 |G2−G1| X37 |∆G/G1|

X14 V2
p2 X26 |µ2−µ1| X38 |∆µ/µ1|

X15 V2
s2 X27 |1−E2/E1| X39 |E2|

X16 ∆V2
p X28 |1−G2/G1| X40 |E1|

X17 ∆V2
s X29

∣∣∣∣1−(
Vp2/Vp1

)2
∣∣∣∣

X18 |G2| X30

∣∣∣1−(Vs2/Vs1)
2
∣∣∣

Note: the characteristic parameters derived from the wave velocity are directly constructed through the param-
eter definition relational formulas on the basis of Vp1, Vp2, Vs1, and Vs2 obtained from ultrasonic tests, with
test data as source data. Vp2: compressional wave velocity after freeze–thaw (km/s); Vs2: shear wave velocity
after freeze–thaw (km/s); Vp1: compressional wave velocity before freeze–thaw (km/s); Vs1: shear wave ve-
locity before freeze–thaw (km/s); E: elastic modulus (GPa); G: shear modulus (GPa); µ: Poisson’s ratio; and

E = ρV2
s
(3V2

p −4V2
s )

(V 2
p−2V2

s

) ; G = ρV2
s ; µ =

(V 2
p−2V2

s

)
2(V2

p −V2
s )

.

The ultrasonic characteristic parameters are composed of two types of parameters:
(1) 4 ultrasonic velocities (X3, . . ., X6), as shown in Table 6, and (2) 34 wave velocity-derived
characteristic parameters (X7, . . ., X40), as shown in Table 7.

3.3.3. Micro Parameters

The SEM characteristic parameters as chosen as the micro parameters, the parameter
codes are shown in Table 8, and the number of parameters is 19.

3.4. Model Data Set

A comprehensive dataset was created through experiments, and a total of 32 UCS
values, 32 macro data values, 32 meso data values, and 192 micro data values were collected
for salinized frozen soil. The overall composition is a 192 × 60 machine learning dataset, as
shown in Table 9. Table 10 presents the statistical analysis of this dataset.
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Table 8. SEM characteristic parameter codes and definitions.

Parameter Code Definition Parameter Code Definition Parameter Code Definition

X41 Image area X48 Average form factor X55 APDI
X42 Total region area X49 Maxima length X56 PPDFD
X43 Region number X50 Average length X57 Sorting Coefficient
X44 Region percentage X51 Maxima width X58 UC
X45 Maxima region area X52 Average width X59 Curvature Coefficient
X46 Average region area X53 Probability Entropy
X47 Average perimeter X54 Fractal dimension

Note: APDI: area probability distribution index; PPDFD: pore porosity distribution fractal dimension; UC:
uniformity coefficient; and “region” specifically refers to soil pores.

Table 9. The composition and distribution of the parameters in the dataset.

Rows
Columns

Macro Parameters Meso Parameters Micro Parameters UCS

1–32 A B C1 D
33–64 A B C2 D
65–96 A B C3 D

97–128 A B C4 D
129–160 A B C5 D
161–192 A B C6 D

Note: the 192 rows of UCS in the dataset were composed of the same 32 UCS values (denoted as D) repeated
6 times. The 192 rows of macro parameters consist of six identical 32 macro data values (denoted as A). The
192 rows of meso parameters consist of six identical 32 meso data values (denoted B). The 192 lines of micro
parameters are composed of 192 micro data values (among them, C1 is 2000X, cross-section SEM characteristic
parameter value; C2 is 2000X, longitudinal section SEM characteristic parameter value; C3 is 1000X, cross-section
SEM characteristic parameter value; C4 is 1000X, longitudinal section SEM characteristic parameter value; C5 is
500X, cross section SEM characteristic parameter value; and C6 is 500X, longitudinal section SEM characteristic
parameter value).

Table 10. Basic statistical analysis of the dataset.

Variables Unite Symbol Mean Max Min St.D Sk Ku

UCS kPa UCS 131.21 201.73 94.73 30.20 0.46 −1.10
S % X1 0.87 2 0 0.73 0.43 −1.16
N 1 X2 14.87 50 0 16.45 1.08 −0.09
VS1 km/s X3 0.15 0.19 0.13 0.01 0.89 −0.05
VS2 km/s X4 0.16 0.18 0.14 0 −0.64 −0.04
VP1 km/s X5 0.2 0.25 0.18 0.01 0.92 0.31
VP2 km/s X6 0.19 0.19 0.16 0.01 −0.35 −0.27∣∣∣Vp1−Vp2

∣∣∣ km/s X7 0.01 0.06 0 0.01 0.81 0.05

|Vs1 − Vs2| km/s X8 0.01 0.04 0 0 1.08 1.8∣∣∆Vp/Vp1
∣∣ 1 X9 0.08 0.26 0 0.06 0.63 −0.33

|∆Vs/Vs1| 1 X10 0.08 0.34 0 0.07 1.5 3.38∣∣Vp2/Vs2
∣∣ 1 X11 1.19 1.37 1.04 0.08 0.24 −0.67∣∣Vp2 − Vs2
∣∣ km/s X12 0.03 0.05 0 0.01 0.04 −0.92∣∣∆Vp−∆Vs
∣∣ km/s X13 0.01 0.04 0 0.01 0.97 0.59

V2
p2 km2/s2 X14 0.03 0.05 0.02 0 −0.17 −0.29

V2
s2 km2/s2 X15 0.02 0.03 0.01 0 −0.51 −0.18

∆V2
p km2/s2 X16 0 0 0 0 2.28 5.7

∆V2
s km2/s2 X17 0 0 0 0 3.28 12.7

|G2| GPa X18 0.05 0.06 0.03 0 −0.51 −0.18
|µ2| 1 X19 1.02 4.46 0.05 1 1.77 2.82
V2

p1 km2/s2 X20 0.04 0.06 0.03 0 1.09 0.56
V2

s1 km2/s2 X21 0.02 0.03 0.01 0 1.03 0.15
|G1| GPa X22 0.04 0.07 0.03 0 1.03 0.15
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Table 10. Cont.

Variables Unite Symbol Mean Max Min St.D Sk Ku

|µ1| 1 X23 0.19 0.56 0.01 0.13 0.89 0.44
|E2−E1| GPa X24 0.43 2.09 0 0.56 1.82 2.36
|G2−G1| GPa X25 0 0.02 0 0 1 1.48
|µ2 − µ1| 1 X26 0.84 4.28 0 0.99 1.83 2.91
|1−E2/E1| 1 X27 0.84 1.22 0.02 0.3 −1.16 0.
|1−G2/G1| 1 X28 0.18 0.8 0 0.16 1.84 4.8∣∣∣∣1 − (

Vp2/Vp1

)2
∣∣∣∣ 1 X29 0.15 0.45 0 0.12 0.43 −0.72∣∣∣1−(Vs2/Vs1)

2
∣∣∣ 1 X30 0.18 0.8 0 0.16 1.84 4.8∣∣∣∣1 − (

∆Vp/Vp1

)2
∣∣∣∣ 1 X31 0.98 1 0.93 0.01 −2.02 4.29∣∣∣1 − (∆Vs/Vs1)

2
∣∣∣ 1 X32 0.98 1 0.88 0.02 −3.84 16.

|E2/E1| 1 X33 0.29 1.46 0 0.38 1.99 3.02
|G2/G1| 1 X34 1.11 1.8 0.77 0.21 0.92 1.43
|µ2/µ1| 1 X35 8.59 37.88 0.84 9.19 1.45 1.6
|∆E/E1| 1 X36 0.84 1.22 0.02 0.3 −1.16 0.7
|∆G/G1| 1 X37 0.18 0.8 0 0.16 1.84 4.8
|∆µ/µ1| 1 X38 7.73 36.88 0.03 9.38 1.44 1.51
|E2| GPa X39 0.09 0.66 0 0.14 2.7 7.16
|E1| GPa X40 0.49 2.27 0.03 0.58 1.69 1.77
Image area pixel X41 1,569,032 1,574,400 1,545,216 5522.56 −3.34 11.16
Total region area µm2 X42 348,390.76 854,526 121,255 68,664.57 3.41 24.31
Region number 1 X43 848.65 1542 159 255.59 0.06 0.07
Region percentage % X44 7.67 54.38 0.19 11.36 1.3 1.09
Max region area µm2 X45 56,331.4 295,866 9333 44,069.51 2.41 8.29
Average region area µm2 X46 453.75 1357.64 227.57 183.62 2.1 5.92
Average perimeter µm X47 98.08 146.84 78.67 11.38 1.05 1.58
Average form factor 1 X48 0.38 0.42 0.33 0.01 −0.45 0.14
Max length µm X49 498.44 1447.68 200.48 199.56 1.45 3.35
Average length µm X50 27.14 35.47 23.21 2.24 0.97 1.07
Max width µm X51 281.62 662 99.61 103.78 1.05 1.21
Average width µm X52 15.51 19.84 13.46 1.11 0.85 0.95
Probability Entropy 1 X53 0.98 0.99 0.96 0 −1.91 6.2
Fractal dimension 1 X54 1.19 1.26 1.14 0.02 0.26 −0.07
APDI 1 X55 1.98 2.28 1.7 0.11 0.23 −0.49
PPDFD 1 X56 1.97 2.54 1.43 0.2 0.17 −0.1
Sorting Coefficient 1 X57 1.39 4.69 1.05 0.35 5.67 44.18
Uniformity Coefficient 1 X58 1.75 4.54 1.09 0.38 2.36 13.56
Curvature Coefficient 1 X59 1.18 2.26 0.41 0.26 1.86 5.2

Note: St.D-standard deviation; Min-minimum; Max-maximum; Sk-skewness; Ku-kurtosis. Bold lines represent
macro parameters, italics represent micro parameters, and the rest are UCS and meso parameters.

A total of 59 characteristic parameters in the dataset are used as input variables to
predict UCS using six machine learning models. Figure 9 shows the correlation between
the considered characteristic parameters and UCS. Furthermore, to reasonably train and
evaluate the predictive performance of each model, the entire dataset was randomly divided
into two groups, namely the training set (76%) (147 × 60) and the testing set (24%) (45 × 60).
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4. Methodology Applied to the Model

In order to realize the hypothesis in Section 3.1, the following six representative mod-
els are selected from machine learning models widely used in the field of geotechnical
engineering. As a platform and tool, we use the method in Section 3.2 to perform predictive
analysis of soil UCS. Among them, the three-level characteristic interaction hypothesis was
successfully brought into the model through the new model parameter expansion classifi-
cation method, reflecting the macro–meso–micro three-level response characteristics of the
parameters. We verify the validity of the above assumptions and methods based on the
relevant characteristics displayed by the model (model accuracy and parameter sensitivity).

4.1. 6 Machine Learning Models

It is intensely important to develop a suitable machine learning model for the accurate
prediction of UCS of salinized frozen soil. In this study, six typical machine learning
methods are used.

(1) Support vector machine (SVM)

SVM is a machine learning regression method based on statistical theory that has
obvious advantages in dealing with linearly separable and linearly inseparable problems. It
has the ability to calculate high-dimensional and multi-complexity inputs and has excellent
generalizability and generally high prediction accuracy [54,55].

(2) Genetic algorithm optimized BP (GA-BP)

GA-BP is a global heuristic optimized stochastic search BP neural network based on
the concept of natural selection and genetics and performs well in solving high-dimensional,
nonlinear, and strong noise problems [56,57].

(3) Random forest (RF)

RF is a supervised regression ensemble learning method consisting of a bagging
framework and an independent decision tree and has unique advantages in data utilization
and performance evaluation mechanisms [58]. An increase in the number of decision
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trees usually does not lead to overfitting, and it is widely used in solving nonlinear and
high-dimensional data problems [59].

(4) Radial basis function (RBF)

The RBF is an artificial neural network model based on the radial basis function and
has good performance in terms of function approximation and clustering. It can deal with
relatively complex input and output relationships, and the training speed is fast. Therefore,
it is widely used in the field of geotechnical engineering [60,61].

(5) Long short-term memory (LSTM)

LSTM is a special recurrent neural network (RNN) [62] for simulating data with long-
term dependencies, efficiently maintaining and updating the internal state and preserving
long-term step information. It has the advantages of long-term dependent data modeling,
noise robustness, and parameter adaptive ability [63,64].

(6) Particle swarm optimization algorithm BP (PSO-BP)

PSO-BP is a BP optimization algorithm that uses individual local information and
global information in the group to guide a search and has the advantages of fewer adjustable
parameters and strong hyperparameter selection ability [65,66]. It can effectively address
nonlinear, nonconvex, and multimodal problems and is widely used to solve various
optimization problems [67].

4.2. Evaluation Indicators

The performance of the six models was evaluated using the following four statistical
indicators: root mean square error (RMSE), coefficient of determination (R2), Willmott’s
index (WI), and variance accounted for (VAF). The R2, WI, and VAF values of the corre-
sponding optimal model should be higher, and the RMSE value should be lower. The above
indicators are defined as follows [68–71]:

RMSE =

√
1
n ∑n

i=1 (Yi − yi)
2 (5)

WI = 1 −
[

∑n
i=1 (Yi − yi)

2

∑n
i=1

(∣∣yi − Y
∣∣+ ∣∣Yi − Y

∣∣)2

]
(6)

R2 = 1 − [∑n
i=1 (Yi − yi)]

2[
∑n

i=1
(
Yi − Y

)]2 (7)

VAF =

[
1 − var(Yi − yi)

var(Yi)

]
× 100% (8)

where n is the number of samples in the training and testing stages, Yi and yi are the actual
and predicted UCS values of the i-th sample, respectively, and Y and y are the mean values
of the actual and predicted UCS, respectively.

4.3. Model Analysis and Hyperparameters

For the 59 total parameters and the 34 parameters obtained after parameter optimiza-
tion, the UCS predictions with the six machine learning models were obtained. The optimal
model was selected through the four main model evaluation parameters and four optimal
model screening methods in turn. Then, the overall parameter sensitivity and the third-
level characteristic parameter sensitivity analyses of the optimal model were carried out,
and the prediction effect of the optimal model and the third-level response characteristics
were comprehensively evaluated. The specific process is shown in Figure 10.
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According to the relevant information referenced in the early stage and the changes in
the adaptive characteristics of the construction process model itself, the hyperparameters
of the six machine learning models were determined, as shown in Table 11. At this time,
the model does not exhibit over-fitting phenomena.

Table 11. Hyperparameters of the six machine learning models.

Model Hyperparameter

SVM PF = 4.0; RP = 0.8
GA-BP NI = 105; ET = 10−6; LR = 10−2; NH = 7; GA = 50; PS = 5
RF NDT =100; MNL = 5
RBF ESR = 100
LSTM LL = 4; MNI = 1200; ILA = 10−2; LIDF = 0.5
PSO-BP NI = 105; ET = 10−6; LR = 10−2; NH = 7; LF = 4.494; NPU = 30; PS = 5

Note: PF: penalty factor; RP: radial basis function parameter; NI: number of iterations; ET: error threshold; LR:
learning rate; NH: number of hidden layer nodes; GA: genetic algebra; PS: population size; NDT: number of
decision trees; MNL: minimum number of leaves; ESR: expansion speed of the radial basis function; LL: LSTM
layer; MNI: maximum number of iterations; ILA: initial learning rate; LIDF: learning rate drop factor; LF: learning
factor; NPU: number of population updates.

5. Results and Discussion
5.1. Model Prediction of the 59 Total Parameters

The evaluation of each model was carried out using four evaluation indicators, and
the performance indicators and related grade scores of each model in the training stage are
shown in Table 12. The RBF has the best performance and the highest grade scores in the
four performance indicators. The GA-BP has slightly worse performance than then RBF,
the SVM and LSTM are close to the middle, and the PSO-BP and RF perform the worst.
However, all six models have good UCS prediction performance in the training stage.

Table 12. Fifty-nine parameters corresponding to the prediction performance evaluation of the six
models in the training stage.

Model
Performance and Rank Total

R2 Score RMSE Score WI Score VAF (%) Score

SVM 0.9989 4 1.0094 4 0.9997 4 99.8886 4 16
GA-BP 0.9994 5 0.7286 5 0.9999 5 99.9438 5 20

RF 0.9864 1 3.5871 1 0.9963 1 98.6484 1 4
RBF 1 6 3.79 × 10−7 6 1 6 100 6 24

LSTM 0.9985 3 1.0931 3 0.9996 3 99.8869 3 12
PSO-BP 0.9907 2 2.9826 2 0.9977 2 99.0997 2 8

The bold line represents the optimal model.
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The regression relationship between each model’s actual and predicted UCS during
the training stage is shown in Figure 11. The red boxplots in the figure show the statistical
results of the actual and predicted values of UCS, including the median, minimum, maxi-
mum, upper quartile, and lower quartile. When the actual and predicted values are exactly
equal, the data points are distributed on the black diagonal line (Y = X), while the dashed
line indicates that the predicted value is allowed to deviate by 10%. Most of the points
in each model are concentrated on the black diagonal line, a few points fall between the
diagonal line and the 10% line, and very few points are distributed outside the 10% line.
The RBF model not only has the most points on the black diagonal line but also has the
highest values of the R2, WI and VAF and the lowest value of the RMSE. The difference
between the predicted value and the actual value in the statistical results of the RF model is
the largest (median = 126.49 and 129.85).
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Figure 12 shows the error analysis of all models during the training stage, including
the maximum and minimum errors and the standard deviation of all errors of the models.
The error analysis of each model is significantly different, especially for models with similar
scores in terms of the model performance indicators and related grade score tables. All
error indicators of the RBF model are significantly lower than those of the other models.
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Since the training model with the best performance index with the training set may
perform poorly in the testing stage, only the model verified with the testing set is generally
officially used as the real model for UCS prediction. Table 13 shows the evaluation indica-
tors and grade scores of the model in the testing stage. Among them, the RBF is still the
best model and still obtains the highest grade scores for the four performance indicators.
The LSTM performs slightly worse than the RBF. However, at this time, the performance
of the GA-BP and RF is in the middle, and the performance of PSO-BP and SVM is the
worst. At the same time, the six models still have good UCS prediction performance in the
testing stage.

Table 13. The prediction performance evaluation of the six models in the testing stage with the
59 total parameters.

Model
Performance and Rank Total

R2 Score RMSE Score WI Score VAF (%) Score

SVM 0.9218 1 8.4106 1 0.9765 1 92.3190 1 4
GA-BP 0.9788 4 4.0217 4 0.9946 4 97.9077 4 16

RF 0.9738 3 4.5067 3 0.9925 3 97.3905 3 12
RBF 0.9998 6 0.4238 6 0.9999 6 99.9774 6 24

LSTM 0.9946 5 2.4451 5 0.9986 5 99.4615 5 20
PSO-BP 0.9366 2 6.9283 2 0.9847 2 94.1932 2 8

The regression relationship between the actual and predicted UCS of the models in
the testing stage is shown in Figure 13. Most of the points in the RBF and LSTM models are
concentrated on the black diagonal line, and a few points fall between the diagonal line
and the 10% line. Most of the points in the GA-BP, RF, and PSO-BP models fall between the
diagonal line and the 10% line, and a few points are distributed outside the 10% line. Nearly
half of the points in the SVM fall between the diagonal and the 10% line, and the remaining
points are distributed outside the 10% line. At the same time, the RBF model still has the
most points on the black diagonal line. In addition, the R2, WI, and VAF values are the
highest, and the RMSE value is the lowest. The difference between the predicted value and
the actual value in the statistical results of the SVM model is the largest (median = 130.03
and 121.39).
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Figure 14 shows the error analysis of all models in the testing stage. It can be observed
from the figure that the differences in the error analysis of each model are also obvious,
especially for models with similar scores in terms of the model performance indicators and
related grade score tables. All error indicators of the RBF model are significantly lower
than those of the other models.

5.1.1. 59-Parameter Optimal Model

It is not sufficient to sort the prediction performance of the six machine learning
models only through the performance indicators and related grade scores in the model
training and testing stages, the regression relationship diagram between the actual value
and the predicted value, and the model error diagram. Thus, the Taylor diagram and
the model applicability evaluation chart were introduced for the following screening and
sorting of the optimal model.

The Taylor diagram is a model verification method that is widely used in the field
of machine learning, and it can generally be divided into three parts, namely standard
deviation, correlation coefficient, and root mean square error. As shown in Figure 15, the
blue line reflects the correlation coefficient, the green line is the root mean square error,
and the black line is the standard deviation. The reference point (red solid circle) is set as
follows: training (SD: 30.0; RMSE: 0; and R: 1), testing (SD: 15.0; RMSE: 0; and R: 1). The
order of all models in the training stage is RBF > GA-BP > SVM > LSTM > PSO-BP > RF,
and the order in the testing stage is RBF > LSTM > GA-BP > RF > PSO-BP > SVM. The RBF
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model is closest to the reference point and performs best. However, the RF model is the
farthest from the reference point in the training stage, and the SVM model is farthest from
the reference point in the testing stage, and their performances are relatively poor.
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The model applicability evaluation is shown in Figure 16. In addition to using the R2,
VAF, and WI in the model evaluation parameters, the mean absolute error (MAE) and mean
square error (MSE) [72], which can further reflect the true state of the error, are introduced,
and the relevant parameters in the formula refer to the same as above. An excellent model
should have a larger R2, VAF, and WI and a smaller MAE and MSE, and the larger the
difference between the two is, the better the model. The model sorting in the training stage
is RBF > GA-BP > SVM > LSTM > PSO-BP > RF, and the model sorting in the testing stage
is RBF > LSTM > GA-BP > RF > PSO-BP > SVM. Thus, the sorting results are essentially
consistent with the above Taylor diagram.

MAE =
1
n ∑n

i=1|Yi − yi| (9)

MSE =
1
n ∑n

i=1 (Yi − yi)
2 (10)
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In summary, the RBF is the optimal model for the 59 parameters. In considering the
importance of the testing stage to the true application of the model and that the ranking
difference between the models in the Taylor diagram and the model applicability evaluation
diagram is small, the comprehensive ranking of machine learning models with the total
59 parameters is RBF > LSTM > GA-BP > RF > PSO-BP > SVM.

5.1.2. Single Parameter Sensitivity Test of 59-Parameter Optimal Model

After obtaining the optimal model, a sensitivity analysis was introduced to determine
the importance of each input parameter, and at the same time, the importance of each level
of the three-level characteristic parameters was calculated. The ratio Ri of the factor default
model testing error RMSEi to the full factor model testing error RMSE is defined as the
degree of influence of the i-th factor default on the output factor UCS, i.e., the sensitivity
index [73,74].

Ri =
RMSEi
RMSE

(11)

where the larger Ri is, the more sensitive the factor.
The sensitivity changes of each factor during the training stage are shown in Figure 17a.

Among them, the 2 macro parameters have the greatest sensitivity; 11 of the 38 meso
parameters have a sensitivity greater than 1, 24 fluctuate between 0.5–1, and 3 are less than
0.5; 7 of the 19 micro parameters have a sensitivity greater than 1, 10 fluctuate between
0.5–1, and 2 are less than 0.5. The testing stage results are shown in Figure 17b. The macro
parameters are still the most sensitive; 11 of the meso parameters have a sensitivity greater
than 1, and 27 fluctuate between 0.5 and 1; 7 of the micro parameters have a sensitivity
greater than 1, and 12 fluctuate between 0.5 and 1.
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As shown in Figure 18, compared with the overall sensitivity of the parameters in the
training stage, the overall sensitivity of the macro parameters in the testing stage decreased,
while the overall sensitivities of the meso and micro parameters increased slightly. The
sensitivity distribution of the third-level parameters is extremely unbalanced. Although
the number of meso and micro parameters occupies an absolute majority of the overall
parameters, the sensitivity proportion in the model as a whole is extremely low.
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This may be because macro parameters are controlling factors, and both meso and
micro parameters change due to macro parameter changes. At the same time, as controlling
factors, the macro parameters have an effect on UCS and play a role as a guide or a catalyst
in the model; that is, for the model accuracy and stability, these factors play an important
role, while for the sensitivity analysis, they play a minor role. However, the sensitivity
gap of the three-level characteristic parameters is too large, which is not conducive to
explaining the influence of the parameter classification method of the model on the UCS
prediction ability of the model. Therefore, this problem is solved by optimizing the number
and proportion of parameters.

5.2. Parameter Optimization

The number and proportion of the 59 input parameters were optimized mainly through
the following two methods: (1) gray correlation analysis between parameters and UCS,
and (2) rough set analysis between parameters and UCS.

Gray correlation analysis is a mathematical method used to calculate the correlation
coefficient of two sequences by studying the geometric proximity between subsequences
and parent sequences [75,76]. It is suitable for more accurately locating correlation charac-
teristics in ‘poor information’ and ‘gray relationships’, where the sample size is small and
the change law is partially known. It has the advantages of requiring a small amount of cal-
culation and not easily contradicting the results of a qualitative analysis. With the 59 input
parameters as the subsequences, UCS as the parent sequence, and a resolution coefficient of
ρ = 0.5, the specific results are shown in Figure 19a. The overall gray correlation coefficient
of parameters is larger, and the performance of meso and micro parameters is better.

Rough set theory is a mathematical method used to analyze fuzzy and uncertain
knowledge [77,78]. Under the premise of maintaining a certain classification ability, concept
classification rules are derived through redundancy elimination without prior information.
Using the rough set software ROSE2 V2.2 developed by Poznan University of Technology
in Poland, based on the attribute importance reduction algorithm named manual search,
the attribute importance between the subsequence and the parent sequence is calculated.
The specific calculation results are shown in Figure 19b. The overall rough set attribute
importance of macro parameters is relatively high, indicating that there is no redundancy;
the importance of meso and micro parameter attributes is clearly graded, indicating that
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there is obvious redundancy, especially for meso parameters, and there are a number of
parameters with an attribute importance of 0.
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After comprehensively removing the related parameters of the gray correlation coeffi-
cient ≤ 0.5500 and rough set attribute importance ≤ 0.0050, the remaining parameters after
elimination are shown in Table 14. At this time, there are 34 parameters in total, among
which macro:meso:micro = 1:8:8.

Table 14. Three-level characteristic parameters after parameter number and proportion optimization.

Type Quantity Specific

Macro 2 X1; X2
Meso 16 X3; X4; X6; X14; X20; X21; X22; X24; X27; X28; X30; X35; X36; X37; X38; X40
Micro 16 X43; X45; X46; X47; X48; X49; X50; X51; X52; X53; X54; X55; X56; X57; X58; X59

5.3. Model Prediction of the 34 Optimized Parameters

To facilitate the comparative study of the performance of each model before and after
parameter optimization, the hyperparameter settings in the six models with the 34 parame-
ters after parameter optimization are kept consistent with those of the 59 parameter models
before optimization.

We referred to the analysis of the performance indicators and related grade scores of
the model in the training and testing stages before parameter optimization, the regression
relationship analysis between the actual and predicted UCS, the error analysis of the model,
the Taylor diagram of the optimal model selection process, and the model applicability
evaluation analysis. After optimization, the evaluation analysis of each model shows
that the comprehensive ranking of the six models with the 34 optimized parameters
is RBF > LSTM > SVM > GA-BP > RF > PSO-BP. The optimal model is still RBF, and its
performance indicators in the training and testing stages are shown in Table 15.

Table 15. The prediction performance evaluation of the RBF with the 34 optimized parameters in the
training and testing stages.

Stage R2 RMSE WI VAF (%)

Training 1 1.37 × 10−5 1 100
Testing 0.9868 3.7166 0.9967 98.8338

Single Parameter Sensitivity Test of the 34-Parameter Optimal Model

The sensitivity changes of each parameter in the training stage are shown in Figure 20a,
among which the sensitivity values of two macro parameters are the largest, 15 of the
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16 meso parameters have values greater than 1 and 1 is between 0.5 and 1, and the 16 micro
parameters all have values greater than 1. The testing stage results are shown in Figure 20b,
in which the macro parameters are still the most sensitive; 12 of the meso parameters have
values greater than 1, and 4 fluctuate between 0.5–1; 12 of the micro parameters have values
greater than 1, and 4 fluctuate between 0.5–1.
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As shown in Figure 21, compared with sensitivity values in the training stage, the sen-
sitivity values of the three-level parameters in the testing stage decreased as a whole, among
which the macro parameters decreased the most, while the meso and micro parameters
decreased slightly overall. However, the proportion of meso and micro parameters in the
overall sensitivity of the third-level parameters increased significantly, and the problem of
unbalanced distribution of the sensitivity of the third-level parameters was better resolved.
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In summary, under the premise of a limited loss of model accuracy and stability, the
optimization of the number and proportion of parameters via gray correlation and rough
set has greatly improved the sensitivity proportion of meso and micro parameters in the
optimal BRF model, indicating that parameter optimization is conducive to the uniform
distribution of the three-level parameter sensitivity.

5.4. Sensitivity Analysis of Three-Level Parameter Sets for 59 and 34 Parameter Models

A three-level parameter set sensitivity analysis was performed. That is, it would be
informative to examine the impact of removing certain parameter sets (such as meso or
micro parameter sets) on the RBF prediction accuracy of the optimal model. This helps in
understanding the relative importance of each parameter scale in the model’s predictive
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power. Specifically, this analysis is achieved by defaulting the three-level parameters of the
model by level. The relevant analysis is as follows.

As shown in Figure 22, when the three-level parameters are defaulted by level, the
sensitivity of the meso parameters in the training and testing stages of the 59-parameter
model is extremely prominent. Among them, in the training and testing stages, respectively,
the macro–meso parameter sensitivity difference is 3 and 0 orders of magnitude. The micro–
meso parameter sensitivity difference is between 4 and 8 orders of magnitude. Micro–macro
parameter sensitivities differ between 1 and 8 orders of magnitude. Similarly, the sensitivity
of meso parameters in the 34-parameter model is extremely prominent. In the training
and testing stages, respectively, the macro–meso parameter sensitivity difference is 1 and
0 orders of magnitude. The micro–meso parameter sensitivity difference is between 4 and
8 orders of magnitude. Micro–macro parameter sensitivities differ between 3 and 8 orders
of magnitude.
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The expected phenomenon of relatively uniform distribution of three-level parameter
sensitivity by level did not appear. This shows that after parameter classification, the overall
sensitivity differences of parameters at each level are quite different by level. Parameter
optimization also does not affect this difference, which is especially noticeable during the
testing phase. The importance of meso parameters in the model is of primary importance,
i.e., the mesoscale, as the interconnection link between three-level features, plays a decisive
role in the influence of the model strength (in Figure 8, the direct effects B and BC that
work at the meso scale are stronger than the direct effects A and AC that work at the
micro scale). This proves that the interaction between three-level characteristics basically
follows the control factors first from the macro scale to the meso scale, and then from the
meso scale to the micro scale, thereby affecting the intensity. Alternatively, the strength
deterioration occurs sequentially from the micro to the meso, and then from the meso to the
macro. It further verifies the accuracy of the basic hypothesis—the three-level characteristic
interaction hypothesis—while illustrating the effectiveness of the basic method—the new
method of parameter expansion classification.

Of course, the parameter optimization performed in Section 5.2 mentioned above
is still necessary because it can improve the sensitivity of any single parameter among
the three-level parameters, even though it has a limited effect on level-by-level overall
sensitivity optimization of tertiary parameters. At the same time, taking into account
the number of parameters and the subsequent optimization work of the overall model,
continuous parameter optimization is an inevitable choice.
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5.5. Model Comparison and Limitation Analysis
5.5.1. Model Comparison

Table 16 lists the performance indicators of different machine learning methods used
in different literatures with different soil UCS prediction accuracy. The current study has
the highest R2 and a relatively small RMSE value. Of course, other studies have also
reported similar performance. At the same time, it is important to note that the datasets
and machine learning methods used in each study are different, so direct comparison
of performance values may not always be appropriate [79]. Nevertheless, it is obvious
that the optimal model RBF constructed in this study using the basic hypothesis—the
three-level characteristic interaction hypothesis—and the basic method—the new method
of parameter expansion classification—provides accurate predictions with the largest R2

value and relatively low RMSE value.

Table 16. Comparison of prediction performance of soil UCS from different studies.

Model Soil Parameters Parameter Type Performance References

Before parameter
optimization: SVM;
GA-BP; RF; RBF;
LSTM; PSO-BP

Saline soil in
Lanzhou, China 59 Macro–meso–

micro

SVM: R2 = 0.9218; RMSE = 8.4160;
GA-BP: R2 = 0.9788; RMSE = 4.0217;
RF: R2 = 0.9738; RMSE = 4.5067;
RBF: R2 = 0.9998; RMSE = 0.4238;
LSTM: R2 = 0.9946; RMSE = 2.4451;
PSO-BP: R2 = 0.9366; RMSE = 6.9283;

This article

After parameter
optimization: RBF

Saline soil in
Lanzhou, China 34 Macro–meso–

micro RBF: R2 = 0.9868; RMSE = 3.7166; This article

EPR modelling A;
B; C

Adelaide Industrial
(AI) sand 1; 4; 4 All macro

EPR-A: R2 = 0.714; RMSE = 1.461;
EPR-B: R2 = 0.885; RMSE = 0.374;
EPR-C: R2 = 0.939; RMSE = 0.273;

Ahenkorah
et al. [80]

OEM; ANNs Soils from around
the world 9 All macro OEM: R2 = 0.61; MSE = 370,860;

ANNs: R2 = 0.65; MSE = 457,271;
Taffese and
Abegaz. [81]

MGGP; ANNs
Geopolymer-
stabilized
clayey soil

9 All macro MGGP: R2 = 0.942; MSE = 2.366;
ANNs: R2 = 0.964; MSE = 1.500;

Soleimani
et al. [82]

MR; ANNs; SVM
The soils selected
were from
Coimbra area

8 All macro
MR: R2 = 0.59; RMSE = 0.56;
ANNs: R2 = 0.91; RMSE = 0.26;
SVM: R2 = 0.93; RMSE = 0.23;

Tinoco
et al. [83]

ERBF; RBF; POLY Three different
types of clayey soil 7 All macro

ERBF: R = 0.9938; RMSE = 0.2586;
RBF: R = 0.9901; RMSE = 0.8679;
POLY: R = 0.9737; RMSE = 1.6277;

Mozumder
et al. [84]

BP
Sulfate silty sand
from the central
desert of Iran

4 All macro BP: R2 = 0.9917; RMSE = 0.037;
Ghorbani
et al. [85]

FN; MARS Cement-stabilized
soil 7 All macro FN: R = 0.95; RMSE = 0.34;

MARS: R = 0.95; RMSE = 0.31;
Suman
et al. [86]

SNN-LogS India soil 5 All macro SNN-LogS: R = 0.95184; MSE = 0.09021; Tiwari and
Satyam. [87]

Note: R: Pearson’s correlation coefficient; R2: determination coefficient; RMSE: root mean square error; MSE:
mean square error; SVM: support vector machines; GA-BP: genetic algorithm optimized BP; RF: random forest;
RBF: radial basis kernel function; LSTM: long short-term memory; PSO-BP: particle swarm optimization algo-
rithm BP; EPR: evolutionary polynomial regression; OEM: optimizable ensemble technique; ANNs: artificial
neural networks; MGGP: multi-gen genetic programming; MR: multiple regression; POLY: polynomial kernel
function; ERBF: exponential radial basis kernel function; BP: back propagation; FN: functional networks; MARS:
multivariate adaptive regression splines; SNN-LogS: artificial neural network (ANN) was combined with the
cross validation (LOOCV) method as CNN, and logS was the activation function; Soils from around the world:
stabilized soils utilizing a diverse set of stabilized soils collected from around the world, the data set includes
a variety of soils from 12 nations in Africa, Asia, Europe, North America, and Oceania; The soils selected were
from Coimbra area: (located near Coimbra city, Portugal), ranging from cohesive to cohesionless soils, organic to
nonorganic soils, presenting different geotechnical properties; India soil: the soil was collected at a depth of 2.5 m
at the Indore campus of the Indian institute of technology in Madhya Pradesh, India.



Buildings 2024, 14, 641 30 of 35

5.5.2. Analysis of Model Advantages and Limitations

This study considers different numbers and proportions of macro–meso–micro three-
level characteristic variables before and after parameter optimization to predict the UCS of
salinized frozen soil. Its advantages and limitations are as follows:

Advantages:

(1) High model accuracy: the overall accuracy of the machine learning model built
based on the three-level characteristic interaction hypothesis and the new method of
parameter expansion classification is higher; in particular, the optimal model has the
highest accuracy.

(2) The model parameters are highly interpretable: the model constructed using the new
method has a basis for the expansion and classification of input parameters, and the
boundaries between parameters are clear. This greatly increases the interpretability of
parameters and can provide a reference for subsequent model parameter selection.

(3) There is a large space for model optimization: the current model is only a preliminary
exploration of a new method for expanding and classifying model parameters, and
there is a lot of room for optimization. Among them, there is a lot of room for
optimization in terms of compressing the number of model parameters, optimizing
parameter proportions, simplifying parameter construction, further improving model
accuracy, and increasing practicality.

Limitations:

(1) Insufficient model transferability: there are currently relatively few data on multi-
level parameters of salinized frozen soil in other literature, so it is impossible to
obtain diversified data from different literature to verify the transferability of the
constructed model.

(2) The cost of data acquisition is high: the data collection process in the model requires
different experiments, which is relatively cumbersome, and the cost of data set acqui-
sition is high.

(3) The parameters are complex and the model is not practical enough: although the
number of model parameters has been reduced after parameter optimization, the
number of current model parameters is still too large, and the structure is relatively
complex, which will increase the difficulty of practical application, thus leading to the
model’s insufficient practicality.

(4) There are limitations in the generalizability of the conclusions: the results currently
obtained are only applicable to the soil samples used in this study and may not be
considered as a general rule for other data sets. It is unclear whether they can be
generalized to other soil bodies and other materials.

In future work, the authors will collect a continuously updated and easily accessible
database containing a variety of soil types to improve the generalizability of the proposed
model. The database will include data samples containing more input variables, such
as other macro-control factors and meso and micro parameters obtained by other means.
We will collect soil shear strength (c, φ), expand the output from UCS to more strength
parameters, or add frost heave, etc., as output parameters. At the same time, we will
strengthen the continuous optimization of hyperparameters to improve model accuracy.
In addition, we will continue to expand the model types, add predictive performance
comparisons with other artificial intelligence models, and focus on detailed discussions
of the algorithms used in these models. Finally, the proposed model is promoted to be
incorporated into the construction system and the feasibility of applying the current model
to the practice of saline frozen soil engineering is explored.

6. Conclusions and Summary

This paper takes salinized frozen soil as the research object. The response of the three-
level characteristic parameters of macro–meso–micro was analyzed through experiments.
The basic hypothesis—the three-level characteristic interaction hypothesis—was proposed.
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And for the needs of application in subsequent machine learning models, a basic method—a
new method of parameter expansion classification—is proposed. A model database was
constructed through the data obtained from the experiment, and six models including SVM,
GA-BP, RF, RBF, LSTM, and PSO-BP were applied. The UCS prediction of the salinized
frozen soil based on the machine learning model based on macro–meso–micro three-level
characteristic response is realized. We answer the problem of parameter selection at the
input end of the machine learning model and the interpretability of model parameters. The
main conclusions are as follows:

(1) In the experiment, with the increase in the control factors (number of freeze–thaw
cycles, salt content), the macro, meso, and micro parameters all showed obvious
stages of characteristics change. Taking the number of freeze–thaw cycles as 5 and
30 as the node, it can be divided into three stages. According to the changes in
each stage, the first, second, and third stages are named the adjustment period, the
dynamic fluctuation period, and the stable period. The fluctuation characteristics
of each stage of the third-level parameters correspond well and show synchronized
response characteristics.

(2) The ranking of the six machine learning models in terms of the UCS prediction with
59 parameters is RBF > LSTM > GA-BP > RF > PSO-BP > SVM. The optimal RBF
model has the best prediction performance for UCS, with the largest R2, WI, and VAF
values and the smallest RMSE value. However, in view of the large difference in
the sensitivity distribution of the third-level parameters, the RBF model needs to be
further improved.

(3) The massive number of input parameters and obvious proportional differences in
the use of the model parameter expansion classification method are the main reasons
for the large sensitivity gap of the third-level parameters of the RBF model with
59 parameters. Through gray correlation and rough set analysis between parameters
and UCS, optimizing the total number of parameters and the proportion of three-level
parameters can effectively solve this problem.

(4) The ranking of the six machine learning models in terms of the UCS prediction with
34 parameters is RBF > LSTM > SVM > GA-BP > RF > PSO-BP, and the optimal model
is still RBF. The accuracy and stability of the RBF model are slightly lower, but the
sensitivity distribution of the three-level parameters is more reasonable, which can
better reflect the macro–meso–micro three-level characteristic response of parameters
and is more effective for UCS prediction.

(5) The actual performance of the 59- and 34-parameter models shows that the comprehen-
sive macro–meso–micro three-level characteristic response of the soil can effectively
improve the UCS prediction ability of the model. It is proven that it is necessary to
expand and classify the input parameters in the soil UCS machine learning model
prediction based on the basic hypothesis and basic methods. This approach not only
considers the parameters more comprehensively and makes the logical relationship
between parameters clearer and more interpretable but also helps to improve the
prediction accuracy and stability of the model.
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