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Abstract: This paper focuses on the response of reticulated shell structures under oblique impact
loads, with a departure from the traditional emphasis on vertical impact loads. These structures are
typically utilised in large-span spaces such as iconic buildings and large venues. The study begins
by establishing a numerical simulation method for reticulated shell structures subjected to oblique
impact loads, which is then validated against existing experimental results. Building on this verified
method, the research delves into the effects of varying impactor mass, velocity, and initial kinetic
energy on the reticulated shell structure under oblique impacts, as well as the influence of different
oblique impact angles. The study extensively examines the failure modes of the structure, node
displacements in the structure, and variations in member stress under different impactor parameters.
It further investigates how these parameters influence the maximum impact bearing capacity, impact
duration, energy dissipation capability, and response forms of the structures, analyzing the reasons
behind these effects. The findings offer valuable insights for further research and practical engineering
design of reticulated shell structures.

Keywords: reticulated shell; impact response; oblique impact load; finite element analysis;
failure mode

1. Introduction

Reticulated shell structures form the basis for numerous practical engineering applica-
tions and novel, reasonable architectural structures. Additionally, they are widely exploited
for their beautiful shape and the ability to distribute forces in a uniform manner, which
refers to the even spread of stresses primarily under vertical loads. These structures are also
designed to resist horizontal loads effectively, and special considerations are considered
to manage local effects and stress concentrations around openings. Reticulated shells are
often the structures of local landmark buildings. However, frequent terrorist attacks and
military activities have brought attention to the impact resistance of architectural struc-
tures; large-span space buildings are mostly national and regional landmark buildings,
which can easily become targets of terrorist and military attacks and suffer from external
impact, resulting in immeasurable losses. In this context, studying the impact resistance of
long-span space structures is of great political and economic significance.

Before studying the dynamic response of structures under an impact load, the me-
chanical properties of materials under high-speed impact should be defined. Cowper and
Symonds [1] proposed the C-S constitutive model, which provides the relationship between
material stress and strain rate. This piecewise-linear plasticity model can effectively charac-
terise the dynamic mechanical behaviour of metal materials; thus, it is widely used in the
field of structural impact resistance. Johnson and Cook [2] proposed the J-C constitutive
model, which comprehensively considers the influence of large strain, large stress, and
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high temperature on metal materials under high-speed impact. Paul [3] proposed an elasto-
plastic constitutive model that is suitable for wide strain rates and temperature ranges. This
model was adapted to characterise the dynamic mechanical behaviour of steel and has been
successfully applied to low-carbon steel ES, DP600, and TRIP700. However, the parameters
of this model are coupled with each other and difficult to calibrate. This bottleneck restricts
the application of this model to a wide range of materials. Based on the above research anal-
ysis, the current research on the dynamic mechanical properties of materials is relatively
mature, among which the Cowper-Symonds constitutive model and the Johnson-Cook
constitutive model are widely used in the field of structural impact resistance.

The dynamic response of structural components to impact loads is a critical area of
research in structural engineering. In the realm of metallic components, Al-Thairy et al. [4],
Liang et al. [5,6], Li et al. [7], and Xiang et al. [8] have contributed significantly. Their
research spans from the numerical simulation of steel columns under impact to the assess-
ment of energy absorption in dimpled steel sheets and the analysis of impact resistance
in steel parking structure columns. For non-metallic components, Bambach et al. [9],
Wang et al. [10], Goswami et al. [11], Lee et al. [12], Li et al. [13], and Li et al. [14] have
provided valuable insights. Their work includes the exploration of concrete-filled steel
beams, ULCC-filled pipe-in-pipe composites, concrete slab shear failure, steel plate-concrete
composite walls, and the dynamic performance of concrete beams, among others. The
dynamic analysis of light weight structures is also being studied; Slimane et al. [15] sug-
gested using a bilayer ceramic/aluminum honeycomb sandwich panel (HSP) for spacecraft
shielding against orbital debris, showing improved resistance compared to monolayer
concepts through modelling and experiments; Sun et al. [16] studied the impact response of
a composite structure consisting of a metal-packaged ceramic interlayer and an ultra-high
molecular weight polyethylene (UHMWPE) laminate through a ballistic test and numerical
simulation. Additionally, the influence of impact angles is a crucial aspect; Yang et al. [17]
simulated the circular steel tube response to lateral impact. It analysed factors such as
impact angle, energy, and failure modes, finding that impact forces depended on angle
and velocity, while failure modes were energy-driven. This research has illuminated how
impact angles affect the forces and failure modes in structural components, which is vital
for the design and safety of structures.

Recent years have witnessed a significant focus on the dynamic response of large-span
space structures under various impact loads. Gupta et al. [18–21] conducted in-depth
studies on thin-walled spherical aluminium shells, examining deformation modes under
axial compression and impact loads, thereby laying a foundation for understanding the
collapse behaviour of metallic shells. Fan et al. [22–24] contributed by proposing an efficient
method for solving impact problems using finite element analysis, identifying four distinct
failure modes in reticulated domes. Zhi et al. [25,26] expanded this research to the safety
and protective measures of single-layer reticulated domes under various loads, including
impact and seismic forces. Their work was complemented by Zhai et al. [27], who focused
on blast resistance strategies for dome structures. Wang et al. [28,29], Ma et al. [30,31],
and Hu et al. [32] furthered the understanding of dynamic responses, failure modes, and
energy mechanisms in reticulated shell structures and hemispherical shell systems under
impact loads. This line of inquiry was continued by Su et al. [33], who studied the dynamic
response of long-span reticulated shells under external explosion loads. The research scope
was broadened by Zhi et al. [34], Ma et al. [35], and Nazari et al. [36], who investigated
the dynamic behaviour of reticulated domes and double-layer domes under various im-
pact scenarios. Wu et al. [37], Deepshikha et al. [38], and Pilarska et al. [39] contributed
by examining multi-point impacts, roof-substructure interactions, and seismic effects on
dome structures. Xu et al. [40,41] focused on the impact response of spherical reticulated
shell structures and plane cable-membrane structures, respectively, exploring the effects
of various factors on dynamic response and failure modes. Rossot et al. [42] conducted
studies on geodesic domes and composite materials under impact, enhancing the under-
standing of structural behaviour under different loading conditions. Gou et al. [43] and
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Shen et al. [44] explored the dynamic behaviour of welded spherical joints and mesh shells
and the impact resistance of large-span net shell structures, respectively, using advanced
numerical methods and experimental techniques to assess the effects of combined loads
and material properties on structural response. This body of work collectively enhances
our understanding of the dynamic behaviour of these critical structures, guiding future
designs towards greater resilience against impact loads.

In the current landscape of research, studies on the performance of steel structures
under oblique impact loads predominantly focus on individual components [17]. Notably,
the mass, velocity, initial kinetic energy, and impact angle of the impactor play a crucial
role in influencing the dynamic response of reticulated shell structures [44]. However, most
existing research on these structures’ centres around vertical and horizontal impacts, with
limited exploration into the effects of oblique impacts. This study investigated the dynamic
response and failure modes of reticulated shell structures under oblique impact loads.
Utilizing a numerically simulated method, which was validated through experimental data,
we examined the dynamic responses of these structures under different oblique impact
loads on a plumb surface and assessed the influence of the impactor parameters on their
dynamic behaviour. Our investigation first identified and analysed two distinct failure
modes—unpenetrated and penetrative—and their energy dissipation capacity. Further, we
delved into the intricacies of node displacements and internal member stresses, particu-
larly noting their correlation with proximity to the impact point. A pivotal aspect of our
research was the assessment of how variations in the oblique impact angle affected the
structure’s response. Finally, our findings provided insights for optimising the design and
reinforcement of reticulated shell structures.

2. Experimental Verification
2.1. Finite Element Modelling

This study was mainly conducted using numerical simulation. To verify the accuracy
of the numerical simulation method, the impact test results of existing reticulated shell
structures [40] were selected for verification. The test-verified model was a Kiewitt6 (K6)
single-layer spherical reticulated shell (see Figure 1) with a span of 1800 mm and a vector
span ratio of 1/9.2307. The reticulated shell member had a round tube section with an outer
diameter of 14 mm and a wall thickness of 2 mm. The boundary conditions of the model
were three-directional fixed hinge supports. The relevant material properties of the Q235B
steel adopted in steel reticulated shells are listed in Table 1. The drop weight in the test was
100.5 kg, and drop hammer heights of 8 mm and 10 mm were used to simulate the elastic
impact test, while a drop hammer height of 3.2 m was used to simulate the destructive
impact test.
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Figure 1. Schematic diagram of the reticulated shell: (a) Simulation; (b) Experiment in literature [40]. 
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Table 1. Parameters of Q235B steel.

Material Q235B

Density (ρ)/kg/m3 7850

Yield strength (σy)/MPa 235

Young’s modulus (E)/GPa 206

Poisson’s ratio (ν) 0.3

In this study, numerical simulation analysis was performed using the common finite
element software, ABAQUS version 6.1.4. As the members in the reticulated shell structure
were subjected to bending moment, shear, and tensile forces at the same time, B33 from
the ABAQUS element library was used for the simulation, and for the impactor, a discrete
rigid body was chosen for the simulation, which could effectively avoid the problem of
inaccurate friction caused by the rigid body mesh being too rough. The mesh size of the
latticed shell was determined to be 15 mm. The finite element analysis utilised in this study
employed an explicit time integration scheme to address the time-dependent dynamic
response. The time step size was determined through a series of trials based on the stability
of the time-history curve, ensuring numerical stability and accuracy throughout the simula-
tion process. Meanwhile, the contact between the reticulated shell and impact body was
considered. The contact type between the impactor and the reticulated shell structure was
implemented using ABAQUS’s advanced algorithms for general contact, which involved
sophisticated tracking of the contact surface as opposed to simpler node-to-surface methods.
The contact properties were divided into tangential and normal behaviour; the tangential
behaviour was a penalty function method with a friction coefficient of 0.15, which was
implemented to accurately simulate the resistance generated at the contact interface during
impact; in the normal direction, an augmented Lagrangian contact formulation, known as
“hard contact” in ABAQUS, was used to accurately simulate the interaction. Moreover, the
simulation accounted for large displacement effects, ensuring that the non-linear deforma-
tion behaviour of the shell structure under loading was accurately captured. Furthermore,
material damping effects have been considered; these dissipative phenomena were directly
incorporated within the constitutive laws chosen for the simulation. The C-S constitutive
model [1] was adopted to simulate the reticulated shell material. The expression of the
model is shown in Equation (1).

σd =

1 +
( .

ε

C
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p

(σy +
EEsh

E − Esh
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where
.
ε is the effective strain rate; σd is the yield stress with a constant strain rate

.
ε; p and C

are the strain rate parameters, taken as 5 and 40 [45] for low-carbon steel, respectively; σy is
the material yield strength; εe f f is the effective plastic strain; E is the Yong’s modulus; and
Esh is the strain-hardening modulus.

2.2. Verification of the Numerical Simulation Method

The experimental data were obtained from the literature [40], such as time-history
curves, axial stress, and displacements. The experimental and numerical comparisons of
the axial stresses in H1 when the height of the drop hammer was 8 and 10 mm are displayed
in Figure 2. Obviously, the numerical results were in accordance with the experimental
results. Table 2 quantitatively analyses the stress in H1 obtained from experimental and
numerical investigations. Note that the minus sign in Table 2 denotes that member H1 is in
compression. As it can be seen, the differences between the experimental and numerical
results were around 5.0% and 4.7% for the cases of 8 mm and 10 mm drop hammer heights,
respectively. Thus, it was accurate to investigate the behaviour of single-layer reticulated
shells under impact loading by using numerical analysis.
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Figure 2. Time-history curve of H1 with different drop hammer heights: (a) 8 mm; (b) 10 mm.

Table 2. Comparison of H1 axial stress between the experimental and numerical stress in H1.

Drop Hammer
Heights (mm)

Experimental Results
[40] (MPa)

Numerical Results
(MPa) Differences

8 −82.94 −87.10 5.0%
10 −96.70 −101.21 4.7%

Figure 3 shows the failure mode obtained by numerical simulation of the reticulated
shell when the impact height was 3.2 m. It could be observed that the failure mode of the
reticulated shell was concave in the middle, which was in good agreement with the experi-
mental results provided in reference [40]. The comparisons of the vertical displacement
results for typical nodes are listed in Table 3. In this study, the direction of displacement
was defined as vertical. Clearly, the displacement of the vertex was significantly larger than
that of the other nodes under an impact load. The greater the distance from the vertex,
the smaller the node displacement; this was consistent with the failure mode in Figure 3.
Table 3 shows that even for the destructive impact experiment, the finite element analysis
showed good accuracy.
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Table 3. Comparison of displacements for typical nodes under 3.2-m impact.

Comparison Index Node 1 (m) Node 2 (m)

Experiment [40] −0.231 −0.025
Simulation −0.253 −0.027

Error 9.52% 8.00%

3. Impact Response of Reticulated Shell Structures under Oblique Impact Load
3.1. Analytical Model

The feasibility of using the ABAQUS software to analyse the impact response of the
K6 reticulated shell structure was verified in the previous section. Practically, the impact
load is not always along the normal direction of the reticulated shell surface but may form
a certain angle with the normal direction of the surface (i.e., oblique impact). Therefore,
this study focused on the impact response of K6 reticulated shell structures under oblique
impact loads. Regarding the reticulated shell structure designed in this study, its span was
60 m, the vector span ratio was 0.22, the division frequency was six, and it was simply
supported. The outer diameter and wall thickness of the radial member were 168 mm and
6 mm, respectively; the outer diameter and wall thickness of the circumferential member
were 140 mm and 5 mm, respectively; and the outer diameter and wall thickness of the
oblique member were 100 mm and 5 mm, respectively. The yield strength of the adopted
steel was 235 MPa, and the failure strain was 0.25. The constitutive model of steel adopted
the C-S constitutive model [1]. Figure 4a,b show the geometric and finite-element models of
the reticulated shell structure, respectively. The numerical simulation method was carried
out as described in Section 2.
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When studying the impact response of a reticulated shell structure, the deformation
characteristics of the structure and the failure of the member need to be considered. In this
study, the impact response of a reticulated shell structure was determined by analyzing the
change in displacement of the reticulated shell node under an impact load and the change
in axial stress of the bar member. For convenience, part of the reticulated shell nodes and
members are numbered in Figure 4a, in which node 3 is the application point of the impact
load. For the analysis in this section, the impact angle (i.e., the angle between the impact
direction and horizontal plane) was set to 66.25◦. The local angle between the tangential
plane of the structures and the horizontal plane was 23.75◦. Table 4 presents the range of
values for two parameters, namely the mass and velocity of the impactor. Specifically, a
large number of cases (56 in total, generated by combining 7 masses with 8 velocities) were
created to simulate the uncertainty of impact loads in real-life scenarios. Additionally, the
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kinetic energy of the impactor, ranging from 6.25 × 103 J to 1.25 × 1010 J, is considered.
Based on these cases, the distribution of failure modes in shell structures was investigated.

Table 4. Distribution of mass and velocity of the impactor.

Impact Parameter Scope

Mass (×103 kg) 0.5, 1, 5, 10, 20, 50, 100
Velocity (m/s) 5, 10, 50, 100, 120, 150, 200, 500

3.2. Failure Mode
3.2.1. Unpenetrated Failure

The impact deformation process of the reticulated shell structure under the impactor
for unpenetrated failure is shown in Figure 5. When the impactor acted on the reticu-
lated shell structure, the contact member deformed, and the deformation range gradually
expanded until the structure failed. The failure feature was that the impactor did not
penetrate the reticulated shell structure during impact failure. For unpenetrated failure, the
reticulated shell member potentially may not break. It should be noted that the difference
between (c) Gradual deformation and (d) Final state is that (c) Gradual deformation indi-
cated the structure had not yet reached a stable state, and there were still vibrations in the
members and nodes, but (d) Final state indicated the structure had reached a static state.
Figure 6 shows the deformation of the reticulated shell structure under different impact
masses and velocities. When the impact mass was 20 t and the velocity was 10 m/s (kinetic
energy = 1 × 106 J), only a local depression occurred in the reticulated shell structure. When
the impact mass was 5 t and the velocity was 50 m/s (kinetic energy = 6.25 × 106 J), the
depression range increased significantly. When the impact mass was 100 t, and velocity
was 20 m/s (kinetic energy = 2 × 109 J), the overall structure was deformed. The observed
failure modes in the reticulated shell structure demonstrated a clear correlation with the
kinetic energy of the impact. Higher kinetic energies, resulting from either increased mass
or velocity, tended to cause more extensive deformation and damage, highlighting the
kinetic energy of the impactor and determining the severity of the impact on the structure.

The time-history curves of the kinetic energy of the impactor in the entire impact
process under the three failure modes shown in Figure 6. can be used to analyse the
mechanism behind these modes; these curves are shown in Figure 7. When the impact
mass was 20 t and the velocity was 10 m/s, the corresponding initial kinetic energy was
at a minimum of approximately 1 × 106 J. If the initial kinetic energy of the impactor was
small, the reticulated shell structure would undergo local depression deformation when
unpenetrated failure occurred. Additionally, when the structure was damaged, the kinetic
energy corresponding to the impactor remained constant. Accordingly, the energy change
rates of the impactor under the three situations were calculated as 96.06, 99.45, and 99.13%,
respectively, and this part of the changed energy was absorbed by the reticulated shell
structure. It can also be seen that the slope of the kinetic energy time course curve can reflect
the impact duration accurately. The kinetic energy time-history curve in Figure 7c changed
from a convex function at the beginning to a concave function, with the slope smaller than
Figure 7a,b at each time point. The slope of Figure 7b was also larger than Figure 7a at
each time point, so the magnitude of the impact duration relationship is: (c) > (a) > (b).
It can be observed from Figures 6 and 7 that the reticulated shell structure exhibited a
local bending response under impact with a mass of 20 t and a velocity of 10 m/s, and the
structure exhibited an overall bending/shear response with a mass of 5 t and a velocity
of 50 m/s. The energy change rate of the structure exhibiting an overall bending/shear
response (99.45) is significantly larger than that of the structure exhibiting a local bending
response (96.06). Meanwhile, the impact duration of structures that exhibited an overall
bending/shear response was shorter than that of structures exhibiting a local bending
response. It could be concluded that the energy dissipation capacity of the reticulated
shell structure varies significantly with the form of response, which is influenced by the
combination of impact mass and velocity.
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Figures 8 and 9 show the time-history curves of the displacement and axial stress,
respectively, of the typical nodes and members experiencing unpenetrated failure. Figure 8
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shows that when the weight of the impactor is 20 t and the impact velocity is 10 m/s, only
nodes 2, 3, and 4 exhibited obvious displacements, and the maximum displacement is
roughly 4.5 m. When the weight was 100 t and the impact velocity was 20 m/s, the seven
typical nodes exhibit obvious displacements, and the maximum displacement was approxi-
mately 27 m. By comparing the displacement amplitudes of each node in Figure 8, it can be
found that the magnitude of the displacement amplitudes of each node is (c) > (b) > (a), and
the magnitude of the initial kinetic energy of the impactor is (c) > (b) > (a). Therefore, it can
be concluded that the displacement amplitude of the node is positively correlated with the
initial kinetic energy of the impactor for unpenetrated failure. Furthermore, comparisons
of deformation patterns of structures were conducted: the structure exhibiting a local
bending response, as shown in Figure 8a, showed localised deformations (nodes 1, 2, and
4); for the structure exhibiting an overall bending/shear response, as shown in Figure 8b,
the deformations were more uniform and distributed over a larger area (nodes 1 to 6).
Comparing the members’ axial stress of structures exhibiting different responses, it was
found that for structures exhibiting a local bending response, as shown in Figure 9a, only
a few members (member R2) experienced significant stress during the impact duration;
for structures exhibiting an overall bending/shear response, as shown in Figure 9b, most
selected members exhibited significant axial stress. This phenomenon can also explain why
the structures exhibiting an overall bending/shear response had a stronger energy dissi-
pation capacity. By comparing Figures 8 and 9 and considering the relationship between
the nodes and members shown in Figure 4, it is inferred that the stress variation law of the
members is consistent with the deformation law. For example, in Figure 9a, the axial stress
of member R2 is the highest, and R2 corresponds to nodes 2 and 3, as shown in Figure 4.
Therefore, the displacements of nodes 2 and 3 in Figure 8a are also the largest.
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Figure 8. Time-history curve of displacement of typical nodes experiencing unpenetrated failure:
(a) 20 t, 10 m/s; (b) 5 t, 50 m/s; (c) 100 t, 20 m/s.
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Figure 9. Time-history curve of axial stress of typical bars experiencing unpenetrated failure: (a) 20 t,
10 m/s; (b) 5 t, 50 m/s; (c) 100 t, 20 m/s.
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3.2.2. Penetrated Failure

The deformation process of the reticulated shell structure experiencing penetration
failure under the impactor is shown in Figure 10. When the reticulated shell structure
was subjected to an impact load, the structure diffused around the impact point as the
center, resulting in both deformation and the members near the impact point breaking. In
contrast to unpenetrated failure, the failure characteristics of penetrated failure included
the reticulated shell member breaking and the impactor penetrating the reticulated shell
structure. Depending on the impact parameters, different types of penetrated failure modes
may occur in reticulated shell structures. Figure 11 shows several typical penetrated failure
modes of reticulated shell structures under different impact masses and velocities: when
the impact mass was 50 t and the velocity was 50 m/s (kinetic energy = 6.25 × 107 J), the
reticulated shell structure experienced wide-ranging depression under impact; when the
impact mass was 50 t and the velocity was 150 m/s (kinetic energy = 5.62 × 108 J), the
reticulated shell structure was partially damaged under impact; when the impact mass
was 50 t and the velocity was 500 m/s (kinetic energy = 6.25 × 109 J), the reticulated
shell structure exhibited local penetration, and there was almost no deformation in the
non-impact area.
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Figure 12 shows the kinetic energy-time history curves of the reticulated shell structure
experiencing penetrated failure under different impact parameters. The larger the initial
impact velocity of the impactor, the faster its energy attenuation. When the initial impact
velocity was 50 m/s, it took approximately 1 s to decay to a stable value. When the initial
impact kinetic energies were 6.25 × 107, 5.63 × 108, and 6.25 × 109 J, the energy change
rates of the shell structure before and after contact with the impactor were 23.97, 1.48, and
0.24%, and the corresponding dissipated energy values were 15.0 × 106, 8.3 × 106, and
15.0 × 106 J. It could be found that the dissipated energy values were relatively close. This
was because the impactor penetrated the reticulated shell structure during the penetration
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failure. This indicated that for structures with penetration failure, the kinetic energy of the
impactor has exceeded their energy dissipation capacities; the energy change rate naturally
decreased as the kinetic energy of the impactor increased.
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Figures 13 and 14 show the time-history curves of the displacement and axial stress
of the typical nodes and members when the reticulated shell structure is experiencing
penetrated failure. When the impact rate was 500 m/s, node 3 was damaged. Therefore,
the displacement time-history curve of node 3 is not shown in Figure 13c. The greater the
initial impact velocity of the impactor, the shorter the impact failure time of the reticulated
shell structure. When the initial impact velocity was 50 m/s, the longest time required
for completion of the impact was approximately 2 s. In Figure 13a, for the impactor with
an initial kinetic energy of 6.25 × 107 J, the deformations were uniform and distributed
over a large area, and the structure exhibited an overall bending/shear response as the
part structures with unpenetrated failure. In Figure 13b, for the impactor with an initial
kinetic energy of 5.63 × 108 J, node 3, which was in contact with the impactor, underwent a
significant displacement, and other nodes experienced small and fluctuating displacements
or not. This was because the structure exhibited a local bending response. When the initial
kinetic energy of the impactor was 6.25 × 109 J, as displayed in Figure 13c, the impactor
instantly penetrated the structure. The node in contact with the impactor was destroyed
within 0.02 s; the other nearby nodes all experienced significant deformation in a short
period of time. This is because the structure dissipated a large amount of energy in a
short time and exhibited local penetration. Figure 14 shows that all three impactors caused
fracture failure of the member of the reticulated shell structure, which is also consistent with
the failure mode shown in Figure 11. The structure, as displayed in Figure 14a, exhibited
an overall bending/shear response, and most of the selected members participated in
the dynamic load-carrying process. The structure displayed in Figure 14b exhibited a
local bending response, and member R2 participated in the dynamic load-carrying process
together with the nearby members. The structure displayed in Figure 14c exhibited local
penetration, and fewer members participated in the dynamic load-carrying process except
member R2.
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Figure 13. Time-history curve of displacement of typical nodes experiencing penetrated failure:
(a) 50 t, 50 m/s; (b) 50 t, 150 m/s; (c) 50 t, 500 m/s.
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Figure 14. Time-history curve of axial stress of typical members experiencing penetrated failure:
(a) 50 t, 50 m/s; (b) 50 t, 150 m/s; (c) 50 t, 500 m/s.

4. Comparative Analysis of the Dynamic Response of Reticulated Shell Structure at
Different Impact Angles

In the previous section, the K6 single-layer spherical reticulated shell structure was
subjected to an oblique impact at 66.25◦ under various working conditions. Its failure
modes were divided into two types, and the dynamic response characteristics of each
failure mode were studied. Owing to the great uncertainties in practically using impactors,
studying only the impact in the inclined direction at 66.25◦ is far from sufficient. Therefore,
in this section, we have considered the impact angle of the impactor as the variable and
have selected 15, 30, 45, 60, and 75◦ on the plumb surface as the impact angles to study the
effect of the impact angle on the dynamic response of K6 single-layer spherical reticulated
shell structures.

4.1. Influence of Oblique Impact Angle on Impact Response of Reticulated Shell Structure
Experiencing Unpenetrated Failure

In this section, we focused on the effects of an oblique impact angle using a selected
impact mass of 20 t and an impact velocity of 10 m/s (kinetic energy = 1 × 106 J). Table 5 lists
the impact duration, maximum impact force, and energy transfer rate for the reticulated
shell structure at various impact angles. To quantitatively assess the influence of the impact
angle, we introduced the coefficient of variation (CoV), a measure that represents the
ratio of the standard deviation to the mean of a data set, providing insight into the data’s
dispersion. Our calculations revealed that the CoV for impact duration, maximum impact
force, and energy transfer rate were 0.028, 0.054, and 0.168, respectively. These findings
suggested that the impact angle had a negligible impact on the duration and force of the
impact, but it had a substantial role in determining the rate of energy transfer.
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Table 5. Impact duration, maximum impact force, and energy transfer rate at various impact angles
for unpenetrated failure.

Impact Angle (◦) Impact Duration (s) Maximum Impact Force (kN) Energy Transfer Rate (%)

15 1.29 323.63 56.9
30 1.23 325.78 77.8
45 1.31 333.79 91.8
60 1.29 293.35 95.8

66.25 1.27 300.99 96.06
75 1.21 291.74 96.04

CoV 0.028 0.054 0.168

Figure 15 shows the deformation of the reticulated shell structure experiencing unpen-
etrated failure at different oblique impact angles. Generally, under the six impact angles
analysed here, the reticulated shell structures exhibited depression deformation near the
impact point, and they all exhibited the overall bending/shear response. When the oblique
impact angle was 15◦, the impactor reversely bounced back after impacting the reticulated
shell structure and did not contact the reticulated shell structure, as shown in Figure 15a.
When the oblique impact angle was greater than 15◦, the impactor did not bounce back but
was in continuous contact with the reticulated shell structure. Accordingly, at this angle,
the lowest energy transfer rate was only 56.9%, as listed in Table 5.
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Figure 16 shows the impact force-time history curves and kinetic energy-time history
curves when the reticulated shell structure is not penetrated at different impact angles.
The time-history curves of the impact force at different angles exhibited the same trend
(Figure 16a), but the energy transfer rate gradually increased with an increase in the impact
angle (Figure 16b). When the oblique impact angle exceeded 45◦, the energy transfer rate
reached 90%, and the structure had a close energy transfer rate under oblique impact with
different impact angles. It could be concluded that when the oblique impact angle is greater
than 45 ◦, its impact on the energy dissipation capacity of the structure is limited.

Figure 17 shows the displacement-time history curves of typical nodes of the reticu-
lated shell structure experiencing unpenetrated failure at different oblique impact angles.
The oblique impact angle had a significant influence on the node displacement. The dis-
placement of the typical nodes was generally greater at an impact angle greater than 60◦

than at an angle less than 60◦. Referring to the energy transfer rate shown in Table 5,
node displacement is positively correlated with the energy transfer rate. This is because
structures that exhibit similar responses typically have energy dissipation capacities that
are positively correlated with the extent of their structural deformations.
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Figure 16. Time-history curve of impact force and kinetic energy at different impact angles for
unpenetrated failure: (a) time-history curve of impact force; (b) time-history curve of kinetic energy.

Buildings 2023, 13, x FOR PEER REVIEW 16 of 24 
 

   

(a) (b) (c) 

   
(d) (e) (f) 

 
(g) 

Figure 17. Displacement-time history curves of typical nodes experiencing unpenetrated failure at dif-
ferent impact angles: (a) node 1; (b) node 2; (c) node 3; (d) node 4; (e) node 5; (f) node 6; (g) node 7. 

Figure 18 shows the time-history curves of the axial stress of a typical bar experienc-
ing unpenetrated failure at different oblique impact angles. The typical bar did not break 
under different impact angles in this section. The stress of member R2 was the largest, and 
that of member R7 was the smallest. This was because R2 was close to the position of the 
impactor. It could be observed that the sensitivity of members positioned differently 
within the structure to impacts at various angles was not uniform. For instance, for mem-
ber R3, the impact at a 75° angle was of greater concern. Meanwhile, member R1 was par-
ticularly susceptible to failure when subjected to an impact at a 45° angle, warranting 
closer attention due to its heightened vulnerability at this specific angle. This variability 
in response underscores the importance of considering the angle of impact in the struc-
tural analysis of each individual member. 

Figure 17. Displacement-time history curves of typical nodes experiencing unpenetrated failure at
different impact angles: (a) node 1; (b) node 2; (c) node 3; (d) node 4; (e) node 5; (f) node 6; (g) node 7.



Buildings 2024, 14, 633 15 of 21

Figure 18 shows the time-history curves of the axial stress of a typical bar experiencing
unpenetrated failure at different oblique impact angles. The typical bar did not break
under different impact angles in this section. The stress of member R2 was the largest,
and that of member R7 was the smallest. This was because R2 was close to the position of
the impactor. It could be observed that the sensitivity of members positioned differently
within the structure to impacts at various angles was not uniform. For instance, for
member R3, the impact at a 75◦ angle was of greater concern. Meanwhile, member R1 was
particularly susceptible to failure when subjected to an impact at a 45◦ angle, warranting
closer attention due to its heightened vulnerability at this specific angle. This variability in
response underscores the importance of considering the angle of impact in the structural
analysis of each individual member.
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Figure 18. Stress-time history curve of a typical member under different impact angles: (a) R1; (b) R2;
(c) R3; (d) R4; (e) R5; (f) R6; (g) R7.

4.2. Influence of Oblique Impact Angle on Impact Response of Reticulated Shell Structure
Experiencing Penetrated Failure

In the previous section, the unpenetrated failure of reticulated shell structures at
different oblique impact angles was studied. In this section, the impact angle on the impact
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response of the penetrated failure was studied. Similar to the previous section, this section
also considered impact angles of 15, 30, 45, 60, 66.25, and 75◦. In the analysis in this
section, the mass of the impactor was 50 t, and the impact velocity was 200 m/s (kinetic
energy = 1 × 109 J). Table 6 lists the impact duration, maximum impact force, and energy
transfer rate at different oblique impact angles. The closer the impact angle was to 45◦,
the greater the impact force. Regardless of the impact angle, the energy transfer rate of
the structure experiencing penetration failure studied in this section was small. In several
cases listed in Table 6, the energy transfer rate is approximately 1%, which is significantly
lower than the rates under unpenetrated failure shown in Table 5. It could be calculated
that the CoV for the duration of impact, maximum impact force, and energy transfer rate
were 0.259, 0.489, and 0.094, respectively. It could be seen that, in contrast to unpenetrated
failure, the impact angle had a greater influence on the duration of impact and maximum
impact force but a smaller impact on the energy transfer rate.

Table 6. Impact duration, maximum impact force, and energy transfer rate at various impact angles
for penetrated failure.

Impact Angle (◦) Impact Duration (s) Maximum Impact
Force (×103 kN)

Energy Transfer Rate
(%)

15 0.015 12.28 1.07
30 0.017 20.22 1.05
45 0.012 22.48 0.95
60 0.008 10.64 0.90

66.25 0.010 5.05 0.87
75 0.010 7.37 0.83

CoV 0.259 0.289 0.094

Figure 19 shows the failure modes of the reticulated shell structure when penetration
failure occurs at different oblique impact angles. In the six cases shown in Figure 19, the
reticulated shell structures all have depressions near the impact point. It could be observed
that the oblique impact angles of the impactor did not change the response form of the
structures, and these structures all exhibited a local bending response. However, from the
failure modes, it could be found that when the angle is 30 or 45◦, the impact areas on the
structures were more dispersed compared to other impact angles. This dispersed force
distribution helped to reduce local stress concentration and explained the phenomenon that
the maximum impact force with these angles is greater, especially for the oblique impact
angle of 45◦.

Figure 20 shows the impact force-time history curves and kinetic energy-time history
curves when penetrated failure occurs in the reticulated shell structure at different impact
angles. As shown in Figure 20a, the impact force at all angles decreases to zero within
0.05 s, indicating that the impactor instantly penetrated the reticulated shell structure. It
was found that the maximum impact force on the structure occurred when the impact angle
is 45 ◦. It could be observed in Figure 20b that the oblique impact angles had a slight impact
on the energy change rate, while a small angle could only bring a small improvement in
the energy change rate.

Figure 21 shows the displacement-time history curves of typical nodes in the case
of penetrated failure at different impact angles. In several cases analysed in this section,
node 3 was damaged under impact. Therefore, the displacement-time history of node
3 is not shown in Figure 22. Generally, when the oblique angle is less than 45◦, the
displacement deformation of the point is relatively large, maintaining consistency with the
larger energy transfer rate in Table 6 and Figure 20b. Figure 22 shows the maximum stress
of typical bars at different oblique impact angles. Obviously, under the six impact angles
shown in Figure 19, member R2 experienced fracture failure. It could be observed from
Figure 22b that, compared to larger impact angles, when the impact angle is less than 45 ◦,
the maximum impact force of the structure is greater, but the stresses of the member R3,
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which was in contact with the impactor, are relatively smaller. This indicated that, under
these angles of impact, the structure could effectively distribute the impact force to other
members of the structure.
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Figure 21. Displacement-time history curves of typical nodes experiencing penetrated failure at
different impact angles: (a) node 1; (b) node 2; (c) node 4; (d) node 5; (e) node 6; (f) node 7.

Buildings 2023, 13, x FOR PEER REVIEW 21 of 24 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

 
(g) 

Figure 22. Maximum stress curve of a typical member under different impact angles: (a) R1; (b) R2; 
(c) R3; (d) R4; (e) R5; (f) R6; (g) R7. 

5. Conclusions 
In this study, based on the experimentally verified numerical simulation method, a 

series of studies on the impact response of reticulated shell structures under oblique loads 
were conducted. The main conclusions are as follows: 
1. The failure modes of the reticulated shell structure under oblique impact loads were 

divided into two types: unpenetrated and penetrated failure modes. In the case of 
unpenetrated failure, most of the impact energy was absorbed by the reticulated shell 
structure; the structures always exhibited a local bending response for the impactor 
with a small initial kinetic energy and an overall bending/shear response for the im-
pactor with a large one. In the case of penetrated failure, only a small part of the 
impact energy was absorbed by the reticulated shell structure; the structures exhib-
ited an overall bending/shear response or local penetration, depending on the initial 
kinetic energy of the impactor. 

2. For the reticulated shell structure experiencing unpenetrated failure mode, the 
oblique impact angle had a quite limited effect on the impact duration and maximum 

15° 30° 45° 60° 66.25° 75°
150

200

250

300

350

400

St
re

ss
 (M

Pa
)

Impact angle
15° 30° 45° 60° 66.25° 75°

800

850

900

950

1000

1050

1100

1150

1200

St
re

ss
 (M

Pa
)

Impact angle
15° 30° 45° 60° 66.25° 75°

250

300

350

400

450

St
re

ss
 (M

Pa
)

Impact angle

15° 30° 45° 60° 66.25° 75°
150

200

250

300

St
re

ss
 (M

Pa
)

Impact angle
15° 30° 45° 60° 66.25° 75°

100

150

200

St
re

ss
 (M

Pa
)

Impact angle
15° 30° 45° 60° 66.25° 75°

100

150

200

St
re

ss
 (M

Pa
)

Impact angle

15° 30° 45° 60° 66.25° 75°
50

100

St
re

ss
 (M

Pa
)

Impact angle

Figure 22. Maximum stress curve of a typical member under different impact angles: (a) R1; (b) R2;
(c) R3; (d) R4; (e) R5; (f) R6; (g) R7.



Buildings 2024, 14, 633 19 of 21

5. Conclusions

In this study, based on the experimentally verified numerical simulation method, a
series of studies on the impact response of reticulated shell structures under oblique loads
were conducted. The main conclusions are as follows:

1. The failure modes of the reticulated shell structure under oblique impact loads were
divided into two types: unpenetrated and penetrated failure modes. In the case of
unpenetrated failure, most of the impact energy was absorbed by the reticulated shell
structure; the structures always exhibited a local bending response for the impactor
with a small initial kinetic energy and an overall bending/shear response for the
impactor with a large one. In the case of penetrated failure, only a small part of the
impact energy was absorbed by the reticulated shell structure; the structures exhibited
an overall bending/shear response or local penetration, depending on the initial
kinetic energy of the impactor.

2. For the reticulated shell structure experiencing unpenetrated failure mode, the oblique
impact angle had a quite limited effect on the impact duration and maximum impact
force, but had an important effect on the energy dissipation capacity of the structures,
especially for the oblique impact angle less than 60◦. When the impact angle exceeded
60◦, the energy change rates of the structure remained consistently above 90%, and
the influence of the oblique impact angle on the energy change rate was limited.

3. For the reticulated shell structure experiencing penetrated failure mode, the oblique
impact angle had a slight effect on the energy change rate of the structure. However, it
played an important part in the maximum impact force of the structures. Compared to
other angles, the structure exhibits the greatest impact force at an oblique impact angle
of 45◦. It was noteworthy that the impact angle had a relatively limited influence on
the response mode of the structures experiencing both unpenetrated and penetrated
failure modes.

This study delved into the impact of various oblique impact angles on reticulated shell
structures. The findings could offer valuable insights for practical engineering applica-
tions, particularly in the design of reticulated shell structures. These insights could guide
engineers in better designing these structures, considering the oblique impact angles, to
enhance their performance and resilience in real-world scenarios.
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