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Abstract: The application of machine learning (ML) for the automatic classification of building
elements is a powerful technique for ensuring information integrity in building information models
(BIMs). Previous work has demonstrated the favorable performance of such models on classification
tasks using geometric information. This research explores the hypothesis that incorporating contex-
tual information into the ML models can improve classification accuracy. To test this, we created
a graph data structure where each building element is represented as a node assigned with basic
geometric information. The connections between the graph nodes (edges) represent the immediate
neighbors of that node, capturing the contextual information expressed in the BIM model. We
devised a process for extracting graphs from BIM files and used it to construct a graph dataset of
over 42,000 building elements and used the data to train several types of ML models. We compared
the classification results of models that rely only on geometry, to graph neural networks (GNNs)
that leverage contextual information. This work demonstrates that graph-based models for building
element classification generally outperform classic ML models. Furthermore, dividing the graphs
that represent complete buildings into smaller subgraphs further improves classification accuracy.
These results underscore the potential of leveraging contextual information via graphs for advancing
ML capabilities in the BIM environment.

Keywords: machine learning; graph neural networks; building information modeling; classification;
semantic enrichment; graph classification

1. Introduction

The possibility to integrate machine learning (ML) in architecture, engineering, and
construction (AEC) introduced numerous opportunities for advancement in design, build-
ing, and operation. The ability to process vast amounts of AEC data can support intelligent
decision making in this complex field. Data, specifically machine-readable data, are the key
to enabling ML applications.

The introduction of building information models (BIMs) has established a standard-
ized framework for data representation in a machine-readable form, facilitating efficient
modifications, queries, sharing, and analysis. However, effective utilization of these advan-
tages is highly dependent upon the accurate representation of information within the BIM
file. In practice, the accuracy of the information in a BIM file is not guaranteed. Thus, a
prerequisite for using many advanced applications is the processing of the file to assure
the quality of information and its adequate representation for the intended use. Semantic
enrichment (SE) of BIM models has been suggested [1] in response to these challenges. SE
is a goal-driven technique that aims to infer implicit information and provide an explicit
representation of that information in accordance with the expected information structure of
a receiving platform. Object classification plays a crucial role in this context, as accurately
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identifying building elements serves as the foundation for various applications. Correct
object classification is imperative where the original BIM file contains errors, corrupt, or in-
complete classification information. The demand for automated enrichment is underscored
by the absence of a standardized representation of semantic information in widely used
modeling software such as Autodesk Revit [2].

Although the provided semantic information is often inaccurate, the geometric and
topologic representation of the building elements are usually accurately provided. In recent
academic studies, various methodologies have been suggested for enriching building
information by utilizing the geometric characteristics of building elements as input [3].
These approaches span a broad spectrum of techniques, including heuristics and machine
learning. These are comprehensively discussed in the background section of this work.
While these methodologies have demonstrated noteworthy accomplishments, it is crucial
to recognize that the topological aspect can also be harnessed for element classification,
potentially resulting in enhanced accuracy.

We present a novel approach to enhance this accuracy by incorporating contextual
information using geometric proximity graphs (GPGs) to represent building elements. GPG
representations, such as Voronoi and Delaunay, provide an elegant solution to various
computational challenges. In this context, we propose that a building model be translated
into a GPG in which neighboring building elements, defined as intersections between
elements, are connected by a graph edge. The nodes in the GPG of the building also contain
a description of the element’s basic features used in other classification methods.

The resulting GPG can be used as the basis for a graph neural network (GNN). GNN
is a relatively recent development, allowing ML applications directly to graph-based data
structures instead of Euclidean 2D information [4]. GNNs have demonstrated efficacy in
enhancing predictions across various domains, including social networks, molecules, pro-
teins, and knowledge graphs. Their performance excels in scenarios where the relationships
between elements carry significant predictive implications.

The primary objective of this research was to investigate the potential enhancement of
building element classification through the incorporation of contextual information. Our
hypothesis posited that proximity relationships among building elements could function
as indicators of the elements’ identity or class, thus presenting valuable insights into
improving the predictive capabilities of ML models.

To test this hypothesis, we extracted a dataset of over 35,000 building elements sourced
from 11 different BIM files. Our novel extraction method enabled us to store proximity
relations as well as geometric features and construct a GPG from the BIM model. The
dataset was used to train different ML models to classify the basic categories of the BIM
elements. We trained several types of classic ML models such as logistic regression and
random forest as well as GNN models with different graph convolutional layers.

A comparison of the performance of the different models demonstrates that including
contextual information through GNN models enhances predictive accuracy. Our results
also reveal that among the tested GNN architectures, graph transformer networks yield the
most favorable outcomes. Additionally, we show that partitioning the graph into subgraphs
and employing graph classification techniques on these subsets substantially improves
performance compared to the node classification task. Moreover, this subdivision into
smaller data chunks exhibits practical advantages from an operational perspective.

Based on these results, we suggest that the incorporation of graph relations into
conventional semantic enrichment processes can be seamlessly integrated into modeling
workflows. These processes hold the potential for validating existing BIM information and
reducing modeling errors. Furthermore, they can enable automatic translation between
simplified 3D models and BIM software such as Autodesk Revit [2]. Finally, we envision a
future BIM “autocorrect” functionality, which validates an element’s type and properties
using its geometry and topology.
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2. Background
2.1. BIM and Semantic Enrichment

The emergence of BIM has ushered in a transformative paradigm in building design,
where architectural information is stored as parametric objects with physical and material
properties [5]. BIM technology has revolutionized the process of architectural design and
construction [6], yielding profound benefits across diverse domains, including project man-
agement, economics, planning, interoperability, operational efficiency, and environmental
considerations [7]. However, the abundance of semantic information generated in BIM
models demands paying attention to data accuracy and consistency. It also introduces the
interoperability problem as interpretations of semantic labels vary among stakeholders and
software tools lead to inconsistencies, hindering seamless data exchange.

Contemporary BIM authoring tools originated in software developed at the end of the
previous century when object-oriented design was the standard software paradigm [8]. The
industry foundation class (IFC) standard is fundamental for this object-based data exchange.
Although the IFC was designed to allow seamless collaboration and data exchange, in
practice, when it comes to mapping entities and their relationships, the lack of universally
enforced semantic classification and categorization protocols may lead to multiple data
structures representing identical information. Different stakeholders may assign distinct
semantic labels to similar objects, resulting in inconsistencies that pose a considerable
challenge to interoperability [9]. For example, wide columns can be easily modeled using a
wall element category. Diverse mapping protocols and classification methods employed by
various BIM authoring tools further enhance the problem.

This variability in modeling semantics can lead to diminished data quality for further
analysis. Moreover, the diverse classification methods employed by various authoring
software further exacerbate issues related to interoperability and information exchange.
The concept of semantic enrichment, as proposed by Belsky et al. [10], refers to generic
expert systems that infer the semantic content of a model element. Enrichment processes
were designed to address missing or erroneous information provided in the models, and
to enhance interoperability between diverse software systems. Belsky proposed semantic
enrichment for simplifying the process of semantic interpretation for receiving BIM appli-
cations, and reducing the need for domain-specific model view definitions. The approach
was tested in a prototype platform called SeeBIM using precast concrete building models
for automatically identifying precast joints, slab aggregations, etc. Later, the same SeeBIM
platform was enhanced for enriching models obtained from point cloud data to support
bridge inspection [11]. Bloch et al. [12] demonstrated the use of the SeeBIM engine for
enriching BIM models in preparation for automated code checking (ACC), using a local
regulatory code clause for security rooms in residential buildings.

Semantic enrichment has also been explored in the context of semantic web appli-
cations. As stated in [13], one of the reasons for using semantic web technologies is to
enable logical inference through the use of first order logic (FOL) to infer new semantic
information from the original building model. The major difference between this approach
and the IFC-based enrichment, is in the representation of the building information, which
in this case is a structured graph (resource description framework (RDF)).

As accurate identification of building elements is key to many possible applications
(e.g., ACC, quantity takeoff, energy analysis, etc.), several researchers focused on automated
BIM integrity checks through BIM object classification. For example, Koo et al. [14] used
support vector machine to identify misclassified elements in the IFC files, but no justification
for the choice of the algorithm was provided. Based on the work of [15], classification was
identified as one of four types of semantic enrichment tasks (classification, association,
calculation, and creation). As for the computational methods for enriching the models,
Bloch and Sacks [15] suggest a dependency on the nature of the elements to be classified,
but specific classification algorithms for each type of enrichment task were not suggested.
This was later enhanced and fitted to semantic enrichment using a graph structure for
representing building information [16], where the element classification task was tackled



Buildings 2024, 14, 527 4 of 22

using different ML algorithms, pointing to the superior performance of decision trees and
random forests. Although the general direction of this work was to generate enriched BIM
graphs to enable better collaboration and enhance interoperability, it seems an opportunity
to leverage the graph structure for element classification was missed.

Other research endeavors focused on the classification of building elements, employing
the geometric characteristics of elements extracted from BIM or IFC files as input. The
system proposed by Belsky et al. [10] can infer the class of both objects and spaces based
on their corresponding IFC properties. In the study conducted by Ma et al. [2], pairwise
relationship matrices between objects are utilized to identify the objects. Their proposed
method encapsulates the domain expert knowledge of the element classes, including
relationships between elements, in the form of a matrix. Once the shape features and
the spatial relationships of the objects to be classified are computed, the classification is
performed using similarity calculation between the features of the models and those in the
knowledge base. This work points to the importance of leveraging the relational aspect
between the building elements.

Realizing that space functionality is key for advance procedures such as ACC, Bloch
and Sacks [17] compared heuristic and feature-based ML methods in the context of space
function classification and demonstrated that ML methods offer certain advantages in the
context of semantic enrichment. However, their proposed approach is iterative, relying
completely on geometric features in the first stage, and enhancing the results by adding
connection features (access relationships between spaces), in the consecutive phases. This
again points to the benefit of using relational information for classifying BIM elements. The
same problem was later explored as a graph-based classification task where graph neural
networks (GNNs) proved to be useful [18] and reached almost 80% classification accuracy
with no need for iterations.

Kim et al. [19] trained convolutional neural networks (CNNs) to classify 2D images
extracted from BIM objects. Koo et al. [20] utilized CNNs targeted for 3D object recognition,
using either point clouds or multiple 2D views. They achieved improved classification
of element subcategories such as door types surpassing a feature-based model—support
vector machine (SVM). They emphasize the need for automatic extraction and processing
of 3D objects from the BIM file to apply these methods. Finally, Wu et al. [21] compared
the effectiveness of several classic feature-based machine learning models in predicting
building element classes. They found that random forest (RF) models achieve the best
classification results. However, their dataset is relatively small and does not originate
from real BIM files. Additionally, they trained their models using BIM-derived features
such as radial dimensions, which are not consistently available across all 3D authoring
software platforms.

Despite initial successes in the field of ML for semantic enrichment, several research
opportunities persist: model predictions can be improved, particularly when working with
data derived from real BIM files. There is a need to broaden the range of types identified
to accommodate the variety of architectural elements. Furthermore, the data acquisition
process for enrichment can be generalized (in the sense that it should rely only on basic
geometric features) and streamlined (in the sense that the data extraction from the original
file should be efficient).

Many semantic enrichment efforts, aimed at enhancing interoperability and supporting
various design analysis platforms, are based on parsing the IFC file. Although the potential
benefits of graph representations for semantic enrichment have previously been suggested,
to the best of the authors’ knowledge, a graph-based learning approach for BIM element
classification has not been demonstrated before. Furthermore, the added value of using
contextual knowledge has not been compared to geometry-based classification approaches.

2.2. Buildings as Graphs

Graphs are mathematical constructs comprised of nodes and edges that represent
relationships between these nodes [22]. They are effective tools for describing sets of entities,
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ranging from molecules to social networks [23]. In their seminal work “the social logic of
space”, Hillier and Hansen [24] introduced the concept of utilizing graphs to represent
architectural topological information, specifically the spatial relationships between rooms
and their connectivity. Martin et al. [25] conducted a comprehensive review of various
approaches to represent such topological information. They emphasize its importance in
informing design decisions. Langenhan et al. [26] proposed the adoption of topological
graphs to facilitate the retrieval of building information. Strug [27] applied topological
graphs to evaluate design quality. Isaac et al. [28] described how BIM and graph theory
could be integrated, as a preliminary step towards defining a model which represents
building topology. Topological graph representations offer easily describe movement
within a building, and consequently, have been employed for the analysis of building
security [29], access control [30], and accessibility [31].

A different topological approach focuses on the physical components of the building
and employs graph data structures to represent their relationships. By leveraging the
inherent neighbor-finding capabilities of graph data structures, these queries offer markedly
improved efficiency compared to those relying on tabular data. Geometry, properties, and
relationships between the elements, as defined in IFC, often form the foundation for
extracting these graphs. These derived graphs contain a wealth of information and enable
complex queries within the model. Various techniques for extracting graphs from IFC have
been reported in the literature [32–34]. These graphs are used for rule checking [35], for
data merging [36], for generative design of modular buildings [37], and for model auditing
and quantity takeoffs [38].

GPGs are a special instance of these topological graphs. They use the graph structure
to represent the geometric distance between elements. These elegant representations are
often used in classic graph algorithms such as Delaunay, Voronoi, and many others. For
this research, we opted for an extreme interpretation of proximity, where an edge means an
actual intersection between two building elements. We chose this relation since all building
elements must touch at least one other element, and because this relation is relatively easy
to check using a geometric intersection algorithm.

Our hypothesis is that the intersection relations between building elements could be a
valuable indicator for the class of the building element. A diagram depicting these relations
and their distinct characteristics across various types of building elements is shown in
Figure 1. We set out to see if we can improve the performance of element classification
using these relations. It should be noted that at this point, our focus is exclusively on
physical building elements such as walls, doors, floors, etc. Abstract entities such as spaces
or zones are not in the scope of this work.
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2.3. Classes of ML Models

ML is a branch of artificial intelligence (AI) dedicated to developing models that allow
computers to learn from data and make predictions autonomously, without the need for
explicit programming [39]. Within this highly popular domain, our research concentrates
on three main types of ML models.

Classic machine learning, also known as traditional machine learning, comprises a
collection of models and algorithms designed to predict an output label based on a set of input
features. Classic machine learning techniques have been in extensive use since the previous
century and have achieved success in various domains [40]. Among the most commonly
used models in this category are the following: logistic regression (LR), originally proposed
as a model for predicting drug potency [41], for which the coefficients of a logarithmic
probability function are iteratively adjusted until the best prediction is reached [42]; support
vector machines (SVMs), originally developed in Russia during the 1960s [43], are pattern
recognition models that position a hyperplane between two groups in a dataset to maximize
the margin between them; decision trees are models consisting of a sequence of binary tests
leading to the correct classification branch [44]; and random forests (RFs), which employ an
ensemble of decision trees with a voting mechanism [45]. These models exhibit exceptional
performance in tasks such as classification, regression, clustering, and anomaly detection.

Artificial neural networks (ANNs) represent another subfield of ML that focuses on
networks inspired by a simplified model of the human brain. These models can automati-
cally learn to represent data through a training process involving forward and backward
propagation of information [46]. Multi-layered perceptrons (MLPs) are one of the first exam-
ples of such networks. These feed-forward networks have been successfully utilized since
the 1980s for tasks such as prediction, function estimation, and pattern recognition [47].

Deep learning (DL) networks are ANNs comprising a network architecture with
several consecutive layers of neurons. These models gained popularity when [48] their
successful application for character recognition was demonstrated. Later, AlexNet, a DL
model with a convolutional neural network (CNN) architecture, achieved unprecedented
results on the ImageNet image recognition dataset [49,50]. Due to the nature of the convo-
lution operator, CNN-type models work best with data structured as 2D matrices, such
as images. Other DL models excel in tasks such as natural language processing, speech
recognition, and generative modeling.

Graph neural networks (GNNs) are a specialized type of neural network that is
designed to work with graph-structured data. Bronstein et al. [4] describe the evolution
of these networks to perform 2D convolutions on non-Euclidean data such as graphs,
where traditional convolution operations are not well defined. In GNNs, information from
neighboring graph nodes is embedded in the nodes when training the network, making
them sensitive to the node’s context. GNNs are highly effective in tasks that involve graph
analysis, such as protein analysis, social networks, and knowledge graphs [51,52]. They
can be trained to classify single nodes and edges of a graph, as well as entire graphs.

The use of GNNs in AEC is a relatively recent field of research. Recent studies include
the use of GNNs to classify the function (as in use) of architectural spaces. This approach
relies on a topological connectivity graph, in which rooms are connected to each other
according to the existence of a physical passageway. Buruzs et al. [53] utilized graph
convolutional networks (GCNs) on topology graphs extracted from IFC files to identify
room functions in apartments. Wang et al. [18] used an improved GNN model called
SAGE-E to identify room types in apartment layouts, achieving 79% accuracy. Similar
graph representations were also used for an initial proof of concept for applying GNNs
as the checking mechanism for design review, using accessibility requirements as a test
case [54]. Yang and Huang [55] employed GNNs to classify the type of shopping mall,
according to its entire connectivity graphs. However, these models focus primarily on
classifying spaces, rather than building elements, which are the main concern of this work.

Focusing on building elements, Ouyang et al. [56] extracted a knowledge graph of the
entire building from IFC representations of BIM models. They used this graph to associate
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identical elements in different models of the same building (for example, structural and
architectural) by matching their physical location as well as their relations on the graph.
Collins et al. [57] based their work on the shape of 3D objects derived from an IFC file, and
described it as a graph of physical vertices. These graphs were used as the input for GNNs
which classify the 3D objects. They base their work solely on the object geometry without
looking at its surroundings and reach an accuracy of 85%. Similarly, [58] used GNNs
on graphs describing the geometry of two-dimensional planning zones, with a positive
impact on the zone classification results. The potential of using contextual/topological
information such as proximity graphs, together with geometric features, has yet to be
explored, according to the best knowledge of the authors.

3. Research Aims

The main aim of this work is to demonstrate the ability of graph data to support
possible ML applications in the AEC domain, and to compare the performance of classic and
graph-based models. The scope of this paper is limited to the proof of concept for the idea
that graph data which represent building models can support downstream ML applications.
Within that, we focus our efforts on tasks from the semantic enrichment domain. More
specifically, we aim to automatically classify building elements represented in BIM models
to support the verification of information quality in BIM files. The underlying hypothesis
behind this research is that adding contextual information to the geometric features can
improve the results of classifying building elements.

4. Methods

The design of this research is described in Figure 2. Initially, we assembled an ex-
tensive dataset comprising over 42,000 building elements extracted from eleven BIM files.
These files were obtained from local architect offices and encompassed both residential
and commercial structures, reflecting real-world scenarios. To facilitate this endeavor,
we devised a parametric methodology to extract the elements from the BIM files. Sub-
sequently, the extracted elements were stored as JSON files, containing basic geometric
details (e.g., bounding box dimensions, orientation, and number of parts). As part of the
extraction process, we also identified and recorded the intersections between the elements,
which were subsequently stored in the corresponding JSON files.
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To establish a standardized classification process, the properties of the building ele-
ments were extracted from the JSON files and encoded as one-hot features within pandas
data frames. This encoding scheme was employed to train multiple traditional machine
learning (ML) models, aiming to classify the elements across the ten defined categories.
Subsequently, GPGs were generated, incorporating the intersection relationships between
the elements. Several GNN models were then trained using these graphs, employing
various types of GNN node classification networks with different layer configurations.
Furthermore, subgraphs capturing individual elements and their immediate neighbors
were extracted from the larger graph, encoded, and stored separately. Various graph classi-
fication models were applied to these subgraphs, and the outcomes were compared to the
previous node classification approach.

4.1. Graph DataSet Generation

The base requirement for conducting this research is a set of BIM models containing
high-quality data about the element’s classes, their geometric representation, and their
relations to each other. In earlier studies [20,21], researchers generated such datasets by
processing BIM files and extracting individual elements and their corresponding features.
However, most datasets remain unpublished, and the ones that are accessible often lack the
necessary proximity information crucial for our research. Hence, we constructed the dataset
by extracting element information, and contextual information, from architectural models
shared by local architects. A total of 10 Autodesk Revit files were obtained and translated to
JSON as explained below. The models describe large residential and commercial buildings,
which were all designed or built in the last few years. To increase the variance in the
elements and avoid over-fitting, we chose to include only one building from each architect
in the dataset.

The data extracted from the BIM models was organized into a JSON dataset, encom-
passing both the geometric features derived from the bounding box representation of each
element, and the intersections between the elements. To prepare these data for ML imple-
mentation, we encoded the geometric features into binary vectors, ensuring compatibility
with a wide range of ML models. We then tested several ML classification models to
establish a baseline reference for assessing prediction quality. Notably, the classic models
relied solely on the individual geometric features of each element, as these models cannot
facilitate the representation of relational information. We then transformed the element
dataset into a proximity graph, using the relational data, to leverage graph neural networks
(GNNs) for the same element classification task. Several GNN models for node classifica-
tion and for graph classification were implemented and evaluated. The resultant prediction
outcomes from all the models were systematically compared, enabling us to gauge the
influence of incorporating contextual information within this specific domain. Through
this workflow, we aim to gain an understanding of how relational data can contribute to
improving classification outcomes.

4.1.1. BIM to JSON

The first stage of the workflow is translating the obtained BIM files into machine-
readable format via JSON. The conversion from Revit 2023 was performed using the Rhino
Inside Revit plugin [59]. This plugin utilizes the strong functionality and well-known
interface of the Grasshopper associative programming [60] platform inside the commercial
Autodesk Revit [3] software. It was adopted for this research because of its dependability,
customizability, and ease of use. Using the workflow illustrated in Figure 3, Revit elements
of predetermined types (walls, doors, stairs, etc.) were imported into the Grasshopper
environment using the Category Filter and Query Element modules. Then the Element
Geometry was extracted and tested to ensure that the elements describe a physical object
with a measurable volume. Textual attributes of the valid elements were accessed using the
Inspect Element module and recorded into tables. These include Category Name, Family
Name, Type Name, Material, Structural Behavior, and ID. Then, the element’s orientation
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was extracted using the Facing output of the Element Location module. The orientation was
used to construct an oriented bounding box, which compactly envelopes the element and
describes its basic geometric properties. Properties such as X, Y, and Z dimensions, volume,
and relative height (in the model) were derived from the bounding box. Additionally,
properties such as Solid Volume and Number of Components were extracted directly from
the element and recorded.
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Finally, the recorded data were written on a JSON file, which is a commonly used
dictionary format, independent of software language and operating system, using the
following format:
[

{
“category_name”: “Walls”,
“family_name”: “Basic Wall”,
“type_name”: “BO-EXT Con 65”,
“is_structural”: “False”,
“BB_Y_dim”: 389,
“BB_Z_dim”: 800,
“BB_X_dim”: 65,
“relative_height”: 0.24723022871239042,
“BB_volume”: 20240137
“solid_volume”: 13803420,
“num_of_components”: 1,
“id”: “700572”,
“unique_id”: “6de6eb6a-bcbf-4e08-a866-d954b83f7159-000ab09c”,
“element_index”: 6
},

]
Each element was written separately on the file, with its properties recorded as key–

value pairs. Additional information about the Revit file (Name, extraction date, geographic
Location, and version number) was also appended to the file.
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The JSON dataset consists of over 42,000 different elements of 10 classes: ‘Walls’,
‘Doors’, ‘Furniture’, ‘Windows’, ‘Plumbing Fixtures’, ‘Floors’, ‘Stairs’, ‘Railings’, ‘Structural
Columns’, and ‘Structural Framing’. The elements were derived from 10 different Revit
models, consisting of residential apartment and office buildings. The division between the
elements is shown in Table 1.

Table 1. Element categories in the dataset.

Category Count

Walls 22,092
Furniture 5097

Doors 5072
Windows 3448

Floors 2132
Plumbing Fixtures 2710

Structural Columns 829
Railings 833

Structural Framing 421
Stairs 240
Total 42,874

4.1.2. Constructing the Relation Graph

We chose to represent each of the extracted BIM elements as nodes in a property graph.
A property graph consists of a set of objects or nodes, and a set of edges connecting the
objects. Both nodes and edges can also have multiple properties, which are represented
as key–value pairs. Property graphs have been extensively used in domains such as IT
operations, recommendation engines, and access control. Their structure has many benefits
in terms of support for graph traversal algorithms and software development [61]. Property
graphs are also widely used in commercial graph databases such as Neo4J, where they
outperform traditional databases in several types of searches [62].

In our case, the property graph nodes are the BIM elements, the properties are their
geometric features discussed in the previous section, and the edges represent proximity
relations between elements.

We define the proximity relation between two elements as the existence of an in-
tersection between their bounding boxes. In the common case of orthogonally oriented
regular geometries, this means a tangible spatial intersection between the physical objects
themselves. In the case of irregular objects, the notion of proximity may extend to situations
where no actual physical contact between the elements exists. Still, this was the adopted
approach due to the recognition of the substantial computational efficiency gains achieved
by intersecting bounding boxes rather than the complex geometries of the actual elements.

In this stage of the extraction process, a geometric algorithm interrogated the relations
between all the elements in the model. The Grasshopper Clash component was used
to detect intersections between the bounding boxes of elements, as this component was
designed to function in parallel on large datasets. The stability of the Grasshopper platform
ensured that this process was successful, even though it involved checking all elements
against all other elements. Even in huge REVIT building models with tens of thousands of
elements, the extraction process was successful, although it processed for almost an hour
on a 32GB RAM workstation with a dedicated graphic card. These relations, expressed as
ID pairs, were also recorded, and stored. The relations were also written in the JSON file as
lists of “unique_id” pairs.

We used the relation pairs to construct the property graphs in two different ways:
(1) As a series of large graphs, one for each BIM file representing all the connected elements
in the building, as shown in Figure 4. (2) As a series of smaller subgraphs, each centered on
a single node which is connected to its first order neighbors, as shown in Figure 1.
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For representing the entire graph (1), we used the networkx [63] python library
for graph creation and manipulation. Using this library, we first constructed a Graph
object from the encoded elements and their connections. In this case, a few uncon-
nected elements (with no intersections with other elements) were filtered out using the
connected_components command.

For assembling the subgraphs (2), we also started with the connected networkx graph.
In this version, we then traversed all the nodes in the Graph and used the subgraph com-
mand to split the graph into a first-order neighbor subgraph at each of the nodes. Each
of the subgraphs was then recorded as a separate graph with all the information about
the nodes. In addition, each subgraph entry contains a unique name originating from the
unique ID (UID) of its root node as well as its category.

A possible future working scenario for this approach is one where the BIM elements
are classified by an ML model immediately upon their creation. In this scenario, all
surrounding elements will already have been classified, and the only question that remains
is the identity of the new element. To model this scenario, we added the categories of
the neighboring nodes to the encoding in the subgraph. To keep the encoding structure
while masking the identity of the root node, its category was replaced with a generic “root”
category. We saved this dataset separately under the name of “category encoding” and
later ran the subgraph classification task both with and without the additional encoding.
With this novel approach, the GNN was implemented for a subgraph classification task
where all the contextual information, including the category of the neighbors, is already
available to the model.

4.1.3. Feature Encoding

The initial JSON data were uploaded into a python runtime environment and stored as
two lists, one of elements and their properties, and another with the intersection relations
between the elements. The lists were then converted into pandas [64] data frames so that
they could be used as input for ML models.

The element features were further processed to provide a dataset that can be utilized
with all types of models. One-hot encoding (OHE) is a technique commonly used to
represent input for deep learning models in many data science fields [65]. One-hot encoding
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transforms labels into a binary vector in which every category is represented by a different
index on the vector. This representation results in sparse vectors where most of the Booleans
are false. Despite its large size, OHE has been known to improve the performance of many
types of models, including regression models [66] and CNNs [67]. In GNN models, OHE is
one of the most dominant encoding methods [68], where its uniformity is well adapted to
the message-passing structure of the graph. To fit the data to our object of inquiry (GNNs),
we chose to encode all features using OHE and used these data for training all the models
mentioned in the next section, so that their performance can be compared.

Since the properties of the elements in our dataset are numeric, they had to be stored
in labeled bins before encoding. This was achieved using the pandas qcut command,
which divides data frame elements into a specified amount of roughly equal-sized bins.
We divided all properties into 10 equally sized bins. This means that the bin boundaries
are automatically set by the software according to the frequency of the appearance of
dimensions in the dataset so that the bin sizes will be equal. Later investigation into
the number of bins needed revealed that increasing the number of bins to 20 did not
significantly change the results.

Table 2 shows the different bins generated for the X, Y, and Z dimensions of the element
bounding box. The table shows how while the X and Y distributions are relatively uniform,
the Z values are noticeably different. The bin division was saved on a separate file so that
when analyzing a new model, the same bins could be used. Then, the pandas get dummies
command was used to create frames in which all bins are represented as Boolean columns.

Table 2. Example bins resulting from the qcut command.

Bounding Box X Dimension
in cm

Bounding Box Y Dimension
in cm

Bounding Box Z Dimension
in cm

0.0 0.0 0.0
41.6 45.0 7.4
62.8 80.6 10.0
90.0 125.0 15.0
111.0 211.1 20.0
156.2 272.0 27.0
220.0 310.0 40.4
330.0 350.0 54.5
441.6 395.0 100.0

1001.7 1170.0 300.0

For example, when dividing all elements according to their bounding box X dimension,
qcut identified that the lowest 10% of the elements fall between 0 and 41 cm, and created a
label called “X_dim_0_to_41.6”. Then the get_dummies command generated ten columns,
one for each of the X dim bin labels, and assigned a TRUE or FALSE value to each of the
elements according to its label. The process was then repeated for the following properties:
bounding box X dimension, bounding box Y dimension, bounding box Z dimension,
bounding box volume, solid volume, relative height, and the number of components in the
BIM element. These properties were chosen for their simplicity and the fact that they can
be easily measured regardless of the modeling platform. The seven properties resulted in a
dataset with 70 features, used throughout the experiments.

4.2. Machine Learning with and without Contextual Information

The entire dataset was split into several parts for training and testing. Initially, one
out of the ten BIM files was set aside as a test file, with the understanding that modeling
conventions vary and that the true measure of any predictive model was on elements from
a file it has never seen. This proved to be extremely influential on the model performance,
which varied according to which of the files was set aside. For this reason, we performed
all our experiments five times, each time setting a different model aside, training with the
rest of the models and then testing the performance of the model on the sequestered file.
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Data extracted from all files used for training was joined into a single dataset, element’s
order was randomized, and a standard 80/20 training/validation split was performed.
When training on the graphs, the elements could not be mixed, and a random torch
training/validation mask with the same split was applied instead.

4.2.1. Training Classic ML Models as a Baseline

To obtain an indication of the GNN performance in our scenario, we trained a series of
classic ML models to perform element classification for comparison. We considered simpler
models, which have been repeatedly and successfully used for a variety of purposes. For
this purpose, we used the scikit-learn [69], a commonly used python library that contains
many ML models and helper functions.

The encoded binary features of all the elements in the dataset were loaded into pandas
data frames, with a Y field denoting their category labels but without the connection
information. As discussed in the previous section, we used seven basic geometric features
(size, volume, location, orientation, etc.) and encoded the features in them into ten bins and
shuffled the data frame. We trained the models to predict the BIM category of the elements,
using the scikit fit command on the training set, and used the predict command on the
validation set (sourced from the same BIM files as the training set) to evaluate performance.
Finally, we tested the generalization abilities of the models on the test set (sourced from
previously unseen BIM files).

First, we trained a basic logistic regression model on the data as a baseline, and then
tried other models, which were successfully used in the literature for this task: random
forest, serial vector machine [21], and k-nearest neighbor classifiers. Seeking to compare the
performance of the models, we trained them using the exact same framework and dataset,
and used the most standard “out of the box” parameters possible for each of the models.

For ANN and GNN implementation, we adopted the pytorch [70] as the ML frame-
work, due to its versatility, flexibility, and the availability of GNN architectures within this
framework. For the pytorch version, we loaded the encoded element data from the JSON
files into pytorch tensors, one for the features and another for the labels. The graph was
converted into an adjacency matrix readable by the pytorch modules, comprised of pairs of
connected elements referenced by their index in the torch data object.

The different tensors were loaded into a single pytorch Data object to be used by the
models. We tested the pytorch environment by training a classic ANN—the multilayer
perceptron (MLP) for the task. The MLP model was then built using the traditional three-
layered architecture, with the input layer sized to fit the features, a hidden layer with the
same size as the input, and an output layer sized to fit the classification categories. All
layers were linear, fully connected layer. RELU activation + a dropout function was used
between the first and the second layers, as well as between the second and the third. The
results of the output layer were normalized using the log_softmax function.

The model was trained using the Adam optimizer with a standard learning rate of 0.01
and a decay of 5 × 10−4. The loss function was defined as Cross Entropy loss. The model
was trained for 200 epochs on the training data, and then tested both on the validation
and the test dataset. These standard parameters were then fixed and maintained in all
the training sessions to enable us to isolate the effect of the model architecture on the
prediction accuracy.

4.2.2. Training a Graph Convolutional Network for Node Classification

We trained the GNN for the classification task using the same pytorch framework,
data, and training parameters described above. The major difference between these models
and the MLP mentioned above, was that the graph connectivity matrix was added to
the dataset tensors. The connectivity matrix, representing the intersections between the
building elements (edges in the graphs), enabled us to introduce contextual information
into the node classification model. To utilize connectivity information, GNNs are built with
specifically network layers that enable message passing between neighboring nodes.
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We built the GNN model using the pytorch geometric (PyG) library [71]. PyG is an
extension to the pytorch library that enables running deep learning models on irregular
data structures such as graphs. The network was structured according to the classic
design, as described in the original GCN paper [72]. This network with an input layer
the same size as the features and a single hidden layer with an input of a similar size and
an output size according to the classification classes. The input layer is followed by a
RELU function, and the output results are normalized using a softmax function. The PyG
library allowed us to replace the first two fully connected, feature sized layers from the
MLP with several types of convolution layers designed specifically for graph structures.
Several popular PyG graph convolution layers were explored for building the network for
node classification tasks: GraphCONV, which implements the Weisfeiler–Leman graph
isomorphism as described in [73]; SAGEConv [74], which leverages node feature to generate
embeddings for previously unseen data; and TransformerConv [75] were all tested. All
networks were trained on the same data as the previous models, and with the same training
parameters as the MLP model.

4.2.3. Training a Subgraph Classification GNN

GNNs are often used to classify entire graphs, such as the ones represented by proteins
or molecules [52]. Our basic hypothesis is that information about the immediate neighbors
of an element is useful for identifying the element’s class. The immediate neighborhood of
each node can be represented by a simple graph containing the unclassified node neighbors.
This compact representation is highly efficient when querying the model about a specific
node. To test our hypothesis, we extracted the first-order neighborhood for each of the
building elements and trained a GNN to classify these subgraphs. As the number of
graphs dramatically increased, we divided the dataset into batches of 1000 for training
purposes. The graph classification network was built using the same GNN layers described
in Section 4.2.3, with a mean pooling layer to handle the batch training results.

5. Results
5.1. Comparison between Classification Results

We trained the different models described above using a typical 80–20 training/valida-
tion split. As previously mentioned, we trained the models on data derived from ten of the
BIM files, and kept one file aside for testing, allowing us to see the performance of the model
on previously unseen data. The results presented in Table 3 show the significant variance
between the different ML models. It is evident that GNN-based models outperform classic
ones. Amongst the GNN models, subgraph classification models with category encoding
achieve the best performance, exceeding that of the classic models by over 5%. The table
also shows how the prediction accuracy on the test file, a previously unseen BIM file,
was substantially lower. This result is surprising, as previous studies [19,21] have shown
that ML models are able to generalize BIM classification problems. We suggest that the
decreased performance on the unseen file might be due to the source of the data used in our
study. We used elements sourced from the BIM files of real buildings, which were modeled
by different architecture offices, as opposed to the Revit demonstrator files used in [21].
This led to naturally occurring variations in modeling conventions, which are common in
the AEC industry. We propose that the real performance of the models should be measured
by their prediction accuracy on unseen files, as it reflects their behavior in the real world.

Further testing validated the observation regarding the varying prediction accuracy
between different models, dependent upon the choice of the test files. We ran the whole
train–validation–test setup five times, keeping a different file outside of the training data
every time. Figure 5 shows the average performance of all the different classifiers on the
five runs and illustrates the vast differences in prediction accuracy. The performance of
all the models on the training and the validation set (which are hidden elements from the
training files) is high and relatively stable, which supports findings from previous research.
In contradiction, the performance on the elements from BIM models not included in the



Buildings 2024, 14, 527 15 of 22

training (the test files) is significantly lower and subject to a variance of over 5%. These
differences raise questions about the ability of ML models to generalize BIM classification
problems, given the small size of the existing datasets.

Table 3. Results of an example training process.

Classic Models Train Validate Test

KNNeighbors 0.956 0.945 0.778
Logistic Regression 0.896 0.894 0.851
Support Vector Machine 0.966 0.961 0.835
Random Forest 0.977 0.965 0.793
MLP 0.948 0.942 0.815

GNN Node Classifiers

GraphConv 0.954 0.944 0.853
SAGEConv 0.979 0.966 0.804
TransformerConv 0.986 0.973 0.845

GNN Subgraph Classification

GraphConv 0.996 0.984 0.870
SAGEConv 0.996 0.986 0.876
TransformerConv 0.996 0.984 0.862

GNN Subgraphs with Category Encoding

GraphConv 0.998 0.989 0.921
SAGEConv 0.998 0.989 0.903
TransformerConv 0.998 0.989 0.907
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To accurately assess the performance of the different models, we averaged their
prediction accuracy over the five test files as shown in Figure 6. In terms of the performance
of the different model families, the classic ML models have the poorest average performance.
Within this family, the support vector machine model displayed the best with an accuracy
of 86.7%. In the averaged results, the GNN node classifiers performed better than the classic
models and the best-performing model in this family achieved 87.7%, demonstrating that
contextual information can improve prediction accuracy. Here, we see significant variations
between the different types of GNN layers used, and the type of classification task—node
or subgraph classification. In general, the GNN subgraph classification models achieved
88.3%, a further improvement over the GNN node classification models.
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Figure 6 also shows how adding the explicit representation of the categories of the
neighboring nodes into the subgraphs dramatically improved the prediction results. With
the additional information, GraphConv-based GNN networks achieved a prediction accu-
racy of 89.9%, more than 3% over the best-performing classic model.

5.2. Test Case Analysis

To improve our understanding of the results, one of the test cases was analyzed in
detail. The test case is a 10 stories tall residential building with an irregular shape as
shown in Figure 7. The building has four distinct floorplans, with a unique ground floor,
penthouse, and levels 4–6. The building is constructed from a concrete skeleton with block
infills and synthetic stone cladding. The BIM model includes all architectural and structural
elements of the building, including basic furniture and plumbing fixtures, numbering
4442 elements in total.
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The confusion matrixes describing the classification of the elements in the given model
are presented in Figure 8. As seen in these matrixes, one of the biggest differences between
the classic and graph-based models is the classification of windows as doors (common for
the classic SVM model), or as plumbing fixtures (common for graph-based models).
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Figure 8. Example of a confusion matrix for the different models. Darker green signifies higher
element frequency.

To assess the models more closely and understand the reason for these differences, we
inspected the individual elements of the BIM models where the prediction was false. In
examining the classification outcomes, the occurrence of windows being misclassified as
“doors” by the SVM model reveals a noteworthy difference in the behavior of the models.
The windows with similar dimensions to doors, seemed to confuse the classic SVM model,
leading to the mislabeling of 133 windows as doors. In contrast, the graph-based models,
primarily guided via interconnections between building elements, demonstrate resilience
against such geometric similarities. Figure 9 shows how the fact that windows usually
neighbor only wall-type elements, while doors are also connected to floors helped the
graph-based model differentiate between the elements. This highlights the strength of
graph-based models in capturing contextual relationships.
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Figure 9. Left: toilet and window have different dimensions and similar context. Right: door and
window have similar dimensions and different contexts.
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On the other hand, graph-based models tended to classify windows as plumbing
fixtures while the classic SVM model avoided this mistake. After a closer examination, we
see the commonality—both windows and plumbing fixtures predominantly intersect with
wall elements. This shared contextual information might contribute to the misclassification.

6. Discussion

In this work, we demonstrated the applicability of graph neural networks for clas-
sifying the elements in BIM models. In previous work, Wu et al. [21] demonstrated that
random forest models can reach scores of over 99% on the BIM element classification
task. Koo et al. [20] show how CNNs can identify element subtypes with and accuracy of
95%. Our findings demonstrated similar results on elements sourced from several BIM
files. On these elements, our best-performing classification method consistently reached an
accuracy of over 99% on the training data and 98% on the validation data. However, when
classifying elements from BIM files that were not part of the training process, the accuracy
of all the tested models dropped significantly to 81%–90%. Since previously unseen files
(not elements) are the real targets of semantic enrichment processes, this raises a question
about how BIM classification models are evaluated. We suggest that dividing elements into
training and validation sets is not enough, and that they should be tested on elements from
BIM files not included in the training process.

As presented in the results section, introducing context in the form of geometric
proximity graphs improved the prediction accuracy in the element classification task on
previously unseen BIM files. Breaking up the graph into smaller parts and classifying
each one of them according to the properties and categories of their immediate neighbors
achieved a further improvement in the results. Since this type of classification model does
not require the entire relation graph of the building, this approach has an operational
advantage due to its scalability.

6.1. Limitations

While the GNNs presented promising advancements, limitations in generalization and
the need for diversity in the training dataset are acknowledged. The findings emphasize
the significance of a diverse and high-quality dataset with a broad spectrum of complex
geometries and contextual information to enhance model performance and accuracy. Our
dataset contains 42,000 individual elements, from eleven different BIM files. All the training
files come from the same country, with similar practices and building regulations. Local
differences in construction methods and regulations might affect the dimensional features
that traditional models are dependent on, for example, a concrete wall is dimensionally
distinct from a wall made from wood or stone. To develop a general classification model,
training information would need to include files from different countries, with different
regulations, typologies, and construction methods.

However, the geometric relations between walls, floors, and doors are not dependent
upon the construction technique used and remain invariant across geography, method, and
even time. Our findings indicate that introducing contextual information in the form of
intersection graphs between building elements assists the models in generalizing. By using
these relations, GNN models improved the prediction accuracy on previously unseen BIM
files sourced from different architectural offices. This suggests that graph-based GNNs can
be more adept at generalization and may require smaller training sets than classic models.

6.2. Future Work

The graphs used in this research are based on “intersection” relations between different
elements. Intersections are the simplest types of topological relations between elements
and were found to contain information relevant to the classification task. However, these
relations are not the only ones that can be utilized to improve classification. For example,
a “co-verticality” relation, indicating that two elements share x and y coordinates with
different z values, could be a strong indicator of structural properties. A “containment”
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relation is likely the best indicator for elements such as windows, which are contained
within walls, but less relevant for other elements. A more complex relation such as a
“connected to” can provide significant information for classifying plumbing and electric
building systems.

Future work can build upon these relations to improve and expand classification
processes. It would be interesting to test which relations would be the best indicators
of which properties of the elements. Furthermore, combining more than one type of
relation into a single graph can potentially introduce even more information into the
data. Current GNN models do not perform well on graphs with multiple edge types that
represent different relations. However, GNNs are a rapidly advancing field and such an
improvement may be already under development.

7. Conclusions

In this work, we presented a framework for processing BIM files into graph repre-
sentation to leverage advanced ML algorithms applicable directly to graph data. We have
demonstrated a workflow for extracting element features and intersection-based graphs of
building elements from BIM models. The presented test case of BIM element classification
is based on processing BIM files obtained from the industry. Over 42,000 elements, their
features, and their relations were encoded and utilized as the basis for training several
types of machine learning models to classify building elements.

A comparison between the performance of the different models on identical data
shows that a GNN classification can improve the accuracy of the other tested models. The
best-performing models used subgraph classification, where each element, its features,
and the categories of its immediate neighbors were separated from the main graph and
classified individually. These models achieved 89.9% accuracy in the classification task of
elements from BIM files not used for training. This represents a significant improvement
over classic ML models which reached a maximum accuracy of 86.7%.

We believe that the introduction of contextual information in the shape of graphs into
BIM workflows can lead the way to advanced ML capabilities. Element classification and
model enrichment illustrate how ML-powered BIM can accommodate automatic translation
and data exchange between modeling software. In one possible application, users model
a featureless box, and the authoring software automatically assigns its category and fills
in design parameters (autocomplete). In another, the BIM software automatically checks
every element added by the user for modeling errors (autocorrect). The local character and
improved performance of subgraph classification models are well suited to the real-time
integration of ML within BIM authoring software.
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31. Strug, B.; Ślusarczyk, G. Reasoning about accessibility for disabled using building graph models based on BIM/IFC. Vis. Eng.
2017, 5, 10. [CrossRef]
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