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Abstract: Fiber-reinforced nano-silica concrete (FrRNSC) was applied to a concrete sculpture to
address the issue of brittle fracture, and the primary objective of this study was to explore the potential
of hybridizing the Grey Wolf Optimizer (GWO) with four robust and intelligent ensemble learning
techniques, namely XGBoost, LightGBM, AdaBoost, and CatBoost, to anticipate the compressive
strength of fiber-reinforced nano-silica concrete (FrRNSC) for sculptural elements. The optimization
of hyperparameters for these techniques was performed using the GWO metaheuristic algorithm,
enhancing accuracy through the creation of four hybrid ensemble learning models: GWO-XGBoost,
GWO-LightGBM, GWO-AdaBoost, and GWO-CatBoost. A comparative analysis was conducted
between the results obtained from these hybrid models and their conventional counterparts. The
evaluation of these models is based on five key indices: R2, RMSE, VAF, MAE, and bias, addressing
an objective assessment of the predictive models’ performance and capabilities. The outcomes reveal
that GWO-XGBoost, exhibiting R2 values of (0.971 and 0.978) for the train and test stages, respectively,
emerges as the best predictive model for estimating the compressive strength of fiber-reinforced nano-
silica concrete (FrRNSC) compared to other models. Consequently, the proposed GWO-XGBoost
algorithm proves to be an efficient tool for anticipating CSFrRNSC.

Keywords: fiber-reinforced concrete; Durable Sculptural Elements; AdaBoost; CatBoost; LightGBM;
XGBoost; Grey Wolf Optimization Algorithm; machine learning

1. Introduction

Cities promote the development of human culture. Cities products created by people
and are composed of people’s thoughts and concepts. With people’s constant pursuit of
the value of urban life, art comes onto the stage of cities for some relatively simple ideas,
such as beautifying cities and inheriting culture. Among them, sculpture stands out in its
permanent artistic life, public artistry, and colorful expression techniques, and it becomes a
symbol of urban art. Sculpture art expresses human’s understanding of the natural world
and imagination of the beautiful world through plastic and sculpting techniques.

Concrete has evolved as a material that is commonly preferred for use in construction,
according to a number of research studies [1–4]. Concrete material is artificial stone with
a natural ability to be shaped, and its construction method and sculpture have a lot in
common. At the same time, the excellent plasticity of concrete material makes it the carrier
of sculpture art, which has been widely accepted by artists and architects. Concrete is also
widely used in urban sculpture, and Figure 1 shows the example of concrete sculptures
by the authors. This special building material has a special spiritual characteristic when
applied to urban sculpture, and the diversity of this medium enriches the expression
technique of urban sculpture.

Buildings 2024, 14, 396. https://doi.org/10.3390/buildings14020396 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings14020396
https://doi.org/10.3390/buildings14020396
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://doi.org/10.3390/buildings14020396
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings14020396?type=check_update&version=1


Buildings 2024, 14, 396 2 of 30

Buildings 2024, 14, x FOR PEER REVIEW 2 of 32 
 

when applied to urban sculpture, and the diversity of this medium enriches the expression 
technique of urban sculpture. 

 
Figure 1. Concrete sculptures designed by the authors. 

However, it should be noted that the concrete sculpture structure is prone to brittle 
fracture due to its strong rigidity, which will cause damage to the created sculpture struc-
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crete. The incorporation of FRC, which comprises various fibers, such as glass, steel, and 
polypropylene, is intended to improve the mechanical strength and energy absorption 
capacity of concretes. This is accomplished by limiting the propagation of fractures, thus 
making it possible for structural parts to endure higher distortions after the first cracks 
have appeared [8–10]. 

Nanoparticles, and more especially nano-silica (NS), have been indicated to be help-
ful in filling gaps within cement paste, ultimately resulting in the higher durability and 
mechanical strength of concrete [11–13]. As a result, the introduction of nanoparticles into 
FRC shows promise in developing a material with exceptional performance, which is ex-
cellent for the construction of buildings that are both long-lasting and high-performing. A 
decrease in the first and last setting periods of concretes is one of the benefits that NS 
brings, along with an increase in the early-age strength of the material. The one-of-a-kind 
nanostructure of NS, which is distinguished by an exceptionally high specific surface area 
(SSA), processes as a binder for cement aggregate [14–16]. In accordance with the powerful 
pozzolanic effect that NS demonstrates [14,17,18], the nanoparticle size should be consid-
ered. The interfacial transition zone (ITZ), which is known to be a vulnerable region in 
concrete, is improved as a consequence of the thorough filling of gaps and voids by these 
nanoparticles [18–20], which ultimately results in a reduction in permeability. It has been 
shown via research that NS is an extremely efficient component that speeds up the process 
of concrete hydration [21] and encourages the production of calcium–silicate–hydrate (C-
S-H) gel, which is an essential factor in determining the strength of the material [22–24]. 
NS interacts with Ca(OH)2, which results in a denser final product [25,26]. This causes the 
percentage of portlandite-Ca(OH)2 to decrease in cementitious materials like cementitious 
materials. NS may be used to replace up to 4% of cement, according to previous research 
[27,28]. This can significantly improve the material’s durability and strength, particularly 
when subjected to challenging circumstances, such as corrosion and high temperatures. 
Even though there are many different uses, the best results are obtained when NS is used 
as a cement substitute in the range from 0.5 to 4%. This is because using excessive amounts 
of NS may result in the buildup of particles and a reduction in the material’s workability 
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However, it should be noted that the concrete sculpture structure is prone to brittle
fracture due to its strong rigidity, which will cause damage to the created sculpture structure.
In order to overcome the intrinsic brittleness of concrete, researchers have shifted their
attention to fiber-reinforced concrete (FRC), which is recognized for having higher ductility
in comparison to ordinary concrete [5–7]. This upgrade helps to improve the durability
and structural reliability of the concrete sculpture structure.

The development of cracks in concrete is the first step in the failure process of con-
crete. The incorporation of FRC, which comprises various fibers, such as glass, steel, and
polypropylene, is intended to improve the mechanical strength and energy absorption
capacity of concretes. This is accomplished by limiting the propagation of fractures, thus
making it possible for structural parts to endure higher distortions after the first cracks
have appeared [8–10].

Nanoparticles, and more especially nano-silica (NS), have been indicated to be helpful
in filling gaps within cement paste, ultimately resulting in the higher durability and
mechanical strength of concrete [11–13]. As a result, the introduction of nanoparticles
into FRC shows promise in developing a material with exceptional performance, which is
excellent for the construction of buildings that are both long-lasting and high-performing.
A decrease in the first and last setting periods of concretes is one of the benefits that NS
brings, along with an increase in the early-age strength of the material. The one-of-a-kind
nanostructure of NS, which is distinguished by an exceptionally high specific surface
area (SSA), processes as a binder for cement aggregate [14–16]. In accordance with the
powerful pozzolanic effect that NS demonstrates [14,17,18], the nanoparticle size should
be considered. The interfacial transition zone (ITZ), which is known to be a vulnerable
region in concrete, is improved as a consequence of the thorough filling of gaps and voids
by these nanoparticles [18–20], which ultimately results in a reduction in permeability.
It has been shown via research that NS is an extremely efficient component that speeds
up the process of concrete hydration [21] and encourages the production of calcium–
silicate–hydrate (C-S-H) gel, which is an essential factor in determining the strength of the
material [22–24]. NS interacts with Ca(OH)2, which results in a denser final product [25,26].
This causes the percentage of portlandite-Ca(OH)2 to decrease in cementitious materials
like cementitious materials. NS may be used to replace up to 4% of cement, according
to previous research [27,28]. This can significantly improve the material’s durability and
strength, particularly when subjected to challenging circumstances, such as corrosion and
high temperatures. Even though there are many different uses, the best results are obtained
when NS is used as a cement substitute in the range from 0.5 to 4%. This is because using
excessive amounts of NS may result in the buildup of particles and a reduction in the
material’s workability [29]. A wide variety of nanoparticles, including NS, are utilized
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as materials to be added to concrete in order to improve the macroscopic qualities and
interpretation of the material. Nevertheless, the limited practical application of NS in
constructions may be related to its much higher prices, which are about one thousand times
more costly than normal cement [30,31].

The inclusion of fibers in FrRNSC serves as a crucial mechanism for crack arrest and
mitigation. The extended discussion now highlights how the fibers act as a network within
the concrete matrix, effectively arresting the propagation of cracks. This reinforcement
mechanism imparts toughness to the material, minimizing the likelihood of brittle fractures
and enhancing the structural resilience of concrete sculptures. The enhanced content on
nano-silica in the discussion now elucidates its role in improving the ductility of FrRNSC.
Nano-silica particles contribute to a denser and more homogenous microstructure, reduc-
ing the size of pores and enhancing the material’s resistance to crack propagation. This
increased ductility adds a layer of flexibility to the material, making it more resilient to
external forces and mitigating the risk of brittle failure. The revised discussion emphasizes
the synergistic effects arising from the combination of fiber reinforcement and nano-silica.
By elaborating on how these two components complement each other, the paper now
provides a more comprehensive understanding of how their interaction contributes to the
mitigation of brittle fracture. The intertwined effects include improved tensile strength, en-
hanced flexural toughness, and heightened resistance to environmental factors, collectively
bolstering the overall structural integrity and durability of FrRNSC sculptures [32–35].

Researchers have made notable advancements in the field of nanotechnology through
the identification of nanoparticles (NPs) measuring less than 100 nm [25,27,36,37]. These
NPs exhibit the potential to enhance the mechanical properties of diverse materials, such
as polymers [29] and cementitious materials [30,31,38,39]. Moreover, they find applica-
tions in the medical, engineering, and food sectors [40]. Consequently, there has been a
heightened interest among researchers in investigating the influence of NS on concrete [41].
Various types of NPs, including nano ZnO, nano Fe2O3, nano Al2O3, nano TiO2, and NS,
have undergone scrutiny. Notably, NS stands out for its ability to significantly improve
compressive strength (CS) in concrete. Additionally, it has been observed that NS reduces
the initial and final setting times of concrete while augmenting its early-age strength. The
nanostructure of NS plays a pivotal role, offering an unusually large SSA and functioning as
an aggregate–cement binder [42]. The remarkable pozzolanic activity of NS is attributed to
its nanoparticle size [43]. Furthermore, the ITZ, recognized as a weak phase in cementitious
materials, experiences enhancement due to the packing of these tiny NPs in gaps and voids,
thereby reducing permeability [44–46]. NS emerges as a highly active component that
expedites the hydration process of cementitious materials [47], fostering the formation of
more calcium silicate hydrate (C-S-H) gel [48], which is crucial for material strength [49].
The proportion of portlandite-Ca(OH)2 decreases in cementitious materials as NS combines
with Ca(OH)2 to form a denser product [50,51]. Previous studies indicate that substituting
NS for up to 4% of the cement in concrete enhances its mechanical strength and durability,
especially under adverse conditions, like elevated temperatures and corrosion [52]. While
NS has demonstrated efficacy in specific applications for cementitious materials, optimal
utilization occurs in proportions ranging from 0.5% to 4% as a cement substitute. However,
an excess amount of NS may lead to agglomeration, compromising workability due to
improper dispersion [53]. The distinguishing characteristic of NP lies in their high volume-
to-surface-area ratio, as depicted in Figure 2. Numerous NPs serve as nano-additives in
cementitious composites to enhance their macroscopic characteristics and performance,
with NS gaining prevalence among these NPs. Nevertheless, the limited practical adoption
of NS in construction is primarily attributed to its high cost, which remains 1000 times
more expensive than ordinary cement [54–56].
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Compressive strength (CS) is usually acknowledged to be an important factor [38],
despite the fact that different studies are used to assess the performance of concrete. The
concrete strength (CS) rating is a helpful indication of a variety of concrete parameters,
which are either directly or indirectly connected to mechanical and durability characteris-
tics [39]. In the quest for efficiency, predictive models for material strength are becoming
more popular as a means of reducing the number of redundant experiments and the
number of resources that are used. When it comes to effectively modeling the nonlinear
character of cement-based composites, traditional models, such as best-fit curves, often fall
short [58]. Furthermore, regression methods have the potential to significantly overstate
the significance of certain components [40]. It is in reaction to this that novel modeling
approaches, such as artificial intelligence (AI) methods, and more especially supervised
machine learning (ML), are gaining popularity in the area [41,42,59–70]. These method-
ologies make use of input attributes in order to model responses, and the models that
are produced as a consequence are verified via testing. The use of machine learning ap-
proaches may be shown in the prediction of the characteristics of concrete and bituminous
mixtures [44,47–49,71–73].

Furthermore, the implementation of different machine learning methods for predicting
the refreshed and toughened features of concretes mixes has demonstrated great benefits.
This is in addition to the experimental research that has been conducted. Using artificial
intelligence technology, recent research developed a data-driven system for estimating
the compressive strength (CS) of foam cellular concretes. This formulation outperformed
all empirical models in terms of forecasting CS [74]. Studies that were quite similar to
this one investigated the possibility of artificial intelligence systems being able to predict
the features of concrete, proposing that AI may serve as an option to exploratory and
empirical programs for modeling refreshed and toughened characteristics [52]. As part
of their investigation into artificial intelligence approaches, Behnood et al. [57] focused
on the model tree as an AI strategy for predicting CS in regular and high-performance
concrete data records. They demonstrated the correctness of this classification methodology
throughout their research. Gholampour et al. [75] focused their attention on artificial
intelligence approaches for calculating the mechanical characteristics of recycled aggregate
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concretes. They also investigated the application of predictive AI models in predesign and
modeling. Few studies have attempted to forecast the characteristics of fiber-reinforced
nano-silica concrete (FrRNSC), despite the fact that early machine learning-based research
focused mostly on predicting CS for regular cement-based materials [54,76–79].

In the realm of predicting the compressive strength of FrRNSC, the existing literature
predominantly focuses on traditional optimization algorithms and individual machine
learning models. Notably, limited attention has been directed towards the combined uti-
lization of the Grey Wolf Optimization Algorithm and Ensemble Learning techniques,
including CatBoost, LightGBM, AdaBoost, and XGBoost, in the context of this specific
application. The optimization is one of the popular methods used in different fields of
study [80,81]. Consequently, there exists a discernible research gap that warrants ex-
ploration and investigation into the potential synergies and performance enhancements
that may arise from the integration of the Grey Wolf Optimization Algorithm with the
aforementioned Ensemble Learning methods. The understanding of how these advanced
optimization and ensemble techniques collectively contribute to the accuracy and robust-
ness of compressive strength predictions for FrRNSC remains underexplored, highlighting
the need for comprehensive research in this niche area. Addressing this research gap
can significantly contribute to the advancement of predictive modeling in the domain of
FrRNSC, offering valuable insights for both academic and practical applications in con-
struction and materials engineering. Therefore, this study optimizes the hyperparameters
of four robust techniques, namely CatBoost, LightGBM, AdaBoost, and XGBoost, using the
GWO algorithm for predicting FrRNSC.

This study is of paramount importance in the domain of construction materials and
computational modeling. The incorporation of advanced optimization algorithms and
ensemble learning techniques addresses a critical gap in the understanding of estimating
the CS of concrete reinforced with fibers and modified with nano-silica. This research is
vital for advancing the state-of-the-art in predictive modeling for enhanced concrete com-
positions, where the inclusion of fibers and nano-silica represents a growing area of interest
in the construction industry. The optimization algorithms, particularly the GWO algorithm,
offer a sophisticated approach to refining model parameters, contributing to the precision
and reliability of predictions. The ensemble learning methodology, involving CatBoost,
LightGBM, AdaBoost, and XGBoost, introduces a comprehensive strategy for leveraging
the strengths of multiple algorithms, resulting in a more robust and accurate predictive
model. The significance of this research extends beyond theoretical advancements, holding
practical implications for the construction industry and infrastructure development. By
accurately predicting the compressive strength of FrRNSC, this research directly informs
engineering practices, enabling professionals to design and construct more resilient and
durable structures. The outcomes of this study have the potential to revolutionize con-
struction material selection and usage, influencing the development of cost-effective and
sustainable solutions.

The remaining sections of the present research are organized as follows: The back-
grounds of AdaBoost, CatBoost, LightGBM, XGBoost, and GWO techniques are separately
examined in Section 2. Section 3 delineates a description of the dataset employed and the
preprocessing and data preparation. Furthermore, Section 4 presents the obtained results
from the predictive models and discussed them. Conclusions are presented in Section 5.

2. Materials and Methods
2.1. AdaBoost

Due to the fact that it can only make one choice at a time, a single decision tree is
considered a poor learner. Scholars speculate about the possibility of producing a supe-
rior learner by combining numerous base learners (standalone) into one group. In 1990,
Schapire [55,82] demonstrated that this hypothesis was correct, so laying the ground-
work for the boost technique, which merges several weak learners in a sequential fashion.
Equation (5) demonstrates that the general trees will be deleted and only the most powerful
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trees inserted whenever an additional tree model is introduced to the overall system [56,83].
As more repeated computations are performed in this manner, the general efficiency of the
model will steadily increase. On the other hand, there is an issue with this. When the first,
most fundamental tree model is produced, a portion of the points in the dataset are properly
categorized, while others are misclassified. The AdaBoost technique is a straightforward
approach to improving poor classification algorithms. It enhances a system’s capacity to
classify data by continuously subjecting it to training. Learning the training samples yields
the initial weaker learners, which is then used to create an additional training point by
adding incorrect examples to the untrained samples. In addition, the second weak classifier
may be acquired by the training of this dataset. The inaccurate samples are merged with the
points that were previously trained in order to create an additional training point. This new
training sample may then be trained in order to generate the third weak classifier. After
carrying out these steps a number of times, we will be able to obtain the upgraded version
of the strong classifier. The AdaBoost method assigns various weights to the classifiers in
order to enhance the number of accurate classifications that are produced. The samples
that were successfully categorized are given relatively low weights, while the weights of
the classifiers that were incorrectly classified are incremented [82,84,85]. This causes the
algorithm to provide greater focus on the classifiers that were incorrectly classified [82].
Adjustments are required to be applied to the weight allocation for each point within the
dataset before retraining the initial tree model. Because each set of training datasets is
unique, the outcomes of the training are also expected to be distinct. Finally, the individual
sets of findings are compiled, and a summation of results is achieved as presented in
Equation (1) [86]:

Fn(x) = Fn−1(x) + arg minh

n

∑
i=1

L(yi, Fn−1(xi) + h(xi)) (1)

where Fn(x) reveals the overall model, Fn−1(x) signifies the overall achieved in the pre-
vious iteration, yi indicate the estimation results of the ith tree, and h(xi) is the current
generated tree.

2.2. XGBoost

The XGBoost model originated from the early experimental work of Washington
University [87]. It stands out as an enhanced iteration of the gradient boosting algorithm,
boasting increased scalability and efficiency. The distinctive features that set the XGBoost
algorithm apart are elaborated upon in detail [88–90]. Notably, automatic feature extraction
becomes feasible, and XGBoost incorporates regularization techniques to mitigate over-
fitting, demonstrating proficiency in learning from nonlinear datasets. Additionally, its
parallelization feature enables training with numerous CPU cores, positioning it as one of
the tree-based ensemble additive models comprising several base-learner systems. In a
broad sense, XGBoost can be denoted as Equations (2) and (3):

F = {b1, b2, . . . , bn} (2)

ŷi =
n

∑
t=1

bn(xi) (3)

where m represents base learners, and ŷi is the predictive model.
In the context of the XGBoost predictive model, represented as ŷi, which combines

numerous base learners, x serves as the inputs feature for base-learners, denoted as m. The
objective function for XGBoost is delineated as Equation (4):

O(θ) =
m

∑
i=1

L(oi, ôi) +
n

∑
i=1

Ω( fi) (4)
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Examining this equation, we find that the objective function comprises two parts: The
first part signifies the loss function, denoted as L, representing the training loss of either
logistic or squared loss. The second part involves the addition of each tree’s complexity,
with oi representing the measured values, ôi as the estimated values, Ω as the regularization
term, n denoting the number of constructed trees, and f representing the function.

2.3. LightGBM

LightGBM stands out as a widely employed boosted model renowned for its support of
parallel training, akin to extreme gradient boosting [91–93]. Particularly adept at handling
multidimensional datasets, LightGBM surpasses traditional boosting algorithms and even
outperforms XGBoost. Unlike conventional boosting algorithms that horizontally divided
the trees’ architecture (i.e., level-wise growth), LightGBM takes a vertical approach, leading
to enhanced performance. The divergence in tree branch growth among the level-wise and
leaf-wise methodologies is illustrated in Figure 3.
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2.4. CatBoost

CatBoost, introduced in 2017 by Yandex researchers, marks the inception of the first
Russian machine learning algorithm [94]. As a tree-based boosting algorithm, CatBoost,
short for categorical boosting, extends its applicability beyond categorical features, ad-
dressing absolute values and various other aspects, including regression problems and
automatic feature engineering. Consequently, CatBoost exhibits a reduced training time
compared to various gradient boosting algorithms [95,96].

Unlike the conventional gradient boosting techniques that generally adhere to a
standard GBT approach for constructing decision trees, CatBoost adopts a dual approach in
tree construction [97,98]. The first method involves an ordered technique, while the second
employs a basic technique.

In the ordered mode, a random permutation technique is applied during training,
involving n supporting models (m1, m2, . . ., mn). Each model, mn, is trained using the
earliest I samplings in the permutation. Subsequently, in each repetition, the MJ−1 model is
utilized to obtain the residual of the jth sample. This distinctive approach sets CatBoost
apart in its tree construction methodology.

2.5. Grey Wolf Optimization Algorithm

The group predation behavior of gray wolves served as the basis for the creation of
the unique swarm intelligence optimization algorithm known as GWO. This method has
found use in a variety of technical domains. Within the population of gray wolves, there
is a distinct and well-established hierarchy, and the whole population of wolves can be
broken down into four distinct levels, namely α, β, δ, and ω [97–99]. According to Figure 4,
the best gray wolf is α, which is the leader of the wolves’ team and has the authority to
determine all significant matters pertaining to the whole wolves’ team. Moreover, β is the
second-rank grey wolf, which provides assistance to the leader wolf in making choices.
Notably, δ is at the third level and is responsible for sentry, reconnaissance, and other
responsibilities; and ω is the lowest-ranking wolf and is commanded by the first three
tiers of gray wolves. The act of predation carried out by gray wolves may be broken down
into three distinct stages: the search, the surrounding, and the assault stages. During the
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hunting phase, each gray wolf updates its location based on the given equations in order to
capture its victim. The location guiding and updating mechanism of the ω wolves adopted
by GWO is presented in Figure 5. The flowchart of GWO is illustrated in Figure 6.

In the equations, t represents the number of recent repetitions; D represents the

distance that separates an individual grey wolf from hunted preys;
→
X signifies the position

vector of an individual grey wolves, whereas
→
Xp represents the position vector of the

preys;
→
A and

→
C represent coefficient vectors;

→
a is the convergence factor, which declines

from 2 to 0 linearly with the number of repetitions; and
→
r and

→
r 2 are vectors of random

values in the range of (0,1) [100,101]. The required formulas for this aim are as shown in
Equations (5)–(8):

D =

∣∣∣∣C ×
→
Xp(t)−

→
Xp(t)

∣∣∣∣ (5)

→
X(t + 1) =

→
Xp(t)−

→
A × D (6)

→
A = 2

→
a ×→

r 1 −
→
a (7)

→
C = 2 ×→

r 2 (8)

Buildings 2024, 14, x FOR PEER REVIEW 8 of 32 
 

Notably, δ is at the third level and is responsible for sentry, reconnaissance, and other 
responsibilities; and ω is the lowest-ranking wolf and is commanded by the first three tiers 
of gray wolves. The act of predation carried out by gray wolves may be broken down into 
three distinct stages: the search, the surrounding, and the assault stages. During the hunt-
ing phase, each gray wolf updates its location based on the given equations in order to 
capture its victim. The location guiding and updating mechanism of the ω wolves adopted 
by GWO is presented in Figure 5. The flowchart of GWO is illustrated in Figure 6. 

In the equations, t represents the number of recent repetitions; D represents the dis-
tance that separates an individual grey wolf from hunted preys; �⃗� signifies the position 
vector of an individual grey wolves, whereas �⃗�   represents the position vector of the 
preys; 𝐴 and 𝐶 represent coefficient vectors; �⃗� is the convergence factor, which declines 
from 2 to 0 linearly with the number of repetitions; and 𝑟 and 𝑟  are vectors of random 
values in the range of (0,1) [100,101]. The required formulas for this aim are as shown in 
Equations (5)–(8): 

( ) ( )p pD C X t X t= × −
 

 
(5)

( ) ( )1 pX t X t A D+ = − ×
 

 (6)

12A a r a= × −
   

 (7)

22C r= ×
 

 (8)

 
Figure 4. Social hierarchy of wolves in GWO [102]. Figure 4. Social hierarchy of wolves in GWO [102].



Buildings 2024, 14, 396 9 of 30

Buildings 2024, 14, x FOR PEER REVIEW 9 of 32 
 

 
Figure 5. The location guiding and updating mechanism of the ω wolves adopted by GWO [102]. 

 
Figure 6. Flowchart of GWO algorithm. 

  

Figure 5. The location guiding and updating mechanism of the ω wolves adopted by GWO [102].

Buildings 2024, 14, x FOR PEER REVIEW 9 of 32 
 

 
Figure 5. The location guiding and updating mechanism of the ω wolves adopted by GWO [102]. 

 
Figure 6. Flowchart of GWO algorithm. 

  

Figure 6. Flowchart of GWO algorithm.



Buildings 2024, 14, 396 10 of 30

3. Data Analysis and Data Preparation

To achieve the desired outcome, the ML methods necessitate a diverse array of input
variables. The computation of the CSFrRNSC was conducted using data extracted from
the literature. To mitigate bias, data points were selected randomly from recent conducted
research, focusing on data points including CS results for algorithmic execution. The
quantity of input features and the dataset’s size significantly influence the model’s target.
In the current study, 175 data points were considered for running artificial intelligence (AI)
techniques. Three types of fibers—steel, polypropylene, and glass—were employed in the
FrRNSC samples. The data were acquired on the basis of the mixture characteristics and
the specific concern of interest, ensuring that models received comparable input variables
for mixtures to generate the desired target.

In this investigation, the prediction of FrRNSC involved the utilization of six input
parameters, sourced from the research conducted by Anjum et al. [103]. Furthermore,
four studies [104–107] considered using those input parameters for gathering a dataset
to construct predictive models. The ongoing study aims to formulate a strategy that is
beneficial for engineers in enhancing different aspects of geopolymer concretes relevant
to construction operations. Numerical values have been assigned to parameters, both
inputs and outputs, with their ranges presented in Table 1. The obtained data from
175 laboratory tests were considered in this study to provide the necessary data. The
input variables, encompassing fiber volume (FV), coarse-aggregate-to-fine-aggregate ratio
(CA/FA), water-to-binder ratio (w/b), nano-silica (NS), superplasticizer-to-binder ratio
(SP/B), and specimen age (A), were incorporated into the models intended for training AI
methods. Simultaneously, the CSFrRNSC was entered in a predictive framework as the
output variable for AI modeling.

Table 1. Descriptive statistics of datasets [104–107].

Variable Unit Notation Min Ave Max StD Skewness Kurtosis

Input

Fiber volume % FV 0 0.198 0.9 0.185 1.974 5.204
CA/FA - CF 0.874 0.906 1.135 0.060 2.382 6.035

w/b - w/b 0.31 0.408 0.48 0.041 0.509 0.236
Nano-silica kg/m3 NS 0 21.214 49.6 17.303 0.317 −1.084

SP/B - SP/B 0.005 0.017 0.025 0.006 −1.176 −0.396
Age day Age 7 41.651 120 38.252 0.785 −0.930

Output
Compressive strength of

fiber-reinforced
nano-silica concrete

MPa CSFrRNSC 19.1 66.483 91.2 17.829 −0.838 −0.243

StD: standard deviation. Min: minimum. Max: maximum. Ave: average.

Additionally, Figure 6 illustrates the heatmap correlation coefficients of the used
parameters in this study. The correlation linked two variables that are typically assessed
using the Pearson correlation coefficient (p, p ∈ [−1, 1]). The Pearson correlation coefficient
is determined by the formula provided in Equation (9) [108,109]:

p =

t
∑

i=1
(di − dm)(ri − rm)√

t
∑

i=1
(di − dm)

2 ×
t

∑
i=1

(ri − rm)
2

(9)

where t represents the number of raw data points, dm denotes the average value across all d
data, and rm signifies the average value across all r data. A positive correlation is indicated
by a value of p greater than zero (p > 0), signifying a positive linear relationship between
the two parameters. A stronger positive correlation is indicated by a value of p closer to
one (p ≃ 1). Conversely, if p is less than zero (p < 0), it implies a negative linear correlation
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between the two parameters. A stronger negative correlation is denoted by a value of p
closer to minus one (p ≃ −1) [110,111].

As depicted in Figure 7, four parameters, namely FV, NS, SP/B, and Age, exhibit a
positive linear correlation with CSFrRNSC, while C/F and w/b display a negative linear
correlation with CSFrRNSC. Additionally, by examining the absolute values of the Pearson
correlation coefficients in Figure 7, it becomes evident that C/F manifests a notably strong
negative linear correlation, and SP/B demonstrates a marked positive linear correlation
with CSFrRNSC. The correlations between the remaining input parameters and CSFrRNSC
are observed to be of weak-to-medium strength. Furthermore, the violin plot of parameters
is presented in Figure 8. A violin plot is a statistical data visualization tool that combines
elements of box plots and kernel density plots to provide insights into the distribution and
probability density of a dataset across different categories or groups. It is particularly useful
for comparing the distribution of multiple datasets or subgroups within a larger dataset.
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Table 1 shows the maximum and minimum values of 91.2 MPa and 19.1 MPa for
CSFrRNSC, respectively. Furthermore, the skewness and kurtosis of each variable presented
in Table 1 reveals more insights into the shape and distribution of a dataset. Skewness
measures the asymmetry of the distribution. A positive skewness (greater than 0) indicates
that the data are skewed to the right, meaning that the tail on the right side is longer or fatter
than the left side. In addition, a negative skewness (less than 0) indicates that the data are
skewed to the left, meaning that the tail on the left side is longer or fatter than on the right
side. Therefore, FV, CF, w/b, NS, and Age all have positive skewness values, indicating that
these variables have a right-skewed distribution. Moreover, SP/B and CSFrRNSC have
negative skewness values, suggesting a left-skewed distribution for these variables.

Kurtosis measures the thickness of the tail of a distribution relative to the normal
distribution. Positive kurtosis (greater than 3) indicates heavy tails and a sharper peak
than the normal distribution (leptokurtic). In addition, negative kurtosis (less than 3)
indicates light tails and a flatter peak than the normal distribution (platykurtic) [112].
Accordingly, FV, CF, w/b, NS, Age, and CSFrRNSC have positive kurtosis values, indicating
that these variables have heavier tails and sharper peaks compared to a normal distribution.
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Notably, SP/B has negative kurtosis, suggesting lighter tails and a flatter peak compared to
a normal distribution.

Buildings 2024, 14, x FOR PEER REVIEW 12 of 32 

that these variables have heavier tails and sharper peaks compared to a normal distribu-

tion. Notably, SP/B has negative kurtosis, suggesting lighter tails and a flatter peak com-

pared to a normal distribution. 

Figure 8. Violin plot input parameters and CSFrRNSC. 

The main phase of this paper revolves around the elucidation of the datasets’ foun-

dations and a succinct examination of their properties. Subsequently, in the preprocessing 

phase, we employ a careful approach to splitting the FrRNSC compressive strength da-

taset into training and testing sets to ensure a robust model evaluation. We utilized a strat-

ified sampling technique to maintain the distribution of compressive strength values in 

both the training and testing sets, preventing biased model training and evaluation. Spe-

cifically, the dataset is randomly divided into two subsets, with a predefined ratio (e.g., 

75% for training and 25% for testing). This ensures that the models are trained on a diverse 

range of data and evaluated on unseen instances [113,114]. Accordingly, the compressive-

strength data of FrRNSC was bifurcated into two primary categories: the training set, en-

compassing seventy-five percent of the entire concrete dataset (131 data points); and the 

test part, constituting twenty-five percent of the concrete dataset (44 data samples). The 

Figure 8. Violin plot input parameters and CSFrRNSC.

The main phase of this paper revolves around the elucidation of the datasets’ founda-
tions and a succinct examination of their properties. Subsequently, in the preprocessing
phase, we employ a careful approach to splitting the FrRNSC compressive strength dataset
into training and testing sets to ensure a robust model evaluation. We utilized a stratified
sampling technique to maintain the distribution of compressive strength values in both the
training and testing sets, preventing biased model training and evaluation. Specifically, the
dataset is randomly divided into two subsets, with a predefined ratio (e.g., 75% for training
and 25% for testing). This ensures that the models are trained on a diverse range of data
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and evaluated on unseen instances [113,114]. Accordingly, the compressive-strength data
of FrRNSC was bifurcated into two primary categories: the training set, encompassing
seventy-five percent of the entire concrete dataset (131 data points); and the test part,
constituting twenty-five percent of the concrete dataset (44 data samples). The details
of the training and testing datasets are presented in Table 2. The CatBoost, LightGBM,
AdaBoost, and XGBoost algorithms were applied to the training dataset following this
division. Simultaneously, the GWO metaheuristic algorithm was employed to ascertain
optimal hyperparameter values for the aforementioned models. The mean squared error
(MSE) serves as the objective function for the GWO. This function quantifies the disparity
between the actual compressive strength of the fiber-reinforced nano-silica concrete data in
the train phase and the predicted compressive strength generated by the CatBoost, Light-
GBM, AdaBoost, and XGBoost techniques, utilizing the inputs from the training set. The
Equation (10) furnishes a delineation of the framework governing the objective function.

Xo = MSE
(
Xr, X̂r

)
(10)

In this equation, Xr and X̂r indicate measured and predicted CSFrRNSC, respectively.
It should be noted that X̂r can be separately defined for each CatBoost, LightGBM, AdaBoost,
and XGBoost models, as shown in Equations (11)–(14):

X̂XGBoost
r = XGBoost(h1, h2, h3, h4, h5, h6) · f it(trainingset) (11)

X̂LightGBM
r = LightGBM(h1, h2, h3, h4) · f it(trainingset) (12)

X̂AdaBoost
r = AdaBoost(h1, h2) · f it(trainingset) (13)

X̂CatBoost
r = CatBoost(h1, h2) · f it(trainingset) (14)

In these equations, h denotes the hyperparameters of techniques, and the CatBoost,
LightGBM, AdaBoost, and XGBoost are fitted on the training sets. In Equation (11), h1–h6
are, respectively, n_estimators, learning_rate, gamma, max_depth, min_child_weight, and
reg_alpha, which function as hyperparameters of the XGBoost method. In Equation (12),
h1–h4 are, respectively, the learning_rate, n_estimators, max_depth, and reg_alpha, which
function as hyperparameters of the LightGBM method. In Equations (13) and (14), h1 and
h2 are respectively learning_rate and n_estimators as hyperparameters of both CatBoost
and AdaBoost models.

Table 2. The details of training and testing data points.

Training Set

Parameter Min Ave Max StD Kurtosis Skewness

FV 0 0.2 0.5 0.129 0.566 0.723
CF 0.874 0.882 0.973 0.026 7.457 3.051
w/b 0.39 0.398 0.48 0.025 7.323 3.035
NS 0 23.710 49.6 18.282 −1.318 0.110

SP/B 0.005 0.019 0.02 0.004 7.323 −3.035
Age 7 38.756 90 35.202 −1.349 0.663

CSFrRNSC 42.1 74.114 91.2 11.111 0.129 −0.838

Testing Set

Parameter Min Ave Max StD Kurtosis Skewness

FV 0 0.9 0.193 0.295 2.140 1.876
CF 0.905 1.135 0.977 0.074 0.778 1.334
w/b 0.31 0.48 0.439 0.061 0.718 −1.452
NS 0 31.5 13.784 11.209 −1.256 0.128

SP/B 0.005 0.025 0.010 0.008 −0.645 1.009
Age 7 120 50.273 45.528 −1.169 0.755

CSFrRNSC 19.1 69.1 43.764 14.404 −1.148 0.232
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In the final phase of the procedure, the potential remedies proposed by the GWO
are assessed using various statistical metrics on the testing set. This evaluation facilitates
the identification of optimal hyperparameters for the CatBoost, LightGBM, AdaBoost, and
XGBoost frameworks. Furthermore, the cosine amplitude technique is employed to enhance
the sensitivity analysis of CSFrRNSC concerning its influential parameters. This analytical
process relies on the well-refined CatBoost, LightGBM, AdaBoost, and XGBoost models, each
configured with optimal hyperparameter values.

4. Prediction Results
4.1. Hyperparameters Tunning

When delving into the realm of soft computing techniques, a paramount responsibility
emerges, termed hyperparameter tuning. This crucial task serves to mitigate the risk of
algorithmic overfitting, enhance the algorithm’s generalization capabilities, and curtail
overall model complexity [115–117]. In the present study, the utilized dataset underwent
random partitioning into a training subset, encompassing 75% of the FrRNSC data; and
a testing subset, incorporating the remaining 25% of the FrRNSC concrete data. This
segregation facilitated the development of the CatBoost, LightGBM, AdaBoost, and XG-
Boost methodologies. The accuracy of the LightGBM model, designed for predicting the
CSFrRNSC, was assessed using the testing subset, while the training subset contributed
to the initial algorithmic development. As previously mentioned, the creation of the Cat-
Boost, LightGBM, AdaBoost, and XGBoost methodologies necessitates the adjustment
of several hyperparameters, including n_estimators, learning_rate, gamma, max_depth,
min_child_weight, and reg_alpha for the XGBoost model. These values are configured
within the model’s designated file. Consequently, the GWO was employed to optimize
these hyperparameters. The GWO was configured with a swarm size ranging from 10 to
100 grey wolves, and the number of iterations was 1000 iterations.

The optimization process begins with the initialization of a population of grey wolves.
In the context of the GWO algorithm, these wolves represent potential solutions in the
search space of hyperparameters for the ensemble learning models. Each grey wolf in the
population corresponds to a unique set of hyperparameters for the respective ensemble
learning model (XGBoost, LightGBM, AdaBoost, and CatBoost). The optimization process
aims to find the optimal combination of hyperparameters that minimizes a predefined
objective function. Therefore, the objective function is tailored to measure the accuracy in
predicting the compressive strength of FrRNSC. The GWO algorithm iteratively updates the
positions of grey wolves based on their fitness scores, which are determined by evaluating
the objective function. During each iteration, wolves adjust their positions to explore
the hyperparameter space effectively. The GWO algorithm is seamlessly integrated with
ensemble learning techniques (XGBoost, LightGBM, AdaBoost, and CatBoost). At each
iteration, the algorithm optimizes the hyperparameters for each base learner within the
ensemble, leading to an ensemble configuration that maximizes predictive accuracy. The
optimized hyperparameter sets for individual base learners are then combined to form an
ensemble model. The final prediction is a weighted combination of predictions from each
base learner, where weights are determined by their respective optimized hyperparameters.
To ensure robustness and avoid overfitting, the optimized ensemble model undergoes a
validation process, where it is fine-tuned and validated on separate datasets. This step
further refines the model’s generalization capability.

The hyperparameter ranges are detailed in Table 3. Nonetheless, the hybrid systems’
generalization efficacy is evaluated through a tenfold cross-validation approach during
the training phase of this investigation. Learning outcomes pertinent to GWO-LightGBM,
GWO-XGBoost, GWO-CatBoost, and GWO-AdaBoost are depicted in Figure 9. Observing
Figure 9 reveals that the minimum MSE for GWO-LightGBM, GWO-XGBoost, GWO-
CatBoost, and GWO-AdaBoost models were achieved with swarm sizes of 30, 10, 10, and
50, respectively. Moreover, it is evident that these systems did not commence convergence



Buildings 2024, 14, 396 15 of 30

until approximately 98, 215, 95, and 110 iterations, respectively. Ultimately, the optimum
value for the two determined hyperparameters is elucidated in Table 3.
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Table 3. Hyperparameters’ tunning in GWO-LightGBM, GWO-XGBoost, GWO-CatBoost, and GWO-
AdaBoost techniques.

Technique Optimizer Hyperparameter Optimum Values

LightGBM GWO learning_rate, n_estimators,
max_depth, and reg_alpha

learning_rate = 0.005
n_estimators = 170
max_depth = 9
reg_alpha = 0.45

XGBoost GWO

n_estimators, learning_rate,
gamma, max_depth,

min_child_weight, and
reg_alpha

n_estimators = 100
learning_rate = 0.25
gamma = 0.6
max_depth = 2
min_child_weight = 5
reg_alpha = 1

CatBoost GWO learning_rate and n_estimators learning_rate = 0.003
n_estimators = 300

AdaBoost GWO learning_rate and n_estimators learning_rate = 0.001
n_estimators = 500



Buildings 2024, 14, 396 16 of 30

It is paramount to evaluate the effectiveness of the trained models following the
completion of model training and the acquisition of accurate models. Consequently, to
gauge the method’s efficacy, assessment measures such as the coefficient of determination
(R2), root mean squared error (RMSE), variance accounted for (VAF), mean absolute error
(MAE), and bias were utilized. In the context of the regression analysis, these three metrics
commonly serve as benchmarks for assessing the performance of AI models and can be
computed by applying Equations (15)–(19) [32,100,118–124]:

R2 = 1 −


n
∑

i=1
(Oi − Pi)

2

n
∑

i=1
(Pi − Pi)

2

 (15)

RMSE =

√
1
n

n

∑
i=1

(Oi − Pi)
2 (16)

VAF = 100 ·
(

1 − var(Oi − Pi)

var(Oi)

)
(17)

MAE =

n
∑

i=1
|Oi − Pi|

n
(18)

Bias =
1
n

n

∑
i=1

(Pi − Oi) (19)

where Oi denotes the real CSFrRNSC, Pi stands for the anticipated CSFrRNSC, Pi sig-
nifies the average of the anticipated CSFrRNSC, and n stands for the number of data
samples. It is noteworthy that achieving values of one, zero, one hundred, zero, and zero
for R2, RMSE, VAF, MAE, and bias, respectively, signifies optimal model capability and
performance [125,126].

Given these considerations, the outcomes of the computations for the five aforemen-
tioned assessment indices of the amalgamated methodologies are outlined in the following.
According to Figures 10 and 11, which, respectively, revealed the obtained RMSE and
R2 values for conventional and optimized modes in both training and testing phases, a
model with the lowest RMSE and highest R2 in both the training and testing phase is the
GWO-XGBoost model.
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Figure 10. The obtained RMSE value for training and testing developed models.
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In the training phase of the XGBoost model, the R2 value stands at 0.971, with an
accompanying RMSE value of 1.933. On the testing subset, the R2 value is 0.978, and the
RMSE value is 2.129. Evidently, the developed GWO-XGBoost technique exhibits excep-
tional precision, effectively predicting the compressive strength of CSFrRNSC. Notably,
the model’s performance on the testing subset surpasses that on the training subset to
some extent.

4.2. Results of Predictive Models

This research evaluated the estimation ability of the hybrid algorithms in anticipating
CSFrRNSC. The efficiency of these models was considerable and can be acceptably em-
ployed for prediction aims. Nevertheless, the hybrid algorithms’ performance has been
systematically compared with that of their conventional forms to validate their predictive
capabilities. Therefore, the LightGBM, XGBoost, CatBoost, and AdaBoost methods were
trained for predicting CSFrRNSC and then optimized by GWO to construct hybrid models
to predict CSFrRNSC with a high level of accuracy. The models’ capability and effectiveness
in forecasting CSFrRNSC were assessed. However, it is imperative to explore and com-
pare their efficiency, capability, and success in prediction. The performance of LightGBM,
XGBoost, CatBoost, and AdaBoost was determined using evaluation metrics for hybrid
systems, and the results are presented in Table 4. In addition, scatterplots illustrating the
relationship between measured and predicted values of CSFrRNSC by LightGBM, XG-
Boost, CatBoost, AdaBoost, GWO-LightGBM, GWO-XGBoost, GWO-CatBoost, and GWO-
AdaBoost models for both training and testing parts are demonstrated in Figures 12–19
was generated. Table 5 first rates the obtained statistical indices for the developed model
and then calculates the summation of the rates and ranks the models based on the highest
rate. A rate of 1 to 8 is considered for models based on their performance and the highest
rate is considered for the highest R2 and VAF values and the lowest MAE, RMSE, and
bias values. According to Table 5, the GWO-XGBoost model can predict CSFrRNSC better
than other techniques. However, the optimized XGBoost model, i.e., GWO-XGBoost, has
the most accurate results on the basis of RMSE 1.933 and 2.129 for training and testing
phases, respectively. As shown in Figures 12–19, which illustrated the scatterplot of mea-
sured and predicted CSFrRNSC in both parts of the train and test, it can be shown that
four trained systems anticipated the CSFrRNSC with an acceptable performance. But, the
GWO-XGBoost technique with an R2 of 0.978 for the testing phase was more accurate than
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the LightGBM, with an R2 of 0.926; XGBoost, with an R2 of 0.930; CatBoost, with an R2 of
0.930; AdaBoost, with an R2 of 0.905; GWO-LightGBM, with an R2 of 0.937; GWO-CatBoost,
with an R2 of 0.924; and GWO-AdaBoost, with an R2 of 0.929. Hence, the GWO-XGBoost
technique is selected as a superior system in estimating CSFrRNSC. Figure 20 provides
a visual representation of the comparison between the CSFrRNSC anticipated by the hy-
brid systems and the measured CSFrRNSC. From a logical standpoint, a majority of the
projected CSFrRNSC values closely align with the actual measurements.

Table 4. Performance evaluation of developed models.

Technique
Train Phase Test Phase

MAE R2 RMSE VAF Bias MAE R2 RMSE VAF Bias

CatBoost 3.107 0.914 3.691 89.484 3.107 3.184 0.930 3.838 92.782 3.184
AdaBoost 3.164 0.910 3.628 89.632 3.164 4.294 0.905 4.858 88.709 4.294
LightGBM 2.674 0.929 3.040 92.593 2.674 3.506 0.926 4.102 91.715 3.506
XGBoost 2.129 0.954 2.499 94.987 2.129 3.746 0.930 4.232 91.387 3.746

GWO-CatBoost 2.880 0.923 3.322 91.114 2.880 3.273 0.924 3.971 92.325 3.273
GWO-AdaBoost 2.669 0.938 3.106 93.090 2.669 3.569 0.929 4.101 91.789 3.569
GWO-LightGBM 2.455 0.948 2.911 94.499 2.455 3.036 0.937 3.606 93.600 3.036
GWO-XGBoost 1.653 0.971 1.933 96.960 1.653 1.802 0.978 2.129 97.774 1.802

Table 5. Rating of the obtained statistical indices for selecting a superior model.

Technique
Train Phase Test Phase

Total Rate Rank
MAE R2 RMSE VAF Bias MAE R2 RMSE VAF Bias

CatBoost 2 2 1 1 2 6 5 6 6 6 37 6
AdaBoost 1 1 2 2 1 1 1 1 1 1 12 8
LightGBM 4 4 5 4 4 4 3 3 3 4 38 5
XGBoost 7 7 7 7 7 2 6 2 2 2 49 3

GWO-CatBoost 3 3 3 3 3 5 2 5 5 5 37 6
GWO-AdaBoost 5 5 4 5 5 3 4 4 4 3 42 4
GWO-LightGBM 6 6 6 6 6 7 7 7 7 7 65 2
GWO-XGBoost 8 8 8 8 8 8 8 8 8 8 80 1
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Figure 12. Correlation between estimated and measured CSFrRNSC by CatBoost model.
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Figure 13. Correlation between estimated and measured CSFrRNSC by AdaBoost model.
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Figure 14. Correlation between estimated and measured CSFrRNSC by LightGBM model.
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Figure 15. Correlation between estimated and measured CSFrRNSC by XGBoost model.
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Figure 16. Correlation between estimated and measured CSFrRNSC by GWO-CatBoost model.
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Figure 17. Correlation between estimated and measured CSFrRNSC by GWO-AdaBoost model.
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Figure 18. Correlation between estimated and measured CSFrRNSC by GWO-LightGBM model.
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Figure 19. Correlation between estimated and measured CSFrRNSC by GWO-XGBoost model.
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For a more detailed comparison, the Taylor diagram and violin plot illustrating the
accuracy of the models are presented in Figures 21 and 22, respectively. The Taylor diagram
is a powerful tool for assessing the similarity between observed and simulated datasets.
It provides a comprehensive view of multiple statistical metrics, such as the correlation
coefficient, root mean square error, and standard deviation ratio, in a single plot. By
using the Taylor diagram, we aim to offer a holistic perspective on how well our models
replicate the observed data. Each model is represented by a point on the diagram, and the
proximity of these points to the reference point (representing the observed data) allows for
a quick and intuitive assessment of model performance. We include detailed explanations
in the paper, emphasizing how the Taylor diagram facilitates the comparison of multiple
models across various performance metrics simultaneously. It aids in comparing the GWO-
XGBoost model with other relevant models used in the study, providing a holistic view
of its efficiency in relation to alternative approaches. In Figure 21, the GWO-XGBoost
symbol (depicted as a pink square) exhibited the closest proximity to the reference dataset
in two parts of the training and testing (represented by actual values). This indicates
that the GWO-XGBoost technique performed exceptionally well, emerging as the most
accurate among the models. Moreover, Figure 22 illustrates the violin plot relevant to the
developed models. The violin plot is employed to provide a distributional overview of
the prediction errors generated by different models. It complements the Taylor diagram
by offering insights into the variability and spread of errors. The width of the violin plot
at each point indicates the density of data points, allowing us to identify not only central
tendencies but also the distribution of errors. This visualization aids in identifying models
that not only perform well on average but also exhibit a consistent and reliable performance.
This figure underscores that the results of the GWO-XGBoost model closely align with the
measured values.

It is well-established in the machine learning community that a highly complex dataset
can pose challenges for even the most optimized algorithms. The concept of Kolmogorov
complexity, denoting the length of the shortest computer program that produces the
output, becomes pertinent in this discussion. Simplifying the dataset can lead to improved
model accuracy by enabling the algorithm to focus on essential patterns and relationships,
reducing the risk of overfitting to noise or irrelevant features [127,128].

The synergy between the GWO and XGBoost plays a pivotal role in the model’s supe-
rior performance. The GWO algorithm excels in balancing exploration and exploitation
during the optimization process. This ability allows GWO-XGBoost to effectively explore
the solution space, identifying optimal hyperparameters for XGBoost. The model’s en-
hanced exploration capability helps to avoid getting stuck in local minima and facilitates
the discovery of more robust and accurate predictive patterns. Notably, GWO’s inherent
global search capability complements the ensemble learning nature of XGBoost. By ef-
ficiently exploring diverse regions of the feature space, GWO enhances the diversity of
base learners within the XGBoost ensemble. This diversity is crucial for capturing different
facets of the complex relationships within the FrRNSC dataset, leading to a more robust and
accurate predictive model. It should be mentioned that GWO is known for its adaptability
to different problem characteristics. By hybridizing GWO with XGBoost, we leverage
this adaptability to tailor the optimization process specifically to the challenges posed by
predicting the compressive strength of FrRNSC. The adaptability of GWO ensures that
the optimization process is aligned with the unique characteristics and nuances present
in the concrete strength prediction problem. Furthermore, the GWO-XGBoost hybridiza-
tion facilitates precise tuning of XGBoost hyperparameters. GWO’s optimization process
fine-tunes the parameters of XGBoost, optimizing its performance for the specific task at
hand. This precision in parameter tuning contributes significantly to the model’s overall
predictive capabilities.



Buildings 2024, 14, 396 23 of 30

Buildings 2024, 14, x FOR PEER REVIEW 24 of 32 
 

each point indicates the density of data points, allowing us to identify not only central 
tendencies but also the distribution of errors. This visualization aids in identifying models 
that not only perform well on average but also exhibit a consistent and reliable perfor-
mance. This figure underscores that the results of the GWO-XGBoost model closely align 
with the measured values. 

It is well-established in the machine learning community that a highly complex da-
taset can pose challenges for even the most optimized algorithms. The concept of Kolmo-
gorov complexity, denoting the length of the shortest computer program that produces 
the output, becomes pertinent in this discussion. Simplifying the dataset can lead to im-
proved model accuracy by enabling the algorithm to focus on essential patterns and rela-
tionships, reducing the risk of overfitting to noise or irrelevant features [127,128]. 

The synergy between the GWO and XGBoost plays a pivotal role in the model’s su-
perior performance. The GWO algorithm excels in balancing exploration and exploitation 
during the optimization process. This ability allows GWO-XGBoost to effectively explore 
the solution space, identifying optimal hyperparameters for XGBoost. The model’s en-
hanced exploration capability helps to avoid getting stuck in local minima and facilitates 
the discovery of more robust and accurate predictive patterns. Notably, GWO’s inherent 
global search capability complements the ensemble learning nature of XGBoost. By effi-
ciently exploring diverse regions of the feature space, GWO enhances the diversity of base 
learners within the XGBoost ensemble. This diversity is crucial for capturing different fac-
ets of the complex relationships within the FrRNSC dataset, leading to a more robust and 
accurate predictive model. It should be mentioned that GWO is known for its adaptability 
to different problem characteristics. By hybridizing GWO with XGBoost, we leverage this 
adaptability to tailor the optimization process specifically to the challenges posed by pre-
dicting the compressive strength of FrRNSC. The adaptability of GWO ensures that the 
optimization process is aligned with the unique characteristics and nuances present in the 
concrete strength prediction problem. Furthermore, the GWO-XGBoost hybridization fa-
cilitates precise tuning of XGBoost hyperparameters. GWO’s optimization process fine-
tunes the parameters of XGBoost, optimizing its performance for the specific task at hand. 
This precision in parameter tuning contributes significantly to the model’s overall predic-
tive capabilities. 

  

Figure 21. Revealing Taylor diagram for trained systems based on train (left) and test (right) sets. 

0 0.2
0.4

0.6

0.8

0.9

0.95

0.99

10

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

CatBoostAdaBoost
LightGBM

XGBoost
GWO-CatBoostGWO-AdaBoostGWO-LightGBM

GWO-XGBoost

Reference

Standard Deviation

St
an

da
rd

 D
ev

ia
tio

n

Correlation Coefficient

0 0.2
0.4

0.6

0.8

0.9

0.95

0.99

10

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18

CatBoost

AdaBoost
LightGBM XGBoostGWO-CatBoost GWO-AdaBoost

GWO-LightGBM
GWO-XGBoost

Reference

Standard Deviation

St
an

da
rd

 D
ev

ia
tio

n

Correlation Coefficient

Figure 21. Revealing Taylor diagram for trained systems based on train (left) and test (right) sets.
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Figure 22. Violin diagram relevant to developed systems in both train (left) and test (right)
data points.

In the final phase of this study, the identification of the most and least influential
parameters in determining CSFrRNSC was undertaken. To achieve this, a sensitivity
analysis technique called the Cosine Amplitude Method (CAM) was applied [129]. The
CAM assesses the impact of each influential variable on CSFrRNSC. Equation (20) was
utilized for this purpose [118]:
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where rij is the sensitivity values of xi (input) and xj (output).
The results of the sensitivity analysis revealed the impactful parameters. Figure 23

illustrates that the SP/B parameter exerts the most significant influence on CSFrRNSC,
with a strength value of 0.958. In contrast, the FV parameter exhibits the least impact, with
a strength of 0.718. Notably, the prioritization of parameter influence based on rij values in
ascending order is as follows: FV < Age < NS < w/b < CF < SP/B, with impact values of
0.718, 0.755, 0.821, 0.948, 0.954, and 0.958, respectively. The Rank value represents the rank
of the influence degree of each parameter on CSFrRNSC. The smaller the ordinal number
is, the higher the influence degree of the parameter on CSFrRNSC. Therefore, SP/B has the
largest influence degree, and FV has the least influence degree.
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5. Conclusions

Fiber-reinforced nano-silica concrete (FrRNSC) was used to construct a concrete sculp-
ture to address the issue of brittle fracture, and this research endeavored to advance the
predictive modeling of CSFrRNSC by employing a hybrid approach that integrates the Grey
Wolf Optimizer (GWO) with ensemble learning techniques—specifically XGBoost, Light-
GBM, AdaBoost, and CatBoost. The optimization of hyperparameters through the GWO
metaheuristic algorithm results in the creation of four hybrid ensemble learning models:
GWO-XGBoost, GWO-LightGBM, GWO-AdaBoost, and GWO-CatBoost. The comparative
analysis undertaken between these hybrid models and their conventional counterparts
reveals the superior predictive capabilities of GWO-XGBoost. With impressive R2 values of
0.971 and 0.978, RMSE values of 1.933 and 2.129, VAF values of 96.960 and 97.774, MAE
values of 1.653 and 1.802, and bias values of 1.653 and 1.802 for the train and test stages,
respectively, GWO-XGBoost emerges as the most efficient predictor for estimating the
CSFrRNSC when compared to other models. In essence, the proposed GWO-XGBoost
algorithm not only enhances accuracy but also establishes itself as a powerful and reliable
tool for anticipating CSFrRNSC. This study contributes to the ongoing efforts in the field,
providing valuable insights for the application of advanced optimization algorithms and
ensemble learning techniques in the prediction of concrete compressive strength. While
this research demonstrates the effectiveness of the GWO-XGBoost algorithm for predicting
the compressive strength of FrRNSC in sculptural elements, it is important to mention two
main limitations. First, the study primarily focuses on FrRNSC for sculptural elements.
The findings may not be directly generalizable to other types of concrete or construction
applications. Future research could explore the applicability of the proposed approach to a
broader range of concrete formulations and use cases.
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Second, the success of machine learning models is highly dependent on the quality
and representativeness of the training data. Limitations may arise if the dataset used is
specific to certain material compositions or manufacturing processes, potentially impacting
the model’s performance when applied to variations in concrete formulations.
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