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Abstract: Many materials are highly sensitive to temperature, and the study of the fire resistance of
materials is one of the important research directions, which includes the study of the fire resistance of
fiber-reinforced polymer (FRP) composites, but the cooling mode on the change of FRP mechanical
properties after high temperature has not been investigated. This study analyzes the mechanical
properties of GFRP under various cooling methods after exposure to high temperatures. The tensile
strength of GFRP was evaluated through water cooling, firefighting foam cooling, and air cooling
within the temperature range of 20–300 ◦C. Damage modes were investigated at different target
temperatures. The results indicate that the tensile strength of air-cooled GFRP is the highest, whereas
water cooling yields the lowest retention rate. It indicates that the FRP temperature decreases
slowly under air cooling and the better recovery of the damage within the resin matrix, while under
water cooling, the damage at the fiber/resin interface is exacerbated because of the high exposed
temperature and the water, resulting in a reduction in the strength of GFRP. Between 20 and 150 ◦C,
GFRP essentially recovers its mechanical properties after cooling, with a residual tensile strength
factor exceeding 0.9. In the range of 150–250 ◦C, GFRP exhibits a graded decline in strength. At
300 ◦C, GFRP loses certain mechanical properties after cooling, with a residual tensile strength factor
below 0.1. Furthermore, the analysis of experimental results led to the modification of the Johnson–
Cook constitutive model, proposing a model for GFRP under three cooling methods. Additionally,
a predictive model for the elastic modulus of GFRP after high-temperature cooling was derived,
showing agreement with experimental results.

Keywords: glass fiber-reinforced polymer (GFRP); cooling methods; mechanical properties; modified
constitutive model

1. Introduction

Fiber-reinforced polymer (FRP) composites, known for their lightweight and high
strength, offer excellent corrosion resistance and specific strength. They find diverse
applications in aerospace, military, civil construction, and infrastructure projects, serving
as cost-effective alternatives to traditional steel components [1–4]. Understanding the
mechanical behavior of FRP composites at elevated temperatures is crucial for both civil
and military applications [5,6]. In addition to being cheaper than AFRP and CFRP, GFRP
has better bonding performance and mature technology. As a result, it is used in large-
scale applications in various fields. So this paper conducts experimental research using
GFRP. These composites, comprised of glass fibers, carbon fibers, and a resin matrix
formed through processes like winding, molding, or pultrusion, are particularly sensitive
to temperature variations, with the resin component being a key influencing factor.

The resin matrix in FRP commonly consists of thermosetting and thermoplastic resins,
both of which are prone to softening at elevated temperatures. As the temperature rises, the
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matrix undergoes transitions from a glassy to a leathery, rubbery, and eventually decom-
posed state, leading to a notable decline in FRP’s mechanical properties [7,8]. In addition,
the tensile strength of FRP decreases significantly with increasing exposed temperature
and time [9]. Experimental and theoretical support is essential to ascertaining the post-fire
mechanical behavior of FRP, a critical consideration for structures seeking to regain func-
tionality after fire incidents. Consequently, investigating the mechanical properties of FRP
at high temperatures becomes imperative.

Exploration into the mechanical properties of FRP at elevated temperatures stands
as a pivotal focus within FRP material research. This exploration encompasses three
primary directions: the mechanical behavior of FRP at high temperatures [6,10–14], the
bond strength of FRP reinforcement and concrete under high temperatures [15–20], and
the effects of high temperatures on FRP reinforcing and restraining components [21–25].
Numerous researchers have delved into this subject, utilizing experimental, numerical,
and analytical approaches. For instance, Zike Wang [9] presents an investigation on
the durability of basalt- and glass-fiber-reinforced polymer bars exposed to an SWSSC
environment under different sustained stress levels. It was experimentally obtained that
the tensile strength of BFRP and GFRP decreased significantly under the combined effect of
sustained stress and exposure temperature. Gang Wu [26] investigated the tensile properties
of BFRP bars under four environments: alkaline solution, salt solution, acid solution, and
de-ionized water at 25, 40, and 55 ◦C. The results showed that the exposure temperature
and environmental corrosion can damage the fiber/resin interface, resulting in a significant
decrease in the tensile strength of BFRP bars. H. Wang et al. [27] conducted dynamic and
quasi-static compressive tests on a ceramicized polymer composite, revealing a substantial
decrease in compressive strength with increasing temperature. Khaneghahi MH et al. [28]
explored the impact of intumescent paint on the mechanical properties of FRP at various
temperatures, observing a significant inhibitory effect on the decrease in tensile strength.
C. Wang [29] investigated the mechanical properties of FRP as internal reinforcement in
concrete structures at high temperatures, noting variations in performance. Despite these
valuable insights, existing research predominantly focuses on the mechanical properties of
FRP materials at elevated temperatures, leaving a notable gap in the exploration of their
behavior after high-temperature cooling—an essential consideration for preserving FRP
performance after exposure to elevated temperatures.

By investigating the effects of different cooling methods on the mechanical properties
of GFRP after high temperature, the aim of this study is to provide the best fire extinguishing
method for GFRP materials after exposure to fire, and to establish the constitutive model
of GFRP under different cooling methods after high temperature. This is crucial for
the application of GFRP in practical engineering and provides a basis for the reliability
assessment of thermal protection structures in extreme environments. In addition to this,
providing the failure range of GFRP’s mechanical properties after cooling will facilitate the
safety assessment of the building.

2. Materials and Methods
2.1. Specimen Design

The Glass Fiber Reinforced Polymer (GFRP), a flat strip composed of unsaturated
polyester resin and glass fibers, was chosen for this test. The design approach for the
layering structure of GFRP is unidirectional layering. The thermosetting temperature of
this resin is approximately 90 ◦C. According to GB/T 1447-2005 [30], the dimensions and
configuration of the GFRP are depicted in Figure 1. With a thickness of 3.7 mm and a fiber
volume fraction of 62%, the glass fibers are predominantly aligned along the axial direction
of the plate. Table 1 presents the essential mechanical properties of the GFRP.
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Figure 1. Dimensions of the test specimen (mm).

Table 1. Mechanical Properties of GFRP.

Specimen Labels Tensile Strength
f u/MPa

Modulus of Elasticity
E/GPa Elongation δ/%

1 427.89 37.05 12.05
2 563.31 39.16 14.33
3 467.92 38.15 12.51

Average 486.37 38.12 12.96
Standard Deviation 56.80 0.86 0.98

2.2. Test Procedures

To investigate the impact of different cooling methods on GFRP after exposure to
high temperatures, the test involved five target temperatures and 48 specimens. Three
specimens were tested at each target temperature using various cooling methods, and
an additional three specimens were kept at ambient temperature as a control group. The
high-temperature setting utilized a box-shaped resistance furnace (SX2-4-10 type) which
is illustrated in Figure 2a, with target temperatures set at 100 ◦C, 150 ◦C, 200 ◦C, 250 ◦C,
and 300 ◦C. After reaching the target temperature, the specimens were left for a one-hour
constant temperature phase, according to GB/T 38515-2020 [31]. Subsequently, cooling
was performed using water, firefighting foam, and the natural cooling method. The entire
process, including heating, insulation, and cooling under different target temperatures, is
illustrated in Figure 3. After cooling to ambient temperature, a strain gauge was affixed to
the center of each specimen to measure the GFRP strain. A static tensile test, according to
GB/T 1447-2005 [30], involved controlling tensile loading by displacement with a loading
rate of 1 mm/min until specimen fracture. The EMT504D electronic universal testing
machine (Figure 2b) is manufactured in Shenzhen Wance Testing Equipment Co., Ltd.,
Shenzhen, China, and the load cell used is S-TYPE LOAD CELLS, which facilitated the
static tensile test. The comparison and analysis of test results under different temperature
conditions, including the stress–strain relationship curve of GFRP and related mechanical
property parameters, were conducted to assess the influence of elevated temperatures and
cooling methods.
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3. Test Results
3.1. Experimental Phenomena
3.1.1. Surface Characteristics

The surface color variations of the test specimens after exposure to high temperatures
are illustrated in Figure 4. It can be seen that the cooling methods slightly affect the
characteristics of the specimen. Under natural conditions, the GFRP surface exhibited
a yellow hue. As the temperature increased, heating at 100 ◦C, 150 ◦C, and 200 ◦C led
to a gradual deepening of the color, transitioning from a slightly blackened appearance
to localized brown and eventually to brown. At temperatures approximately between
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65 ◦C and 120 ◦C, the glass fiber reinforced plastic (GFRP) material undergoes its first glass
transition, causing the material’s resin to shift from a glassy state to a rubbery state [32].
At 250 ◦C, the surface turned charcoal-black, and the outer protective layer began to
partially detach. Upon reaching 300 ◦C, the entire surface became charcoal-black due to the
carbonization of the outer protective layer, which completely detached from the structural
layer of the GFRP.
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3.1.2. Failure Mode

The tensile failure characteristics of Glass Fiber Reinforced Polymer (GFRP) after high-
temperature cooling at various target temperatures are presented in Figures 5–7. Observing
the figures reveals distinct stage differences in failure characteristics corresponding to
changes in temperature. As the temperature increased from ambient to 100 ◦C, 150 ◦C,
and 200 ◦C, the fracture patterns exhibited notable variations. Initially, there was resin
adhesion between the fibers, indicating integral destruction of the glass fibers and resin
with a concentrated fiber distribution. As the temperature continued to rise, the fibers
transitioned gradually into a diffuse filamentous state.

At ambient temperature and 100 ◦C, GFRP experienced cracking along axial extension,
followed by destruction after the fiber bundles burst out. At 100 ◦C, the three cooling
methods showed no significant impact on GFRP failure characteristics, with fiber bonding
similar to that at ambient temperature, suggesting that the coordinated working ability of
the fibers and resin remained relatively unchanged. At 150 ◦C and 200 ◦C, GFRP exhibited
cracks extending from the axial center, while the final fracture leaned toward the end of the
fixture. In comparison, natural cooling resulted in more dispersed fibers than water cooling
and foam cooling, indicating that the latter two methods played a role in the recovery of
resin after thermal decomposition.

Simultaneously, with the temperature increase, the flocculent material at the GFRP
fracture gradually increased. At 250 ◦C, the fibers dispersed after failure, indicating that a
large portion of the resin in the specimen could not be recovered after cooling. Notably,
fiber bundle dispersion was relatively low under natural cooling. When the temperature
reached 300 ◦C, fibers at the fracture of GFRP, cooled by all three methods, exhibited a
diffuse filamentous state, indicating de-bonding and complete carbonization of the GFRP.
Consequently, recovery through cooling was not possible at this temperature.



Buildings 2024, 14, 439 7 of 22Buildings 2024, 14, x FOR PEER REVIEW 8 of 26 
 

 
(a) Normal section 

 
(b) Cross section 

Figure 5. Air cooling. 

  

Figure 5. Air cooling.

Buildings 2024, 14, x FOR PEER REVIEW 9 of 26 
 

 

 
(a) Normal section 

 
(b) Cross section 

Figure 6. Firefighting foam cooling. 

  

Figure 6. Cont.



Buildings 2024, 14, 439 8 of 22

Buildings 2024, 14, x FOR PEER REVIEW 9 of 26 
 

 

 
(a) Normal section 

 
(b) Cross section 

Figure 6. Firefighting foam cooling. 

  

Figure 6. Firefighting foam cooling.

Buildings 2024, 14, x FOR PEER REVIEW 10 of 26 
 

 

 
(a) Normal section 

 
(b) Cross section 

Figure 7. Water cooling. 

  

Figure 7. Water cooling.



Buildings 2024, 14, 439 9 of 22

3.2. Mechanical Properties
3.2.1. Tensile Strength

The maximum stress value reached when materials undergo damage under the action
of force is termed tensile strength. Table 2 illustrates the tensile strength and residual factors
of materials after high-temperature cooling at various target temperatures.

At 100 ◦C, compared to ambient temperature (σmax = 486.38 MPa), the tensile strength
under air cooling and foam cooling specimens increased, while water-cooled specimens
(σmax = 457.30 MPa) exhibited a decrease. At 100 ◦C, the resin matrix is undergoing a
transition from a glassy state to a rubbery state [32]. This suggests that a reduction reaction
enhanced the strength of materials after high-temperature cooling at the target temperature,
and air cooling was more conducive to preserving material strength by allowing the
reduction reaction to proceed more effectively.

At 150 ◦C, the residual factor of tensile strength under air cooling was 1.0, indicating
effective restoration of material strength. Water and foam cooling exhibited residual factors
of 0.90 and 0.83, respectively, indicating a decrease in strength when the temperature ex-
ceeded 150 ◦C. However, under air cooling, the strength exhibited a decreasing trend when
the temperature surpassed 200 ◦C, suggesting that air cooling remained more beneficial for
preserving material strength.

At 250 ◦C, tensile strength significantly decreased, signifying a sharp decline in the resin’s
bearing capacity due to thermal decomposition, resulting in permanent damage even after
cooling. At 300 ◦C, a change in the damage mode occurred, with the stress slowly decreasing
after reaching tensile strength, revealing resin carbonization. Despite cooling, the material lost
load-bearing capacity after 300 ◦C. The strength retention rates for the three cooling methods
at the same target temperature followed the order: air cooling > foam cooling > water cooling.
After reaching 250 ◦C, none of the cooling methods could restore the strength.

It indicates that at temperatures above 250 ◦C, the degree of glass transition of the
resin is more pronounced at high temperature. The destruction of the fiber/resin interface
is aggravated by the combination of a higher exposure temperature and water cooling.
Eventually, the glass fibers debond from the resin, resulting in a significant decrease in the
tensile strength of GFRP [33].

Figure 8 illustrates the fitted line between tensile strength and high temperature,
showcasing a decrease in the tensile strength of GFRP tubes as temperatures increased. The
response of the tensile strength–temperature ratio presented a curvature. The curvatures of
air cooling and foam cooling were similar, while water cooling exhibited a gentler change.
Regression analysis of the experimental results yielded the following expressions for
GFRP tubes:

Air cooling:
ya = −1.07 × 10−2x2 + 1.82x + 451.82 (1)

Fire foam cooling:

y f = −1.03 × 10−2x2 + 1.57x + 463.47 (2)

Water cooling:
yw = −6.20 × 10−3x2 + 0.30x + 488.37 (3)

The reliability coefficients (R2) for the fit curve under air cooling, foam cooling, and
water cooling are 0.941, 0.917, and 0.921, respectively, indicating a favorable matching effect.
This implies that the experiment exhibits minimal data dispersion, validating the credibility
and accuracy of the collected data.
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Figure 8. Ultimate strength of GFRP composites after high-temperature cooling.

Table 2. Tensile strength and residual factors of GFRP composites after high-temperature cooling.

Cooling
Methods Temperature/◦C

Tensile Strength (MPa) Residual Factor (σT/σ20)

Group-1 Group-2 Group-3 Average Group-1 Group-2 Group-3 Average

Air
Cooling

Ambient 427.89 563.35 467.89 486.38 0.88 1.16 0.96 1.00
100 587.68 485.30 472.76 515.24 1.21 1.00 0.97 1.06
150 490.92 470.92 493.95 485.26 1.01 0.97 1.02 1.00
200 461.95 431.03 392.76 428.58 0.95 0.89 0.81 0.88
250 197.30 190.38 195.24 194.31 0.41 0.39 0.40 0.40
300 77.73 36.54 45.19 53.15 0.16 0.08 0.09 0.11

Fire Foam
Cooling

Ambient 427.89 563.35 467.89 486.38 0.88 1.16 0.96 1.00
100 598.05 499.89 502.16 533.37 1.23 1.03 1.03 1.10
150 405.41 423.35 480.32 436.36 0.83 0.87 0.99 0.90
200 443.03 383.24 431.14 419.14 0.91 0.79 0.89 0.86
250 113.84 119.46 239.89 157.73 0.23 0.25 0.49 0.32
300 7.14 42.92 29.30 26.45 0.01 0.09 0.06 0.05

Water
Cooling

Ambient 427.89 563.35 467.89 486.38 0.88 1.16 0.96 1.00
100 415.03 477.08 479.78 457.30 0.85 0.98 0.99 0.94
150 466.38 358.38 392.86 405.87 0.96 0.74 0.81 0.83
200 326.05 335.03 325.51 328.86 0.67 0.69 0.67 0.68
250 97.62 81.84 147.24 108.90 0.20 0.17 0.30 0.22
300 16.43 55.78 79.46 50.56 0.03 0.11 0.16 0.10
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3.2.2. Modulus of Elasticity

The experimental findings presented in Table 3 reveal that the elastic modulus of the
material under natural and foam cooling at the target temperature of 100 ◦C experienced a
noticeable increase. Specifically, the elastic modulus showed a 20% enhancement under
air cooling, indicating a strengthening process. There was no significant difference in the
elastic modulus at the target temperatures of 100 ◦C and 150 ◦C, and the change in the
residual factor of the elastic modulus was within 5%. This suggests that the alteration in the
elastic modulus after air cooling within this temperature range is relatively minor, implying
no distinct impact on the collaborative working performance of the resin and glass fibers.

Table 3. Elastic moduli and residual factors of GFRP composites after high-temperature cooling.

Cooling
Methods Temperature/◦C

Elastic Modulus (GPa) Residual Factor (ET/E20)

Group-1 Group-2 Group-3 Average Group-1 Group-2 Group-3 Average

Air
Cooling

Ambient 37.05 39.16 38.15 38.12 0.97 1.03 1.00 1.00
100 42.37 54.33 39.96 40.06 1.11 1.42 1.04 1.19
150 41.78 38.40 39.61 39.93 1.09 1.01 1.03 1.04
200 43.14 39.39 34.44 38.99 1.13 1.03 0.90 1.02
250 32.53 28.20 28.97 29.90 0.85 0.74 0.75 0.78
300 11.26 3.26 10.29 8.27 0.30 0.08 0.26 0.21

Fire Foam
Cooling

Ambient 37.05 39.16 38.15 38.12 0.97 1.03 1.00 1.00
100 41.22 41.74 37.97 40.31 1.08 1.09 0.99 1.05
150 38.12 36.83 36.21 37.05 0.99 0.97 0.94 0.97
200 33.70 36.41 38.32 36.15 0.88 0.95 1.00 0.94
250 17.91 27.87 28.89 24.89 0.46 0.73 0.75 0.65
300 2.08 9.39 11.40 7.62 0.05 0.24 0.29 0.19

Water
Cooling

Ambient 37.05 39.16 38.15 38.12 0.97 1.03 1.00 1.00
100 36.80 37.98 37.88 37.55 0.96 0.99 0.99 0.98
150 39.54 39.33 37.12 38.66 1.04 1.03 0.97 1.01
200 36.17 36.25 32.68 35.03 0.94 0.95 0.85 0.91
250 13.67 15.05 16.50 15.08 0.35 0.39 0.43 0.39
300 5.21 1.28 10.46 5.65 0.14 0.03 0.27 0.15

However, after reaching 250 ◦C, the elastic modulus exhibited a decline, with a notable
60% reduction under water cooling. This decline could be attributed to the fact that the
structure of the unsaturated polyester resin experienced significant defects under water
cooling. At 300 ◦C, the residual factor was 20% of the initial elastic modulus under all
three cooling methods, and cooling was incapable of restoring the working abilities of the
materials. Comparing with the average reduction in about 30% in tensile modulus under
high-temperature conditions at 100 ◦C [34], it can be observed that the tensile modulus of
GFRP tends to recover to some extent after cooling.

3.2.3. Ultimate Strain

Table 4 lists the tensile strength and the residual factor of the GFRP composites after
high-temperature cooling, which indicated that in the range of 100 ◦C–300 ◦C, the tensile
strength tends to decrease as the temperature increases. It is worth noting that the tensile
strength of foam cooling is generally higher than that of the other two cooling methods,
which could be attributed to the fact that foam cooling alters to some extent the bonding
effects of the unsaturated polyester and the fiber material, which led to the mass increment
of ductility. At 100 ◦C, the residual factors of the materials in natural and foam cooling are
1.01 and 1.03, respectively, indicating that the material is strengthened to a certain degree.
The decrease in tensile strength is greater with water cooling than with other cooling
methods, which may be due to defects in the redox process of unsaturated polyester,
causing a decrease in the tensile strength of the materials.
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Table 4. Ultimate strain and residual factors of GFRP composites after high-temperature cooling.

Cooling
Methods Temperature/◦C

Ultimate Strain (%) Residual Factor (εT/ε20)

Group-1 Group-2 Group-3 Average Group-1 Group-2 Group-3 Average

Air
Cooling

Ambient 12.05 14.33 12.51 12.96 0.93 1.11 0.97 1.00
100 14.31 13.54 11.28 13.04 1.10 1.04 0.87 1.01
150 11.28 12.01 12.31 11.87 0.87 0.93 0.95 0.92
200 11.52 11.40 9.80 10.90 0.89 0.88 0.76 0.84
250 7.69 6.60 7.30 7.20 0.59 0.51 0.56 0.56
300 6.42 15.35 4.16 8.64 0.50 1.18 0.32 0.67

Fire Foam
Cooling

Ambient 12.05 14.33 12.51 12.96 0.93 1.11 0.97 1.00
100 14.91 13.10 12.01 13.34 1.15 1.01 0.93 1.03
150 10.14 10.57 11.87 10.86 0.78 0.82 0.92 0.84
200 11.74 10.46 11.79 11.33 0.91 0.81 0.91 0.87
250 8.02 6.38 9.80 8.06 0.62 0.49 0.76 0.62
300 1.85 4.27 14.89 7.03 0.14 0.33 1.15 0.54

Water
Cooling

Ambient 12.05 14.33 12.51 12.96 0.93 1.11 0.97 1.00
100 10.71 12.31 11.81 11.61 0.83 0.95 0.91 0.90
150 12.07 8.99 10.21 10.42 0.93 0.69 0.79 0.80
200 8.89 9.31 9.72 9.31 0.69 0.72 0.75 0.72
250 8.00 5.03 5.88 6.30 0.62 0.39 0.45 0.49
300 2.81 11.65 5.92 6.79 0.22 0.90 0.46 0.52

3.3. Stress–Strain Curves

Figure 9 depicts the stress–strain curves of GFRP after water, foam, and air cooling at
different target temperatures, revealing a brittle damage pattern in the materials. Examin-
ing the stress–strain curve of air cooling, it is evident that the tensile strength decreases
with rising temperature. Before material destruction, the curve slopes linearly at ambient
temperatures of 100 ◦C, 150 ◦C, and 200 ◦C, showing no significant differences. The tensile
strength and ultimate strain at the target temperatures of 100 ◦C and 150 ◦C are similar,
indicating that within the range of 100 ◦C to 150 ◦C, there is no notable impact on the coor-
dinated working performance of the resin and glass fibers. However, at 250 ◦C, the tensile
strength significantly drops as only the fiber can withstand the load, leading to thermal
decomposition of the resin, which cannot be restored to its working performance after
air cooling. At 300 ◦C, the damage mode changes, with the stress reaching its maximum
value and then slowly declining, signifying that the materials have essentially lost their
working abilities. Under this temperature condition, the stress–strain curve of the specimen
after cooling exhibits significant plastic deformation. Based on the failure characteristics
of the specimens, it is concluded that due to the higher exposure temperature, the resin
is completely damaged, and only the fibers are in working condition, with the fibers in a
divergent state. This results in significant plastic deformation.

Analyzing the strength–strain curve of foam cooling, it is evident that, compared to air
cooling at the same temperature, the ultimate strain at 150 ◦C decreases and is even lower
than that at 200 ◦C. This implies that the internal resin structure of GFRP undergoes changes
after air cooling at this temperature, resulting in defects and a reduction in ultimate strain.
The damage mode is similar to the air cooling curve under corresponding temperatures at
250 ◦C and 300 ◦C, with no significant differences. The cooling mode has a minimal effect
on the materials at these temperatures. The strength–strain curves for water cooling show
that the tensile strength at each target temperature is lower than those for natural and foam
cooling. At 250 ◦C, the slope of GFRP decreases significantly after water cooling, lower than
that of natural and foam cooling under the same target temperature. This is attributed to
the weaker retention of strength under water cooling compared to the other two methods.
The contact between the materials and water at high temperatures alters the resin structure,
leading to defects and a reduction in strength. The materials exhibit plasticity damage at
250 ◦C and 300 ◦C after water cooling, resulting in a loss of their bearing capacities.
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4. Theoretical Analysis
4.1. The T-E Model

To accurately determine the variation in the elastic modulus of GFRP after three
cooling methods under different temperatures, the test was conducted using both an
extensometer and strain gauges simultaneously. This approach enabled the measurement
of strain throughout the tensile process, providing experimental values for the material’s
elastic modulus. The results of the experimental values are depicted in Figure 7, revealing
that the cooling method has a minimal impact on GFRP within the temperature range of
100 ◦C to 200 ◦C, with a variation in no more than 7.3%. However, at 250 ◦C, water cooling
displays the most substantial decrease in elastic modulus, showing a reduction in up to
50% compared to the other cooling methods. This observation implies that water cooling
induces the softening of the resin matrix from a rubbery state during the cooling process,
thereby influencing the stiffness of GFRP.

The values obtained from a nonlinear fit based on the Boltzmann function closely align
with those presented in Figure 7. The regression analysis of the relationship between the
elastic modulus residual factor and temperature is as follows:

y =
A1 − A2

1 + e(x−x0)/k
+ A2 (4)
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Since this paper investigates the relationship between elastic modulus residual factor
and temperature, A1 is the initial value of the elastic modulus discount factor; A2 is the
final value of the elastic modulus discount factor; x0 is the median temperature of the
discount factor; k is the transformation rate of the discount factor; y is the discount factor
of the elastic modulus; x is the temperature. To find the coefficient k, divide both sides of
Equation (1) by the natural logarithm, Equation (1) becomes:

(x − x0)/k = ln(A1 − A2)− ln(y − A2) (5)

The coefficients A1, A2, x0 under different cooling methods can be determined from
Figure 10, which shows the relationship between the residual factor of elastic modulus and
temperature. The results are shown in Table 5. The coefficient k can be obtained by mathe-
matical derivation, which ultimately leads to the equations described by Equations (6)–(8).
Air cooling: ka = 18.84, foam cooling: kf = 21.17, water cooling: kw = 15.86.

Air cooling:

ya =
0.86

1 + e(x−266.08)/18.84
+ 0.22 (6)

Fire foam cooling:

y f =
0.80

1 + e(x−260.76)/21.17
+ 0.21 (7)

Water cooling:

yw =
0.85

1 + e(x−241.42)/15.86
+ 0.15 (8)

Figure 10 compares the predicted characteristics of the elastic modulus residual factor
temperature with the actual test results. The model’s predictions align well with the
experimental data, demonstrating the accuracy of the model in forecasting the modulus of
elasticity residual factor of GFRP after three cooling methods at various target temperatures.
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Table 5. Parameters of Boltzmann model under different cooling modes.

Cooling Method A1 A2 x0

Air cooling 1.08 0.22 266.08
Fire foam cooling 1.01 0.21 260.76

Water cooling 1.00 0.15 241.42
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4.2. Johnson−Cook Model

The original Johnson–Cook (JC) constitutive model [35] can describe the stress–strain
relationships under the influence of temperature or strain rate. It is usually considered
one of the representative constitutive models due to its simple form and satisfactory
performance. Therefore, this model was chosen as the basis for this study. The original
model is:

σ(εp,
.
ε, T) =

[
A + B(εp)n][1 + C ln

( .
ε
.
ε0

)][
1 −

(
T − TR

Tm − TR

)m]
(9)

A is the nominal yield stress (MPa) in the tensile process at room temperature, denotes
the yield strength of the material, n is the strain hardening parameter, and B is the strain
hardening constant (MPa), which can be determined by the fitting method [36].

.
ε,

.
ε0, T,

TR and Tm are the current strain rate, reference strain rate, current temperature, reference
temperature, and melting temperature, respectively.

4.2.1. Parametric Analysis

The reference temperature: TR = 293 K, the reference strain rate:
.
ε0 = 0.005 s−1,

A = 12.51 MPa, Tm = 953 K, and T = 373 K. Since strain rate and temperature are not
variables in this experiment, Equation (9) can be split into:

σ(ε) = A + Bεn (10)

Converting both sides of the equal value of Equation (10) and dividing them by the
natural logarithm gives the following equation:

ln(σ(ε)− A) = n ln ε + ln B (11)

After substituting the stress and strain values into Equation (11) for a linear fit, the
relationship between lnε and ln(σ − A) under different cooling methods is shown in
Figure 11, where n and lnB denote the slope and initial value of the fitted curve, respectively.
From this, the coefficients n, and B are calculated in Table 4.

After obtaining the coefficients n, and B for different cooling methods, Equation (9) is
transformed into:

σ(ε)

(A + Bεn)
= 1 + C ln

( .
ε
.
ε0

)
(12)

As shown in Figure 11, the strain values and strain rates derived from the different
cooling methods are brought into Equation (12) for a linear fit, where C denotes the slope
of the fitted curve, from which the coefficient C can be calculated.

After the linear fit, the values of C for different cooling methods can be known from
Figure 12. To find the parameter m, Equation (13) is changed to:

ln
[

1 − σ(ε)

A + Bεn

]
= m ln

(
T − TR

Tm − TR

)
(13)

As shown in Figure 13, by bringing the numbers of strains and target temperatures
from this test into Equation (13) and then performing a linear fit, m can be yielded, as
shown in Table 6.

Table 6. Parameters of Johnson–Cook model under different cooling modes.

Parameters Air Cooling Fire Foam Cooling Water Cooling

n 1.16 1.04 1.10
B 5653.33 4105.16 4865.87
C 0.26 0.30 0.38
m 4.26 3.60 3.49
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Finally, the relationship between stress (σ), strain (ε), deformation temperature (T),
and deformation rate was established based on the JC constitutive model. The modified
equation T0 was obtained through linear fitting, resulting in the predicted model data
closely aligning with the actual observations.

Fire foam cooling:

T0 = (0.13T − 12.56)ε + (6.17 × 10−5T2 − 0.018T + 6.18 × 10−3)ε2 + 10.33 (14)

σ(εp,
.
ε, T) =

(
12.51 + 4105.16ε1.04)[1 + 0.30 ln

( .
ε

0.005

)][
1 −

(
T−293

660

)3.60
]
−

(0.13T − 12.56)ε − (6.17 × 10−5T2 − 0.018T + 6.18 × 10−3)ε2 − 10.33
(15)

Air cooling:
T0 =

(
1.08 × 10−3T2 − 0.32T + 20.76

)
ε + 8.65 (16)

σ(εp,
.
ε, T) =

(
12.51 + 5653.33ε1.16)[1 + 0.26 ln

( .
ε

0.005

)][
1 −

(
T−293

660

)4.26
]
−(

1.08 × 10−3T2 − 0.32T + 20.76
)
ε − 8.65

(17)
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Water cooling:

T0 =
(

1.07 × 10−3T2 − 0.24T + 12.97
)

ε +
(
−5.12 × 10−4T2 + 0.21T − 15.81

)
(18)

σ(εp,
.
ε, T) =

(
12.51 + 4865.87ε1.10)[1 + 0.38 ln

( .
ε

0.005

)][
1 −

(
T−293

660

)3.49
]
−(

1.07 × 10−3T2 − 0.24T + 12.97
)
ε −

(
−5.12 × 10−4T2 + 0.21T − 15.81

) (19)
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4.2.2. Verification of the Constitutive Model

The original JC model demonstrates effective predictions at the reference strain rate
and temperature. However, given the consideration of mechanical behavior after high-
temperature cooling in this experiment, modifications were made to the JC model, resulting
in Equations (15), (17) and (19). Figure 14 compares the stress–strain curves obtained from
the tests with the predicted data from the modified constitutive model. It can be observed
that the predicted equation accurately describes the effects of the three cooling methods
on the mechanical behavior of GFRP at different target temperatures. It is important to
note that the equation is specifically applicable to the boundary conditions and materials
utilized in this study.
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5. Conclusions

In this paper, the effects of different target temperatures and cooling methods on the
tensile properties of GFRP are investigated, and the prediction equations of mechanical
properties and theoretical models after high-temperature cooling are derived and verified
by experiments. The conclusions of this study are as follows:

1. The elevated temperatures and cooling methods significantly influenced the mechani-
cal properties of GFRP. When exposed to temperatures below 200 ◦C, the three cooling
methods can recover the mechanical properties of GFRP to a greater extent. At temper-
atures ranging from 20 to 200 ◦C, the recovery ability of water cooling is the weakest,
with tensile strength values of 486.38, 457.30, 405.87, and 328.86. Conversely, natural
cooling exhibits the strongest recovery ability, with corresponding tensile strength
values of 486.38, 515.24, 485.26, and 428.58; while in 200 ◦C–300 ◦C, mechanical prop-
erties of GFRP decreased substantially, the ability of the cooling methods to restore
the mechanical properties gradually decreased; when at 300 ◦C, GFRP has basically
lost work abilities.

2. The best fire extinguishing method for GFRP materials after exposure to fire is firefighting
foam cooling. At 100 ◦C, the residual factors of elastic modulus (1.05, 1.19) and tensile
strength (1.10, 1.06) for GFRP in fire foam cooling and air cooling are greater than those at
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ambient temperature. The elastic modulus and tensile strength of GFRP under fire foam
cooling and air cooling are greater than those under ambient temperature. They decreased
gradually with the increase in temperature. For the same target temperature, the strength
retention rates of the materials are air cooling > fire foam cooling > water cooling.

3. The prediction equation of the mechanical properties of GFRP is established based
on the experimental results, and the JC constitutive model is also modified to obtain
the stress–strain curve equation suitable for this experiment, which is specifically
applicable to the boundary conditions and materials utilized in this study.

4. This paper investigates the impact of different firefighting methods on the mechanical
properties of GFRP in the event of a fire. Three commonly used cooling methods,
namely, fire foam cooling, water cooling, and natural cooling, were employed. This
study aims to provide a basis for the post-fire structural safety assessment of buildings.
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