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Abstract: The article presents the progress and applications of ultra-high-performance concrete
(UHPC), a revolutionary material in modern construction that offers unparalleled strength, durability,
and sustainability. The overview includes the historical development of UHPC, covering its produc-
tion and design aspects, including composition and design methodology. It describes the mechanical
properties and durability of UHPC and highlights recent innovations and research breakthroughs. The
potential integration of multifunctional properties such as self-heating, self-sensing, self-luminescence
and superhydrophobicity, is explored. In addition, advances in nanotechnology related to UHPC
are addressed. Beyond the actual material properties, the article presents an environmental impact
assessment and a life-cycle cost analysis, providing an insight into the wider implications of using
UHPC. To illustrate the environmental aspects, the determination of CO2 emissions is explained
using three numerical examples. Finally, various applications of UHPC are presented, focusing on
the construction of buildings and bridges. By synthesizing the above-mentioned aspects, this review
paper captures the dynamic landscape of UHPC and serves as a valuable resource for researchers
and engineers in the field of construction materials.

Keywords: ultra-high-performance concrete; UHPC; manufacturing; mechanical properties; durability;
multifunctionality; environmental impact assessment; life-cycle costs

1. Introduction

Ultra-high-performance concrete (UHPC) is defined as a type of concrete that exhibits
compressive strength greater than 120 MPa, a nominal maximum aggregate size of less than
5 mm, and flowability between 200 mm and 250 mm [1]. UHPC exhibits a tensile strength
greater than 5 MPa. According to the Federal Highway Administration (FHWA), USA,
UHPC is characterized by the use of a combination of Portland cement and supplementary
cementitious materials, an optimised gradation of granular materials, a high volume of
discontinuous internal fibres, and a low water-to-cementitious materials ratio of less than
0.25. The microstructure of UHPC is characterized irregular pores, which control liquid
evaporation and enhance durability in comparison to conventional and high-performance
concretes [2].

The development of UHPC can be traced back to the early 1980s [3]. After decades
of research, UHPC has emerged as a highly innovative product in the field of concrete
technology, distinguished by its exceptional mechanical properties and superior durability.
The service life of reinforced concrete structures is largely dependent on the durability
of the concrete, and the excellent durability properties of UHPC can lead to a significant
increase in service life, thus reducing maintenance costs.
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In addition to its durability properties, UHPC also exhibits high flowability, allowing
it to meet a wide range of structural requirements. UHPC has also been reported to possess
high impermeability against carbon dioxide, chlorides, and sulphates [4]. The inclusion
of steel fibres in the mix design of UHPC can further enhance its compressive and tensile
strength, which can exceed 150 MPa and 20 MPa, respectively [5]. The ductility and energy
absorption capacity of UHPC, due to the presence of steel fibres, are typically 300-times
greater than that of high-performance concrete [6].

Workability, compressive strength, durability and economy are the key factors and
priorities of conventional concrete (CC) based on the ACI mixture design method [7].
Portland cement (PC) is the main ingredient in the production of UHPC as a cementitious
binder, accompanied by other supplementary cementitious materials (SCM); in most cases,
silica fume (SF) is used as an SCM [8]. Mechanical consistency, maximum particle packing
density and the lowest number of defects are the fundamental basis for the production of
UHPC, considering both micro and macro characteristics of the design mix materials [9–11].
In addition to the micro and macro properties of the design mix materials, it is also crucial to
consider the physical and chemical properties of the materials [11]. To produce UHPC with
durable, viable, economical and excellent mechanical properties, it is crucial to develop
scientifically efficient mix design methods [7].

Nonetheless, there are some disadvantages associated with UHPC, particularly con-
cerning shrinkage and cracking during the early stages of concreting due to autogenous
and drying shrinkage. Consequently, there has been limited research conducted on the
long-term behaviour of this concrete. Additionally, UHPC is more costly than normal con-
crete, raising concerns about its viability when unconventional concrete can economically
meet design requirements. The primary limitation to the broader utilization of UHPC is
the high cost of several expensive raw materials in the mix [6].

This review article provides a comprehensive exploration of UHPC, encompassing
its historical evolution, manufacturing and design processes, production methodologies,
mechanical properties, recent innovations, durability aspects and environmental impact.
The significance of this review lies in its holistic coverage, offering a deep dive into the
multifaceted aspects of UHPC. By tracing the historical trajectory, we set the stage for under-
standing how UHPC has evolved from a material with extraordinary mechanical properties
to a multifunctional wonder, capable of self-heating, self-sensing, self-luminescence and
superhydrophobicity. The exploration extends to the critical assessment of UHPC’s dura-
bility, environmental implications through life-cycle assessments, sustainable practices
and life-cycle cost analyses. The review concludes with an insightful discussion on the
diverse applications of UHPC and outlines future prospects. In Table 1, a comprehensive
overview of several review articles published in the last decade is provided, offering a
comparative analysis of their key features. Importantly, our work, as outlined in this
table, is distinguished by its unique incorporation of several innovations that set it apart
from its counterparts. This comprehensive overview serves as a valuable resource for
researchers, engineers and practitioners in the field, offering a synthesized understanding
of UHPC’s journey, its current state, and the promising avenues it opens for the future of
construction materials.

Table 1. Summarized overview of recent decade’s review articles on UHCP.

Reviews Content Year References

Historical development of UHPC composition, Design methodology,
Production, Manufacturing, Mechanical Properties, Innovation and research,

Superhydrophobicity, Self-Sensing, Multifunctionality, Durability,
Nanotechnology, Life cycle assessment, Numerical examples and Applications

2024 This review

Production, Manufacturing, Mechanical Properties, Self-sensing
and Applications 2023 [12]

Design methodology, Production Manufacturing, and Mechanical Properties 2023 [13]
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Table 1. Cont.

Reviews Content Year References

Mechanical Properties, Innovation and research, Superhydrophobicity,
Durability and Nanotechnology 2023 [14]

Design methodology, Production, Manufacturing, Mechanical Properties,
Innovation and research,

and 3-D printing
2023 [15]

Design methodology, Mechanical Properties and Durability 2022 [16]

Historical development of UHP composition and Mechanical Properties 2022 [17]

Design methodology, Production and Manufacturing 2022 [18]

Historical development of UHPC composition, Mechanical Properties,
Durability, Life-cycle assessment and Applications 2022 [19]

Mechanical Properties and Durability 2022 [20]

Historical development of UHPC composition, Mechanical Properties,
Self-sensing, Durability and Nanotechnology 2022 [21]

Superhydrophobicity and Durability 2022 [22]

Design methodology and Production 2021 [7]

Design methodology and Mechanical Properties 2021 [23]

Mechanical Properties and Life-Cycle Assessment 2021 [24]

Historical development of UHPC composition, Design methodology,
Production, Mechanical Properties, Durability and Applications 2021 [25]

Design methodology and Mechanical Properties 2020 [26]

Historical development of UHPC composition, Design methodology,
Production and Applications 2018 [11]

Historical development of UHPC composition, Design methodology,
Production, Manufacturing and Nanotechnology 2015 [10]

History of UHPC

Concrete is not really an invention of 20th or 21st century. Concrete, as a construction
material, has been in use since ancient times, dating back to the Before Christ (BC) era. In
300 BC, Romans utilised pozzolana cement, and in 800 BC, Greeks employed lime cement.
Even earlier, around 3000 BC, Egyptians made use of gypsum and lime mortars in their
construction practices. The historical evolution of concrete includes various forms and
nomenclatures across different civilization [27]; see Figure 1.

In the early 20th century, considerable efforts were dedicated to enhancing the com-
pressive strength of concrete. The outcome of these efforts shows a substantial increase
in concrete’s compressive strength from 15 to 20 MPa until 1960. In 1970s, scientists and
researchers had successfully achieved 60 MPa of concrete strength due to the availability of
water reducer agents [11].

In 1981, with the invention of the High-Range Water Reducer (HRWR), also referred to
as superplasticizer (SP), concrete technology entered an advanced phase of innovation [28].
At that time, researchers realized that the correct use of SP could reduce the water-to-binder
ratio (W/B) to 0.30. Before the invention of SP, it was even beyond imaginable limits to
reduce the W/C ratio to less than 0.30, until Bache [29] reported that using silica fume (SF)
and a high percentage of SP, it was possible to achieve W/B of 0.16 [11].

Before the 1980s, producing UHPC was only possible in a controlled atmosphere,
typically in laboratory settings, because of particular mixing and curing methods. Through
the use of vacuum mixing techniques and heat curing procedures, researchers aimed to
create a denser and more compact concrete mixture. These methods were employed to
achieve an impressive compressive strength of up to 510 MPa [11,30].
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By compacting granular materials and adjusting grain size distribution, a compressive
strength of 280 MPa was achieved. This breakthrough indicated that low-porous materials
had a tendency to develop ultra-high-performance Portland cement-based materials [9–11].

In the early 1980s, polymers were introduced to enhance the pore structure, aiming to
eliminate defects in the cement paste. This innovation eventually led to the development of
micro defect-free cement (MDF) [11,31]. A complicated procedure was required to produce
MDF concrete for achieving compressive strength of 200 MPa. Complex production technique,
expansive raw material, brittleness and creep had confined its applications [11,31].

Bache [27] in Denmark developed dense silica particle cement (DSP). In contrast
to the production process of MDF, the production of DSP did not involve critical steps.
Instead, the particle packing density was improved using a high dose of superplasticizer
(SP) and SF to overcome defects in DSP. However, heat and pressure curing were also part
of the production of DSP. Despite having a compressive strength of 345 MPa, DSP concrete
exhibited increased brittleness [11].

Brittleness was the major problem that needs to be addressed, therefore in 80s steel
fibres were introduced to overcome the brittleness issue of DSP concretes. The introduction
of steel fibres into the concrete marked a significant advancement in concrete technology.
This new material featured a dense microstructure, high compressive strength, superior
durability and ductility. Following DSP, the invention of compact reinforced composites
(CRC) and slurry infiltrated fibre concrete (SIFCON) were considered even better creations
with superior mechanical properties and durability. However, both CRC and SIFCON
faced workability issues due to the non-availability of efficient superplasticizers, which
posed obstacles in on-site applications [11,31,32].

The invention of reactive powder concrete (RPC) is considered a significant break-
through in the development of UHPC. RPC was invented by Richard et al. [15] in the 1990s,
who employed thermal treatment to enhance the fineness and reactivity of the components
used in RPC. The utilization of a very high cement content, SF, fine quartz powder and
quartz sand with optimum gradation, along with the induction of SP and steel fibres, all
contributed to the production of a highly approachable UHPC. This mixture, characterized
by a very low water-to-cement (W/C) ratio, was suitable for both laboratory and field
applications. To enhance homogeneity, coarse aggregates were intentionally omitted. Reac-
tive powder concrete (RPC) demonstrated compressive strengths ranging from 200 MPa
to 800 MPa, coupled with excellent workability features [10,30,33]. In 1997, the first-ever



Buildings 2024, 14, 382 5 of 36

structure made entirely of Reactive Powder Concrete (RPC) was constructed in Sherbrooke,
Canada, and it was a pedestrian bridge [9,11,34–36]. The successful application of RPC
was hindered by the unavailability for common usage due to expensive material and
production costs.

From the year 2000 onward, researchers have shifted their focus to the development
of inexpensive and eco-friendly UHPC. Rather than solely pursuing higher strength, there
has been an emphasis on minimizing carbon dioxide (CO2) emissions by reducing cement
contents [25].

Until now, various methods and procedures have been explored to reduce cement
content to less than 850 kg/m3 and silica fume content to less than 200 kg/m3. This
reduction is achieved by incorporating supplementary cementitious materials (SCMs) and
fillers into the concrete mixture [25,35,37–39], like fly ash, ground granulated blast furnace
slag (GGBFS), rice husk ash and Metakaolin [10,11]. Also, researchers have tried to use
standard curing methods instead of heat curing for energy saving [25,40,41].

In this new era, researchers are concentrating on creating UHPC using new materials
and advanced technologies to address coupled issues and to expand the application of
this state-of-the-art cementitious material. The goal is to maintain superior mechanical
properties and durability [25].

2. Manufacturing and Design of UHPC
2.1. Composition of UHPC

Attaining excellent compressive strength and durability of UHPC, philosophy gov-
erned around four-points ideology [9], as noted hereunder:

1. Low Water-Cement Ratio. Maintaining a very low water-cement ratio, typically
between 0.20 to 0.25, is crucial. This helps in achieving a compact and robust structure
through hydration. The low ratio reduces capillary pores, enhances ductility and
prevents brittle collapse.

2. High Particle Packing Density. Utilizing fine binder materials promotes high particle
packing density, minimizing water demand in the fresh mixture. This not only
improves compressive strength but also influences the brittleness of the concrete.

3. Optimal Superplasticizer Dosage. Employing a high dose of superplasticizer is
essential for regulating the workability of UHPC. This ensures that the concrete is
sufficiently workable while maintaining the desired properties.

4. Use of Fibres. Incorporating fibres serves the purpose of inducing tension and
bending tension in the UHPC. This, in turn, increases shear strength and imparts the
necessary ductility to the concrete.

However, unlike conventional concrete, where coarse aggregates are an essential part,
the concept of using coarse aggregates is disregarded in UHPC for the purpose of increasing
the homogeneity of the mixture [11,30].

Therefore, we can categorize the typical ingredients in new development of UHPC as:

• Binder materials;
• Aggregates;
• Fibres;
• Chemical admixtures.

2.1.1. Binder Materials

Typically, from 800 to 1000 kg/m3 of binder material is used in the production of
UHPC [7,10,30]. In the hydration process, 30–40% of the cement content contributes due
to the very low water-to-binder (W/B) ratio in UHPC. Therefore, the remaining cement
particles act as inactive filler [7,42]. It is noted that a UHPC mixture with a binder content
of 500 kg/m3 exhibits a significantly lower slump value. In contrast, a UHPC design mix
with 700 kg/m3 of binder content can achieve a flowability of up to 130 mm [7,43]. On
the other hand, if the cement content in the UHPC mix design is replaced by 50–73%, the



Buildings 2024, 14, 382 6 of 36

compressive strength may drop by 100 MPa or even lower. This 50–73% replacement of
cement contents in the mixture corresponds to only 280 kg/m3 [7,44]. Therefore, there arose
a necessity to introduce supplementary cementitious materials to decrease cement contents,
subsequently reducing carbon emissions and enhancing flowability without compromising
the mechanical properties of UHPC [7,45–48].

The most commonly used supplementary cementitious materials (SCMs) are such as
fly ash (FA), ground granulated blast-furnace slag (GGBS) [49], silica fume, metakaolin [50],
limestone powder [43], steel slag powder [51] and rice husk ash [52].

Portland Cement

Depending on the environmental conditions and the specific applications, UHPC
can be produced with different types of cement, including Type I–V and white cement.
However, Type III and white cement are the most commonly used cements as they shorten
the setting time of concrete and enhance strength due to their high C3S content and Blaine
fineness. On the other hand, Type I cement can be considered due to its lower cost and
reactivity, especially when exceptionally high early stage strength is not a mandatory
criterion [11,25].

Silica Fume

Silica fume (SF) is usually added to the mixture in quantities between 5% and 25%. In
quantities below 10%, it improves the concrete particle packing density and workability
due to its fine particle size. However, if the SF content exceeds 10% of the UHPC, it can
substantially diminish workability, as the large surface area of the SF tends to absorb
free water [53]. Moreover, owing to its high SiO2 content, SF imparts a seeding effect
and pozzolanic effect, enhancing cement hydration and refining the microstructure of
UHPC [25].

Rice Husk

Rice husk is an agricultural waste which is used to replace SF, partially or completely,
because of the amount of amorphous silica. The D50 of rice husk ash is 50–100-times larger
than SF, ranging from 5 µm to 20 µm. However, the surface area of rice husk ash is larger
(i.e., 64,700 m2/kg) than SF (i.e., 18,500 m2/kg), thus increasing the water absorption and
reducing the concrete workability [25]. Moreover, the rice husk ash absorbs water during
the mixing process and gradually releases it during the hydration process, delays the
internal dehydration and hence mitigates the autogenous shrinkage [10,25].

Fly Ash

Fly ash, a byproduct obtained from coal power stations [10], is primarily used in the
production of UHPC with main emphasis on type C and type F fly ash. Both hydraulic
and pozzolanic reactions are experienced in type C fly ash, whereas type F only undergoes
pozzolanic reactions due to its lack of CaO. Fly ash is employed to replace cement, typically
with ratios ranging from 40% to 60% for type C and from 10% to 30% for type F. The more
spherical shape of fly ash compared to cement mitigates inter-particle friction, consequently
enhancing the workability of the concrete [25,54].

Granulated Blast Furnace Slag (GGBFS)

Ground Granulated Blast Furnace Slag (GGBFS) has been employed as a supplemen-
tary cementitious material in concrete for an extended period [55]. The slag used in UHPC
mixes can include copper slag, iron slag and barium slag. As an alternative SCM, slag
typically replaces cement with ratios ranging from 30% to 60%. The angular shapes of
slag particles elevate inter-particle friction, leading to decreased workability of UHPC in
comparison to an equivalent quantity of fly ash [25].
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Glass Powder

Glass powder is utilised as a substitute for cement or SF in UHPC mixtures with ratio
from 10% to 50%. D50 of the glass powder ranges from 1 µm to 20 µm with a smooth
surface which mitigates the inter-particle friction, water absorption and, thus, increases the
workability of the concrete [56,57].

Metakaolin

Metakaolin, derived from the calcination of natural clay, is employed to enhance the
early strength and durability of concrete. Concurrently, the incorporation of metakaolin
powder can ameliorate autogenous shrinkage and refine the pore structure [10,58]. The use
of metakaolin as a substitute for SF in the production of UHPC has been observed. It is noted
that a high dose of metakaolin in UHPC may result in a reduction in compressive strength.
Specifically, flexural strength increases by 2.6%, while compressive strength decreases by
6.7%. The availability, economical pricing and its white colour make metakaolin a preferred
choice for UHPC production [10,58].

2.1.2. Aggregates

High-quality crushed quartz sand, typically with sizes ranging from 150 µm to 600 µm,
is commonly used as an aggregate in the production of UHPC. However, the fine quartz
sand can be substituted with alternative aggregates due to its high cost [25].

River sand can be used as an alternative to quartz sand [37,39]. Nevertheless, the
particles in river sand are 5–8-times larger than those in quartz sand, with sizes ranging
from 0 mm to 4.75 mm. The use of river sand can downgrade the particle packing density
compared to fine quartz sand. Therefore, masonry sand, with a size range of 0–2 mm, is
employed to enhance particle packing [39]. Masonry sand is generated by crushing coarse
aggregates, leading to a particle shape that is more angular. This angular characteristic has
the potential to negatively impact the workability of UHPC.

Limestone sand is characterized by its affordability, uniform composition, plentiful
reserves and global accessibility [59–61]. Additionally, it is considered as a more suitable
replacement for fine quartz sand in the production of UHPC. Reports indicate that the cost
per unit of volume can be reduced by less than 40% [62].

The inclusion of coarse aggregates (size > 4.75 mm) is typically avoided in UHPC
mixes. This is attributed to several drawbacks:

• The shape and angularity of coarse aggregates reduce the packing density of
the concrete.

• The concentration of stress at the contact points between aggregates has the potential
to create vulnerabilities in the concrete matrix.

• The interfacial transition zone (ITZ) between coarse aggregates and the UHPC matrix
is weaker compared to the ITZ between sand and the UHPC matrix [25].

2.1.3. Fibres

Fibres are incorporated into UHPC to improve tensile properties by impeding the
initiation and propagation of cracks. The attributes of fibres, such as their material (tex-
ture), aspect ratio, shape and surface conditions, play a significant role in influencing the
properties of UHPC [25,63–65].

Steel, carbon, wollastonite, basalt, polyvinyl alcohol (PVA), polypropylene-polyethylene
(PP-PE) and biochip are types of hybrid fibres with different sizes [7,66] and shapes [7].
Among the various types of fibres, steel fibres stand out as the most frequently employed
in UHPC. It has been observed that as the steel fibre content increases from 0% to 2% (by
mass of the mixture), it significantly affects the 28-day flexural strength and toughness of
UHPC [67–69]. On the other hand, the addition of steel fibres from 0.5% to 2.5% in the UHPC
mix abruptly reduces the slump value from 4.29 to 1.10 [70].
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2.1.4. Chemical Admixtures

Chemical admixtures are utilised to alter the fresh and/or hardened properties
of UHPC. Specifically, high-range water reducer (HRWR) is employed to attain self-
consolidating properties. Among various types of HRWR, polycarboxylate ethers (PCE)
exhibit high efficiency in dispersing cement particles [71]. Nevertheless, the absorbed
high-range water reducer (HRWR) on cementitious particles can disrupt the hydration
reaction, leading to an extension of the setting time and a reduction in mechanical strength
during the early stages [25].

2.2. Design Methodology

As mentioned earlier, high particle packing density, low void ratio and high mechanical
properties form the basis for designing UHPC mixtures. Consequently, three models have
been introduced based on the above concept: the dry particle packing method, wet particle
packing method and performance-based method [25].

2.2.1. Dry Particle Packing Method

The dry particle packing model presented by Anderson and Andreasen to achieve the
maximum packing density of UHPC mixtures is widely adopted [70]. However, this model
considers particles under dry conditions only. Dry particle packing method is further
divided into two models: the discrete model [72–75] and the continuous model [76].

The first continuous model, developed by Fuller and Andersen by introducing the
target particle size distribution P(D), is considered the most preferred choice for the design
of UHPC mixtures [25,76]. The modified Andreasen and Andersen model was introduced
by Funk and Dinger [64], taking into consideration the minimum particle size effects on
particle packing. P(D) is calculated as follows, see Equation (1).

P(D) =

(
Dq − Dq

min

Dq
max − Dq

min

)
·100% (1)

In the above equation, D is the target particle size (µm), Dmin represents the minimum
particle size (µm) in all materials and Dmax represents the maximum particle size (µm). The
distribution modulus, q, is a parameter, and for fine particles, a q value of 0.23 (q < 0.25) is
recommended [11,77].

The disadvantage of the dry particle packing methods is that they only consider
particles under dry conditions, which may not accurately reflect the real/actual particle
packing of UHPC mixtures due to the presence of water and other chemicals [78].

2.2.2. Wet Particle Packing Method

The wet particle packing model considers the effect of water and HRWR. The following
steps must be considered to obtain the wet particle packing density [78]:

• Assume the initial W/B.
• Weigh the water and binder materials and mix them.
• Pour the paste into a cylindrical mould and weigh.
• Calculate the solid concentration (Φ) and void ratio (u) form the Equations (2)–(4).
• Achieve the maximum packing density by repetitions of above steps.

VS =
M

ρwµw + ραRα + ρβRβ + ργRγ
(2)

u = (V − VS)/VS (3)

∅ = VS/V (4)

In Equation (2), VS is a solid volume of the particles; M and V refer to the mass
and volume of the mixture in the mould, respectively; ρw refers to the density of water;
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µw refers to the volumetric ratio of water; ρα, ρβ, and ργ refer to the solid density of
different binder materials, respectively; and Rα, Rβ, and Rγ refer to the volumetric ratios
of binder materials, respectively.

In Equation (3), u refers to the minimum void ratio, and in Equation (4), Φ represents
the maximum solid concentration. However, the expected results are not achieved by solely
optimizing the maximum particle packing density of UHPC [25].

2.2.3. Performance Based Method

A performance-based method was developed by Meng et al. [39] to enhance the non-
proprietary UHPC [25]. The step-by-step procedure is illustrated below, and the process is
also demonstrated in the flow chart in Figure 2:

• Select binder materials based on the flow properties of the paste.
• Consider material combinations in terms of particle packing, flowability and

mechanical properties.
• Evaluate rheological properties, such as plastic viscosity (µp) and yield stress (τ0), to

confirm the composition of the mix.
• Determine the workability and compressive strength as key properties to determine

the w/b ratio for the mix.
• Use the modified Andreasen and Andersen model to determine the sand gradation,

calculate the ratio between the volume of the primary paste and the sand volume of
the mortar, and compute the steel fibre content.

• Finalize making UHPC concrete mix as per the given instructions.
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3. Production

Nowadays, the UHPC mixture is mixed, cast and vibrated like conventional concrete.
The production procedural steps are as follows [10,18]:

• Mixing of all dry materials for about 10 min.
• Add water and superplasticizer into dry mixture and mix for approximately 5–10 min.
• Fibres are added if required.
• Finish the mixing when mixture shows enough flowability for good workability and

sufficient viscosity.

The mixing procedure for UHPC appears to take a longer time than that for conven-
tional concrete and consumes more energy. Due to the absence of coarse aggregates and
the low W/B ratio, a specific sequence needs to be followed to prevent the UHPC mixture
from overheating [79]. Table 2 represents the different compositions of UHPC mixtures,
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including the quantity of cement utilised in producing one cubic meter of UHPC, along
with the fibre type and percentage.

Table 2. Typical composition of UHPC.

Composition Sequence Type of Fibre Length and Diameter Amount of Fibres
Vol. % or kg/m3

Cement
kg/m3 Ref.

PC + SF + Q Steel Fibre 13 mm × 0.16 mm ∅
6 mm × 0.16 mm ∅ 2–2.5 788 [16]

PC + FA + SF Steel Fibre 13 mm × 0.20 mm ∅ 1–3 642–662 [80]
PC + FS+ SF Steel Fibre 0–2 712 [16]
PC + SF + FA Steel Fibre 20 mm × 0.20 mm ∅

25 mm × 0.30 mm ∅ 1 360–900 [16]
PC + FA + GGBS Steel Fibre 0 582.1–896.3 [81]

PC + SF + QP Glass Fibre 6 mm × 0.015 mm ∅ 12 * 750 [82]
PC + SF + UFSP Polypropylene 12 mm × 0.050 mm ∅ 0–78 737–1005 [83]

PC + MK + NMK 720–800 [16]
PC + MK+ FA 482 [84]
PC + MK + LS 608 [84]

PC + GGBS + QP + FS GGBS 30% Steel Fibre 13 mm × 0.20 mm ∅ 2 630 [85]
PC + GGBS + QP + FS GGBS 40% Steel Fibre 2 540 [85]
PC + GGBS + QP + FS GGBS 50% Steel Fibre 2 450 [85]

PC + FA + QP + SF FA 20% Steel Fibre 2 720 [85]
PC + FA + QP + SF FA 25% Steel Fibre 2 675 [85]
PC + FA + QP + SF FA 50% Steel Fibre 2 630 [85]

PC + MK + SF MK 15% Steel Fibre 2 765 [85]
PC + MK + SF MK 20% Steel Fibre 2 720 [85]
PC + MK + SF MK 25% Steel Fibre 2 675 [85]

PC + SF Metal fibre 13 mm × 160 µm ∅ 138 * 691 [86]
PC + MK Metal fibre 138 * 691 [86]

PC + FA + SF Straight steel fibre 13 mm × 0.20 mm ∅ 156 * 754 [87]
PC + FA + SF + MK 156 * 754 [87]

PC + FA + MK 156 * 754 [87]
PC + SF + QS Basalt Fibre 12 mm × 15 µm ∅ 0, 0.5, 1.0, 2.5 706 [88]

PC + SF + QP + QS Basalt Fibre 12 mm × 18 µm ∅ 6 * 876 [89]
PC + GP + SF + WG Basalt Fibre 24 mm × 16 + 0.2 µm ∅ 8.1 * 720–400 [90]

PC is Portland cement, SF is silica fume, Q is quartz, FA is fly ash, FS is fine sand, GGBS is granulated blast furnace
slag, QP is quartz powder, UFSP is ultra-fine silica powder, MK is Metakaolin, NMK is nano metakaolin, LS is
limestone, GP is Geranium plant, WG is waste glass; * referred to the density of fibres.

3.1. Sampling

The preparation of UHPC samples for testing purposes is no different from that for
conventional concrete. Both cubes and cylinders can be used for sampling or to perform
compression tests. Nevertheless, advanced studies have shown that cubes are more suitable
for compression tests than cylinders (Figure 3).
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3.2. Curing

A suitable curing process is crucial for optimizing the performance of any concrete.
UHPC requires less additional curing compared to other concretes because it is designed
based on rheological behaviours and optimised gradation of granular materials. However,
UHPCs still require proper hydration [79]. Design mix ratios of each material and curing
techniques affect the properties of UHPC [91–93].
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Since the design of UHPC is based on a very low W/B ratio, a more precise curing
method is essential to prevent water outflow before the hydration process. Therefore, the
freshly cast exposed surface of UHPC needs to be carefully packed immediately to prevent
surface dehydration. Materials such as metal, plastic or wood sheets are considered most
suitable for packing the UHPC surface [79].

Below methods are most commonly used for curing:

• Standard room temperature curing;
• heat curing under atmospheric pressure;
• autoclave curing;
• fog;
• steam.

The most economical and eco-friendly method is a standard room temperature cur-
ing. However, better compressive strength results can be achieved with a 24 h steam
curing method than with a 28-day standard room temperature method [10,94]. It was also
found that the compressive strength of UHPC was higher when cured in an autoclave for
8 h compared to standard curing at room temperature and heat curing [95]. The effects
of different curing methos on the compressive strength, [37,43,48,49,52,55,86,96–117], are
shown in Figure 4.
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Figure 4. Effects of curing methods on compressive strength.

4. Mechanical Properties of UHPC

UHPC has already demonstrated excellent mechanical properties. However, the
mechanical properties of UHPC are still heavily influenced by the material’s composition,
mix proportions and the applied curing methods [118]. In the following subsections,
various mechanical properties of UHPC are explained in the above context.

4.1. Compressive Strength

Compressive strength is a key property of any concrete. Standard testing methods
for compressive strength, such as ASTM C39 and ASTM C109, are also applicable to
UHPC [79,119,120].

Researchers have found that a compressive strength of 200 MPa may be achieved in a
UHPC mixture by replacing 30–35% of cement with SF [10,121].

The authors of [58] found that UHPC with metakaolin had the same or slightly lower
compressive strength than UHPC with SF. It is also noted that applying heat curing to
UHPC, incorporating metakaolin along with either crushed quartz or steel fibres, leads to a
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further increase in compressive strength. In another study, the researchers found that the
maximum compressive strength is achieved when Mmetakaolinmetakaolin replaces 15% of
the cement [84].

In a recent study by Chen et al. [122], a binder material incorporating SF with a particle
size ranging from 8 to 13 µm was utilised, complemented by fine aggregate sourced from
quartz particles with a size from 0.15 to 0.84 mm. To further augment the bulk density of
the mixture, a special type of quartz powder with an average particle size of 15 µm was
incorporated. Polycarboxylate-based superplasticizer (SP) was also utilised. The study
incorporated micro basalt fibre, macro basalt fibre and steel fibre both individually and
in various combinations in the UHPC mixture. The results showed that the compressive
strength of the UHPC mixture without any fibre and with micro and macro basalt fibres was
almost the same, measuring 127.6 MPa and 128.5 MPa, respectively. However, the mixture
containing only macro basalt and only steel fibres (3% by volume) exhibited compressive
strengths that were 17.6% and 28.6% higher than the mixture without any fibre.

Moreover, it has been documented that surpassing a 2% fibre content in the UHPC mixture
does not result in a substantial effect on compressive strength [123]. The evolution of UHPC
strength trends, as documented in previous studies [37,43,48,49,52,55,85,87–90,96–98,100–116], is
shown in Figure 5.
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Figure 5. An overview of the UHPC strength trends.

4.2. Flexural Strength

The researchers revealed that a UHPC mix containing SF or metakaolin had almost
the same flexural strength regardless of the presence or absence of fibres and regardless
of the curing method. However, the use of fibres in the mixture may enhance flexural
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strength, especially when the mixture includes fibre contents and undergoes heat treatment.
In contrast, mixtures without fibres and without heat treatment exhibit higher flexural
strength [58]. However, the maximum flexural strength is achieved by substituting 15% of
metakaolin [16].

A brittle behaviour is observed in UHPC when it does not contain any fibre content.
However, the addition of macro basalt fibres or steel fibres (3% by volume) to the mix results
in UHPCs with higher flexural strengths of 28.5 MPa and 31.8 MPa, respectively [122].

The integration of steel fibres in UHPC plays an important role in achieving structural
reliability through load transfer phenomena across cracks, increasing flexural strength in
UHPC mixtures [124]. The literature has also shown that increasing the fibre content in the
UHPC mixture does not really improve the flexural strength [124].

5. Recent Innovations and Research in UHPC

The development of UHPC is progressing daily, consolidating its status as one of the
most exceptional concrete materials currently available, characterized by its well-known
properties; see Table 3.

Table 3. Properties of ordinary concrete (OC), high-performance concrete (HPC) and UHPC.

Property Ordinary Concrete (OC) High-Performance Concrete (HPC) Ultra-High-Performance
Concrete (UHPC)

[27] [125] [126]

Compressive Strength (MPa) <50 60–100 >120
Flexural Strength (MPa) <5.4 8.94 >12

Cement (kg/m3) <400 425–500 746
Water-Cement Ratio >0.35 0.4 0.24

Coarse and Fine Aggregates Ratio 1:0.70 1:0.54 0:1
Admixtures Used - Superplasticizer Superplasticizer
Curing Method 28 days water curing 28 days water curing 28 days water curing

Special Ingredients - Metakaolin and steel fibres Metakaolin/Micro Silica and
basalt fibres

Application/Use Cases Construction and
Infrastructures

Construction and
Infrastructures

Construction, Infrastructures,
high elevated temperature zone,
harsh marine environment and
high security zone construction

UHPC is recognized for its remarkable strength and durability, coupled with a notably
low porosity, high packing density and minimal permeability [64,127]. To achieve UHPC
with exceptional strength, durability and increased sustainability, several considerations
come into play. These strategies involve the exclusion of coarse aggregates exceeding
5 mm, the reduction of W/C ratio facilitated by superplasticizers, and the substitution of
Ordinary Portland Cement with various SCMs such as GGBS, fly ash, metakaolin and rice
husk ash [52,117,128,129].

Research findings indicate that Ultra-High-Performance Fibre-Reinforced Concrete
(UHPFRC) possesses remarkable tensile and flexural strengths compared to ordinary
concrete. The addition of steel fibres plays a crucial role in enhancing the mixture’s
mechanical properties. Specifically, the incorporation of 2% volume of steel fibres re-
sults in a significant increase of up to 228% in tensile splitting strength and 180% in
flexural strength.

The use of long fibres further elevates the load-carrying capacity and strain hardening
performance of UHPFRC. Notably, UHPFRC exhibits outstanding energy absorption and
dissipation capabilities, surpassing those of ordinary concrete. In addition, its resistance to
crack formation and transmission makes it a more favourable building material [13]. The
introduction of steel fibres changes the failure pattern of UHPFRC from brittle to ductile
failure [130]. While there is no doubt that steel fibres play an important role in enhancing
the tensile strength of UHPC, their influence on the compressive strength appears to be
uncertain. Other factors, such as variations in test specimen geometry and additional
parameters, could also contribute to influence the results [26].
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Despite the acknowledged environmental advantages of incorporating SCMs such as
fly ash, rice husk ash and GGBS as replacements for cement in UHPC, many researchers
believe that the diverse chemical compositions pose a challenge, leading to unreliable
performance [131]. The purity and efficiency of raw materials in production plants is
directly proportional to the chemical compositions [132]. As a consequence, the commercial
application of UHPCs with SCMs as cement replacements still remains quite limited [25].

UHPC encounters challenges in establishing widespread usage. While it demonstrates
success on a laboratory scale, difficulties arise when attempting large-scale operations, po-
tentially leading to mixer failures [133]. The volume production of batches is consequently
limited. Another important factor standing in the way of wider acceptance is the high cost
associated with the components used in UHPC, particularly the expensive cement, silica
fume and steel fibres. For instance, a typical strain-hardening UHPC [134,135] comprises
1100–1300 kg/m3 of cement and 200–350 kg/m3 of silica fume, constituting 18–26% of
the mass of the binder material [115]. Table 4 reflects the difference between mechanical
properties and effect of different methods of UHPC with SF and with metakaolin.

Table 4. Comparison between the properties of UHPC with silica and UHPC with metakaolin [58].

W/B Silica Fume % Metakaolin % Steel Fibre kg/m3
Curing Methods Compressive Strength Flexural Strength

Method Hours/Days MPa MPa

0.22 25 T @ 90 ◦C 70/5 133 5
T @ 150 ◦C 70/5 141 11

25 164 T @ 90 ◦C 70/5 126 6
T @ 150 ◦C 70/5 140 14

25 165 T @ 90 ◦C 70/5 204 34
T @ 150 ◦C 70/5 234 34

The findings indicate that metakaolin exhibits a higher level of reactivity compared
to SF and demonstrates comparable or superior effects in enhancing both mechanical
properties and durability. Several studies have dealt with the incorporation of metakaolin
in UHPC [9,86]. UHPC with metakaolin exhibited almost equivalent mechanical properties,
albeit with a slightly longer mixing time, and was considered as a substitute for SF. Notably,
metakaolin contributed to a 13% increase in flexural strength [58,136].

A wet packing method considers the water absorption of metakaolin, to elevate the
mass ratio of metakaolin to cement. Subsequently, engineers designed a mixture of UHPC
where metakaolin was completely replaced by SF and observed that no significant changes
in mechanical properties occurred [115]. Metakaolin was swapped with two-thirds of SF
in a UHPC design mix. Advanced autogenous shrinkage was noticed with respect to the
reference mix design, which was purely based on SF [115]. Furthermore, the addition
of metakaolin in the UHPC mix significantly reduced the drying shrinkage in contrast
to UHPC with only SF [99]. Metakaolin in UHPC also exhibited better permeability
resistance [86].

Basalt fibres are considered superior due to their equivalent mechanical strength,
their enhanced durability compared to glass fibres, their lower cost compared to carbon
fibres, their sustainability resulting from abundant raw materials and their environmen-
tally friendly production process [137]. The outstanding mechanical properties of basalt,
particularly within broad temperature ranges, contribute to the preservation of concrete
integrity [89].

The thermally treated sugar cane bagasse ash (SCBA) exhibited measured compres-
sive, tensile and flexural strengths at 162.5 MPa, 17.78 MPa and 24.05 MPa, respectively,
after treatment at 700 ◦C [138]. Additionally, in Ultra-High-Performance Fibre-Reinforced
Concrete (UHPBFC) mixes, a thermally treated rice husk ash was incorporated, replacing
two-thirds of the cement by volume. This resulted in a significant improvement in strength
performance, with a respective increase in compressive strength of 9.7%, 14.5% and 10.2%
at 7, 28 and 120 days in the mixtures, respectively [38].

The performance of UHPC has undergone extensive investigation through the incor-
poration of various industrial and agricultural wastes. However, a notable gap exists in
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research regarding the utilization of waste from the perfume or geranium industry in con-
crete. This gap is particularly significant in light of prevailing climate and environmental
concerns related to CO2 emissions. Exploring these specific waste materials in concrete can
offer valuable insights into their potential impact on UHPBFC performance and contribute
to sustainable and environmentally conscious concrete practices [90].

The impact of integrating basalt fibre into the concrete mixes was noticeable in terms
of increased toughness and elongation of the time between the initial appearance of the first
crack and the ultimate failure [139]. The addition of basalt fibre can significantly improve
bonding properties [140].

Basalt fibre possesses the capability to shift the failure mode of Basalt Fibre-Reinforced
Polymer Composites (BFRPC) from tensile failure to tensile shear failure. Additionally, it
effectively increases the stress level during cracking, consequently minimizing damage
in BFRPC [141]. This observation implies that UHPBFC demonstrates enhanced thermal
resistance when subjected to elevated temperatures [142].

Recent global climate changes have led to a demand for materials that are able to
meet the structural requirements imposed by these changes. UHPC has emerged as a
material that can fulfil these demands. In contrast to conventional concrete, UHPC offers
a unique combination of properties that make it particularly suitable for modern struc-
tures/buildings that have to withstand extreme weather conditions. In addition to its
fundamental superior mechanical and durability properties, UHPC has the potential to act
as a smart and multifunctional concrete. Such smart and multifunctional building materials
can exhibit additional properties, such as superhydrophobicity, self-healing, self-sensing,
self-cleaning, self-luminescence, high-water repellence and conductivity, which increase
their overall benefits (Figure 6) [143].
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5.1. Superhydrophobic Concrete

The natural hydrophilicity of concrete poses a potential risk to its mechanical durability,
and it can contribute to structural failure. This vulnerability arises from the ease with which
water can infiltrate the porous structure of concrete, leading to damage through freeze–
thaw cycles, chemical erosion and other weathering factors. In response to this challenge,
researchers have dedicated efforts to developing techniques aimed at improving the water-
resistance of concrete [144–147]. Diminishing the water-to-cement ratio and incorporating
extra cementitious materials to the concrete mix are widely regarded as common practices
to mitigate the deterioration process of concrete structures [148–150].
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In recent times, significant attention has been directed towards minimizing water
infiltration and enhancing the durability of concrete [144,147]. Current strategies involve
refining pore characteristics and increasing density by adjusting the water-to-cement ratio
while incorporating supplementary cementitious materials [148,150].

The idea of superhydrophobic concrete has proven to be a promising strategy to
enhance the resistance of concrete. According to the Laplace-Washburn equation [151], the
capillary negative pressure plays a vital role, and elevating the water contact angle (WCA)
can generate a more potent repellent force. This force actively expels water from pores,
enhancing the concrete’s water-resistant properties. Two primary techniques, surface and
bulk modifications, are utilised to create superhydrophobic concrete.

Surface modification using hydrophobic agents has been practiced since 1986 [152].
For instance, in the Netherlands, the Ministry of Transport applied a hydrophobic coating
to concrete bridges, resulting in an 80% decrease in chloride infiltration during de-icing salt
cycles compared to the control sample [153].

Regarding bulk modification, the adding of a hydrophobic admixture effectively
inhibited the corrosion of the reinforcement in concrete [154]. Moreover, the induction
of bacterial biofilm during casting produced spike-like crystal structures, resulting in a
hydrophobic hybrid mortar with exceptional resistance to various water sources [22].

Achieving superhydrophobicity usually involves applying hydrophobic substances on
the concrete surface or within shallow surface pores, creating continuous protective coatings
for enhanced long-term durability upon solidification. In contrast, bulk modification entails
the direct mixing of hydrophobic modifiers with cement, which leads to their accumulation
on the cementitious hydration products during the moulding process [22].

5.1.1. Surface Modification Method

Nanocomposite coatings, incorporating inorganic nanoparticles (NPs), typically out-
perform pure polymers due to improved mechanical stability, high temperature resistance
and water-repellent properties. The sol-gel method, a straightforward approach, is used
to create superhydrophobic nanocomposite coatings. SiO2 NPs are commonly used in
this method due to their chemical stability, straightforward synthesis and adjustable size.
For example, Gao et al. [155] investigated the effectiveness of superhydrophobic asphalt
concrete by blending hydrophobic fluoro silanes with SiO2 NPs.

The ‘mix + paint’ technique has been employed, utilizing stable and functional
polymers as adhesives to securely anchor particles. Typically, polydimethylsiloxane
(PDMS) is used to create superhydrophobic surfaces due to its exceptional attributes,
including chemical inertness, non-toxicity, cost-effectiveness, biocompatibility and
eco-friendliness [127,156].

Despite established methods for producing superhydrophobic concrete materials, chal-
lenges persist in their practical application. These materials must maintain both structural
integrity and durability, especially under prolonged UV exposure. Additionally, achieving
superoleophobicity is crucial, as contaminated superhydrophobic surfaces lose their self-
cleaning abilities with oil-based substances. It is noteworthy that SiO2 nanoparticles might
not meet these criteria, prompting exploration into alternative nanoparticles [22].

Achieving superhydrophobicity usually involves applying hydrophobic substances on
the concrete surface or within shallow surface pores, creating continuous protective coatings
for enhanced long-term durability upon solidification. In contrast, bulk modification
involves directly mixing hydrophobic modifiers with cement and their accumulation on
cementitious hydration products during moulding [22].

5.1.2. Bulk Modification Method

Silane and siloxane, known for their compact molecular structures, can permeate
concrete’s dense composition and chemically interact with the cementitious substrate. Both
silane and siloxane, individually or combined, have demonstrated effectiveness in altering
concrete [154,157]. For example, self-cleaning concrete is achieved by incorporating silane
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into the mixture [158]. The introduction of low-surface-energy agents during moulding
can yield superhydrophobic concrete. However, this approach alters the original structure,
potentially impacting performance, leading to reduced compressive strength due to internal
hydrophobization [22].

Siloxane-based admixtures, such as polyethylhydrosiloxane (PEHSO) and polymethyl-
hydrosiloxane (PMHS), as mentioned in the literature [135], exhibit robust reactivity. These
additives react with -OH groups of Ca(OH)2, forming a durable hydrophobic cross-linked
structure that bonds with cement hydration products via siloxane oligomers’ polymerization.

In contrast to the surface modification, the bulk modification has a significantly effect
on the concrete strength. Incorporating hydrophobic chemicals, including silane-based
compounds and polydimethylsiloxane PDMS, typically results in substantial reductions in
both compressive and flexural strength [121,159]. For instance, Song et al. [159] observed
a 40.5% decrease in compressive strength and a 33.3% decrease in flexural strength with
the addition of fluoroalkyl silane. Additionally, Subbiah et al. [83] noted a significant 60%
decrease in compressive strength with fluoroalkyl silane and SiO2/TiO2 nanoparticles,
rendering such concrete unsuitable for construction purposes.

In 2022, a green superhydrophobic hybridization model was introduced, integrating
biomimetics (lotus effect), chemistry (siloxane and silane admixtures) and nanotechnol-
ogy (SiO2 nanoparticle hydrophobic coating) to create superhydrophobic concrete. This
model demonstrated exceptional hydrophobicity, achieving contact angles (CA) of up to
157.6 ± 3.1◦ and roll-off angles (RO) of 6.5 ± 1.5◦, even when subjected to high-surface
mechanical abrasion [160].

5.2. Self-Sensing UHPC

The concept of “smart concrete structures” was initially introduced by American
researchers, particularly Chen P-W, in conjunction with the development of self-sensing
concrete. Subsequent research and practical experiments have demonstrated that the
combination of concrete and carbon fibres can serve as a strain or stress sensor [161].

The manufacturing process involved impregnating precast graphene nanoplate/cement-
based sensors with silane/isopropanol solutions. The cement-based sensors treated with silane
exhibited satisfactory performance in sensing stress and strain, boasting an average gauge
factor of 141.8. Additionally, these sensors indicated outstanding hydrophobic properties, as
evidenced by the greatest water contact angle of 163◦ on the intact surface [162].

The study investigated the mechanical, electrical and self-sensing characteristics of
UHPC with stainless steel fibres and copper-coated steel fibres (CCSFs). The inclusion of
1.2 vol% CCSFs was found to significantly enhance the flexibility of UHPC, resulting in a
33.7% increase in peak compressive strain. UHPC reinforced with stainless steel fibres and
CCSFs demonstrated excellent synchronization and repeatability of its self-sensing feature
when subjected to three different cyclic loading amplitudes within the elastic range.

The strain sensitivity of UHPC reinforced with stainless steel fibres reached a maxi-
mum value of 26.6 under a cyclic compressive load of 37.5 MPa. In addition, UHPC with
1.2 volume percent of CCSFs achieved a strain sensitivity of 28.2 under a monotonic peak
load, where the compressive stress was monitored in the range from 0 to 125.7 MPa. The
electrical resistance of UHPC with stainless steel fibres/CCSFs can be used for the real-time
monitoring of stress, strain and damage evolution in structures [12].

5.3. Self-Heating UHPC

The self-heating capability, active de-icing and snow-melting performances take the
UHPC to the next level. Self-heating composites were produced and assessed. The UHPC
slab, reinforced with stainless steel wires (SSWs), exhibited consistent electrical conduc-
tivity and robust self-heating capability throughout repeated cycles. Moreover, it demon-
strated effective active de-icing and snow-melting properties under various environmental
conditions [163].
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5.4. Other Concepts

According to statistics, the electricity consumption of street lighting accounts for
around 20–30% of the total electricity consumption of national lighting. Nevertheless, the
power utilization rate is below 65%, which indicates a considerable waste of energy [164].
One possible solution to this problem is to provide road surfaces or associated concrete
components with self-illuminating properties by integrating built-in illumination devices
or luminescent materials. This approach not only has the potential to save energy and
reduce environmental light pollution but also to solve problems such as uneven illumi-
nation and glare associated with conventional streetlights [165]. Developed countries,
including Germany, the United States and France, have already begun researching and
developing self-luminous pavements [166]. The integration of self-luminescent properties
into concrete materials is a novel concept in civil engineering and has been the subject of
recent research [131].

German artist Konrad Lueg introduced one of the first light-emitting projects by
inducing phosphorescent paints as smart materials like the “Schattenwand mit Blitzelek-
tronik” [167]. Some successful engineering applications of luminous pavements have been
accomplished. In 2012, the Dutch studio Roosegaarde presented the idea of a luminous
highway as part of a smart highway project [168]. Thus, UHPC, known for its excellent
mechanical properties, durability and versatility, can serve as an ideal material for the
integration of smart functions, including self-luminescence.

Intelligent manufacturing of UHPC, specifically through 3D printing, represents a
recent and innovative approach that combines optimal design through computer-aided
technology with the use of particle packing models and machine learning techniques. This
approach aims to achieve high efficiency and accuracy in predicting the properties of the
resulting UHPC [15].

5.5. Multifunctionality

Our latest experimental work has focused on the development of an innovative basalt-
reinforced UHPC that offers multifunctionality through the simultaneous integration of
self-cleaning and self-illuminating properties. The produced samples, characterized by high
particle packing density, show adequate workability and achieve high compressive strength.
The incorporation of basalt fibres significantly reduces brittleness. To ensure the desired
long-lasting visual appearance of decorative UHPC and minimize future maintenance
costs, we introduced a time-effective strategy to create a light-emitting biomimetic surface
design [126].

The prospects for UHPC, enhanced with superhydrophobic and self-luminescent fea-
tures, represent a transformative path for civil engineering and infrastructure development.
Incorporating superhydrophobic properties not only increases durability but also reduces
maintenance costs and improves resistance to environmental pollutants. At the same time,
the integration of self-luminescent properties creates a breakthrough solution for efficient
lighting at night, demonstrating the potential for a concept shift in construction technology.

6. Durability of UHPC

UHPC is a material designed to withstand harsh environmental conditions. Conse-
quently, the assessment of its durability is considered essential. The evaluation of UHPC
durability primarily focuses on water and chloride-ion permeability, corrosion of steel
reinforcement, freeze–thaw resistance and fire resistance [150]. A brief assessment of the
durability of UHPC is therefore provided below.

6.1. Water Permeability

In the previous section, it was discussed that the hydrophilic nature of concrete can ad-
versely affect its mechanical durability and potentially lead to failures due to the corrosion
of steel rebars and/or fibres [150]. However, UHPC exhibits lower porosity and a denser
microstructure, providing assurances of excellent permeability resistance [36,169]. UHPC
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is designed at a low W/B and low porosity, which is the origin of its high permeability
resistance quality [148,170].

6.2. Chloride-Ion Permeability

Two testing methods are defined to assess chloride-ion permeability. One is the Rapid
Chloride Permeability Test (RCPT), and the other is the Nordtest method NT Build 443 [150].
In the Nordtest method, NT Build 443 coefficient of chloride ion diffusion is the main deter-
mining factor to evaluate the chloride-ion permeability; for UHPC, it ranges from 0.2 × 10−13

to 4.1 × 10−13 m2/s, based on the W/B, curing regime, medium solution concentration, steel
fibre volume and testing age [150]. It is noteworthy that the chloride ion diffusion coefficient
of UHPC is one point of magnitude lower than that of conventional concrete (CC) [171,172].
The chloride ion diffusion coefficients of C30, C80 and UHPC were also mentioned by [173],
which are 1.1 × 10−13, 6.0 × 10−13 and 0.2 × 10−13 m2/s, respectively.

6.3. Corrosion of Steel Reinforcement

It is obvious that UHPC has a very low chloride ion permeability and therefore a
high corrosion resistance [150]. An accelerated corrosion test was conducted to assess the
corrosion rate of steel bars in high-performance concrete (HPC) and UHPC. The results
indicated that the time to crack formation in UHPC was more than half the time observed in
HPC [174]. Also, the rate of corrosion for steel bars in UHPC was described as 0.01 lm/year,
which is quite lower than the permissible value of 1 lm/year [173]. In 2022, Kravanja
et al. [160] presented the concept of a green superhydrophobic hybridization concrete that
has anticorrosive properties.

6.4. Freeze–Thaw Resistance

Typically, freeze–thaw action in concrete leads to random cracking, surface scaling
and joint deterioration due to D-cracking [150,175,176], leaving the structure with very low
mechanical properties and permeability resistance. HPC possesses excellent freeze–thaw re-
sistance due to its highly impermeable matrix with reduced capillary porosity [150,177–179].
Many researchers have discovered that after 300 or 600 freeze–thaw cycles, UHPC exhibited
no deterioration [93,150]. Kravanja et al. also revealed that by applying superhydrophobic
concrete, freeze–thaw damages may be reasonably decreased, and concrete shows high
resistance against the freeze–thaw action [160].

6.5. Fire Resistance

Due to its low thermal conductivity and high thermal capacity, high fire resistance is
one of the most important properties of concrete as a building material. If the free moisture
content in the concrete is below 3–4%, explosive spalling in CC is unlikely to occur [150].

It is reported that UHPC samples exhibit a lower temperature difference between
inner and outer layers than CC and HPC samples. However, spalling and loss of lower
mass occur when the temperature reaches 800–900 ◦C [180,181].

Recently, one study revealed that UHPC with Macro Basalt Fibre (MBF) exhibited
enhanced spalling resistance and higher mechanical properties at 400 ◦C and 500 ◦C
compared to UHPC with steel fibres [122].

6.6. Nanotechnology

The significant progress in nanotechnology has opened up avenues for the effective
use of various nanoscale materials, each endowed with distinctive characteristics. The
substantial advancements in nanotechnology and nanomaterials have led to the integration
of new properties directly into the fundamental structure of materials, thereby resulting in
further enhancements [14].

The performance of modified concrete composites is influenced by the integration of
nanomaterials. Strength and durability can be improved using nanomaterials in conjunction
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with modified cement binders [182]. Therefore, a significant reduction in service and
maintenance costs is expected [183].

Generally, nanoparticles are classified into two categories; Figure 7 depicts nano-
particles classifications.
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Several studies have been conducted to investigate the impact of different nanopar-
ticles on modified cement materials. In a recent study, nano-silica (NS) and C-S-H seeds
were incorporated into the UHPC mix. The results indicated a substantial increase in
compressive strength, with a 457% improvement when 0.3% of NS was used and a 25%
enhancement when C-S-H seeds were employed, compared to the reference sample [184].

Different nanoparticles affect the mixture in different ways; some nanomaterials en-
hance the mechanical properties of the UHPC mix, while at the same time affecting the
freshness properties. For example, nano-silica is a widely used nanomaterial in modified-
cement mixtures, typically ranging from 1% to 6%. Nano-silica can also reduce the flowa-
bility and setting time of the mixture, with maximum a reduction observed at 58% and
60%, respectively [14,185–201].

Various studies have revealed more or less similar characteristics of other nanoparticles,
such as nano-titanium, nano-zinc, nano-clay, nano-aluminium, nano-iron, nano-glass, nano-
zirconium, nano-copper and carbon nanotubes [14,192,202–214].

Nanoparticles not only enhance the mechanical and fresh properties of concrete but
also contribute to making UHPC a multifunctional material. Silicon dioxide, for example,
has the property of preventing the carbonization of concrete. In addition, the addition
of titanium or titanium dioxide (TiO2) to the mixture imparts self-cleaning properties to
the concrete and enables it to absorb pollution. Silica and SF help to transform concrete
into a self-compacting and rapidly hardening material. Carbon nanotubes play a role in
minimizing the shrinkage of concrete [215].

7. Environmental Impact of UHPC: Life-Cycle Assessment and Sustainable Practices

Concrete, as a widely used construction material, has a substantial global environmen-
tal impact. Cement production, a key component of concrete, is responsible for approxi-
mately 7% of the total CO2 emissions worldwide [216].
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The fabrication of UHPC is also coupled with increased CO2 emissions, which there-
fore have a negative impact on the environment. For this reason, the assessment procedure
should integrate life-cycle assessment (LCA), a vast and standard method for evaluating
the environmental impacts of assets and life-cycle cost, etc. [217].

LCA is a methodology that calculates the environmental impact of any building/structure
throughout its entire life cycle (from its creation to its end of its life) [216,218]. In general,
operation and maintenance (O & M) costs of a building are directly related to the initial costs
invested. Lower initial costs usually lead to higher O & M costs and higher initial costs can
lead to lower O & M costs. Figure 8 explains the structure of LCA. Typically, we can divide
the entire procedure into two parts as shown in Figure 9 below.
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7.1. Environmental Impact Assessment (EIA)

The environmental impact assessment procedure is based on various indicators, which
are shown in Figure 10.

The accumulative environmental impact, measured in terms of CO2 emissions, rep-
resents the global warming potential of the infrastructure throughout its service life. The
initial phase involves the material formulation process, starting from raw material mining,
transportation, etc. CO2 emissions may be computed by multiplying the impact coupled
with every raw material, which keeping in view the quantity of each [219].
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In this way, CO2 emissions for any building/structure can be calculated by summing
the unit CO2 emissions weighted by the volume of all the materials involved in the struc-
ture. Therefore, the CO2 emissions of all the materials at the manufacturing level can be
calculated by Equation (5) [220].

ENmanu = ∑nm
i=1 eni·Vi (5)

In the above equation, nm represents the number of different materials used within
the under-consideration structure, eni stands for the CO2 emissions of a unit of the i-th
material (kg-CO2/m3) in the manufacturing phase and Vi is the volume of each material,
e.g., concrete, reinforcing steel, timber, etc.

The unit CO2 emissions for different materials are influenced by several factors. Sev-
eral industrial variables can influence the value of CO2 emissions in the manufacturing
phase [216]. The unit carbon CO2 emission of a unit of concrete (kg-CO2/m3) in the
production phase, enc,manu, can be calculated using Equation (6).

enc,manu = ∑ncm
i=1 mai·ce f mi (6)

where mai is the quantity of the basic materials utilised in the production of one cubic
meter of concrete (kg/m3), ncm is the number of batches for one cubic meter of concrete and
cefmi is the CO2 emission factor for the production of the i-th basic material (kg-CO2/kg).
In this context, the basic ingredients of UHPC are cement, silica fume, fibres, water and
HRWR [216].

The environmental impact assessment of the transportation phase includes the CO2
emissions released during the transportation of materials or other things from the
plant/unit/factory to the site, depending on the distance and type of transportation. It can
be calculated as follows.

ENtrans = ∑nm
i=1 bmai·Vi·

di
fe
·ce f t (7)

In Equation (7), bmai represents the unit weight of the i-th material (kg/m3) used in a
structure, Vi is the volume of each i-th material (m3), di is the transportation distance of the
i-th material (km), fe refers to the fuel efficiency (km/L) and ceft is the CO2 emission factor
associated with the transportation of fuel consumption (CO2 kg/L-kg).
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The construction phase, which is included in the environmental impact assessment, is
generally related to the construction techniques. For example, different types of equipment
are used in different construction techniques, resulting in different energy efficiency and en-
vironmental impacts. In general, electricity consumption is considered as an environmental
impact in this phase [219].

The next phase of the environmental impact assessment is the maintenance, repair
and rehabilitation (MR&R) phase. This phase is basically divided into two main categories:
preventive maintenance and essential maintenance. Preventive maintenance actions can be
carried out either at regular or irregular intervals to prevent the structure from damage or
deterioration, while essential maintenance measures are carried out when the performance
indicator of the structure reaches the specified target value. The CO2 emissions at this stage
for the environmental impact assessment are directly related to the process or technique
used for the rehabilitation of the structure and can be calculated using the following
formula [216].

Emain = ∑n
i=1 Eenv,ini·rmi (8)

In Equation (8), n refers to the number of maintenance actions within the life-cycle,
Eenv,ini represents the initial CO2 emissions associated with manufacturing and transporta-
tion, and rmi is the ratio of the CO2 emissions of the i-th maintenance action to the CO2
emissions of Eenv,ini.

The final phase is the “end of life phase”, which leads either to demolition of the
building/structure or to material treatment or recycling of the material process and coupled
transportation. The advantage for the environment is always hidden in recycling or material
recovery [219].

7.2. Life-Cycle Cost Analysis and Equivalent Annual Cost (LCCA)

Similar to the EIA mentioned above, the LCCA also considers the entire life cycle
of the building/structure from planning to demolition in relation to the invested costs.
Therefore, LCCA is a decision support method that allows a comparative study of the life-
cycle costs of alternatives that fulfil a similar function but differ significantly in a life-cycle
terms [221]. The total cost during the lifetime of a building/structure can be calculated
using Equation (9) [220].

LCCNPV = Ccons + ∑nins
j=1

Cins,j
(
tj

)
(1 + r)tj

+∑nmt
k=1

Cmt,k(t k)

(1 + r)tk
+∑

n f e
i=1

C f c,i
(
ti

)
(1 + r)ti

+
Cdm

(1 + r)T − Rv

(1 + r)T (9)

In Equation (9), r is the monetary discount rate used to discount future cash flows to
their present value; Ccons are the initial construction costs, including material and labour
costs; Cins are the inspection costs; Cmt are the maintenance costs, which include both direct
and indirect costs for maintenance activities; Cfc are the failure costs, which include both
direct and indirect costs due to structural failure; Cdm are the demolition costs, including the
costs of destruction, reclaim and recycling; Rv is the residual monetary value of the structure
at the end of its design service life, assuming it does not collapse; T is the investigated life
cycle, such as the designed service life, nins, nmt and nfe represent the times of inspection,
maintenance, and failure events, respectively, during the investigated life cycle.

In order to calculate the life-cycle costs, we must first determine the “initial construc-
tion costs”, which can be calculated using Equation (10).

Ccons = ∑nm
i Cm,i·Vi·ρi (10)

In the above equation, nm is the number of different materials used in a build-
ing/structure, cmi is the unit price per ton of the i-th material, Vi is the total volume
of the i-th material and ρi is the density of the i-th material.
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To address this issue, the method of equivalent annual cost should be employed as an
additional performance indicator for comparing assets with different service lives [222,223].
The equivalent uniform annual costs LCCEUAC can be calculated using Equation (11) [216].

LCCEUAC =

LCCNPV ·r· (1+r)T

(1+r)T−1
, r > 0

LCCNPV
T , r = 0

(11)

where LCCNPV is the net present value for life-cycle and cost analysis, r is the monetary
discount rate and T is the investigated life cycle.

7.3. Numerical Examples for the Determination of CO2 Emissions

Three numerical examples of three different mixtures for calculating CO2 emissions
in the production of one cubic meter of UHPC are shown in Table 5. Using Equation (6),
the first UHPC mixture mixed for a bridge in China [216] has 877 kg emissions of CO2/m3;
the second mixture, U0.20F2.5, mixed with fly ash and aeolian sand [224], exhibits 852 kg
emissions of CO2/m3; and the third mixture with fly ash, and silica powder and sand,
used for a bridge in Vietnam [225], shows 1146 kg-CO2/m3. In Table 5, each mixture is
presented in two separate columns with the weights of the materials used and their unit
CO2 emissions. In terms of CO2 emissions, cement is the most polluting material. If only
the contribution of cement is calculated, it amounts to 692 kg-CO2/m3 (79%) of the total
CO2 emissions for the first mixture, 538 kg-CO2/m3 (63%) for the second mixture and
887 kg-CO2/m3 (77%) for the third mixture. Note that the second mixture exhibits a lower
percentage of CO2 emissions from cement compared to the first and third mixtures, as a
lower content of cement is mixed, and a higher unit CO2 emission of steel fibre is used.

Table 5. CO2 emission in production 1 m3 of UHPC.

Material

Reference [216] Reference [224] Reference [225]

Weight Unit CO2
Emission Weight Unit CO2

Emission Weight Unit CO2
Emission

(kg) (kg-CO2/kg) (kg) (kg-CO2/kg) (kg) (kg-CO2/kg)

Cement 800 0.865 646 0.8324 1025 0.8650
Fly ash - - 323 0.0090 175 0.1965
Silica fume 250 0 108 0 330 0.0070
Silica powder - - - - 300 0.0018
Silica sand - - - - 650 0.0009
Aeolian sand - - 862 0.0010 - -
Aggregate 750 0.0013 - - - -
Steel fibre 195 0.94 195 1.4965 235 0.9299
Water 200 - 215 0.0003 246 -
Superplasticizer 40 0.0184 22 0.7200 31 0.092
Expensive agent - - 32 0.0810 - -

CO2 emissions/m3 877 kg-CO2/m3 852 kg-CO2/m3 1146 kg-CO2/m3

8. Applications of UHPC

The properties of UHPC such as strength, ductility, durability and aesthetic design
flexibility, make it a smart material. Thanks to these unique properties of UHPC, various
tasks can be achieved, such as load-bearing elements with thinner cross-sections (compa-
rable to steel profiles), curved and more complex and sophisticated shapes [167]. Accord-
ing to Grand View Research (GVR), the global market for UHPC was estimated at USD
892 million in 2016 and is expected to grow by 8.6% to USD 1867.3 million by 2025 [11].
The following subsections present some very well-known structural applications of UHPC.

8.1. Buildings

In 2013, the building of the “Museum of European and Mediterranean Civilizations”
was constructed in Marseille, France, with extensive use of UHPC [226]. In 2014, the
“foundation Louis Vuitton pour la Creation” was built in Paris, France, with complex
geometric features. The roof of the “Jean Bouin Stadium” in Paris was also built with
UHPC [226,227]. In Switzerland, UHPC was used for the roof of the Olympic Museum
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in Lausanne [228]. The façade of the National Museum of Qatar was built with UHPC
and opened to the public in 2019 [226]. In addition, some UHPC buildings are shown in
Figure 11.
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8.2. Bridges

In 1997, UHPC was used for the first time in the construction of a pedestrian bridge
in Quebec, Canada. In 2000, UHPC became commercially available in the United States
and the first UHPC girder bridge, known as the “Mars Hill Bridge”, was built in Wapello
County, Iowa [226].

In Malaysia, almost 113 UHPC bridges have been completed or are still under con-
struction since 2010. One of the completed bridges in Malaysia, located in Perak, is shown
in Figure 12. After the successful completion of these pedestrian bridges, UHPC pedestrian
bridges were also built in Europe, North America, Asia and Australia [19].

In 2005, the first four road bridges were built with UHPC: the “Shepherd’s Gully
Bridge” in Australia, the “Bourd-les-Valence Bridge” in France, the “Horikoshi C-ramp
Bridge” in Japan, and the mentioned “Mars Hill Bridge” in Wapello Country Iowa USA [11].
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In 2013, the United States Federal Highway Administration (FHWA) published
a report stating that 55 bridges were built with UHPC in the USA and Canada,
22 in Europe, and 27 in Asia and Australia [229]. It is also reported that UHPC is
actively used in the repair of bridge beams, bridge decks, bridge piles and wind turbine
towers [230].

In addition to the successful applications of UHPC in buildings, bridges, and wind
turbine towers, an experimental study investigated the durability of UHPC in a harsh ma-
rine environment over 21 years. The results showed that the durability of UHPC in harsh
marine environments is significantly higher than that of conventional high-performance
concrete (HPC) and normal concrete, regardless of the curing process. Chloride penetra-
tion was found to occur to a depth of about 10 mm regardless of the exposure time [230].
Only recently, a successful experiment was conducted in India to produce a green ap-
proach for railroad sleepers made of ternary, blended prestressed cement concrete railway
sleepers [231].
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9. Conclusions and Future Perspectives

The review article reports on the progress and applications of ultra-high-performance
concrete (UHPC). The article comprehensively addresses the historical development of
UHPC, its production and the design aspects encompassing composition and methodology.
It delves into the mechanical properties of UHPC, recent innovations and ongoing research.
Topics such as multifunctionality, nanotechnology, durability assessment, environmental
impact, life-cycle cost analysis, a numerical example for determining CO2 emissions and
diverse applications in buildings and bridges are thoroughly discussed.

Research and innovation in the field of ultra-high-performance concrete (UHPC)
have made it an innovative material with exceptional mechanical strength, durability and
multifunctionality. Remarkable properties such as low porosity, high packing density and
minimal permeability make UHPC stand out in comparison to conventional concrete. The
incorporation of steel fibres enhances tensile and flexural strengths, shifting the failure
patterns from brittle to ductile. However, challenges, including production costs and
mixer failures in large-scale operations, remain. The use of supplementary cementitious
materials such as fly ash, rice husk ash and metakaolin contributes to sustainability but
faces challenges related to the different chemical compositions. Basalt fibres, thermally
treated sugar cane bagasse ash, and rice husk ash emerge as promising alternatives with
better mechanical properties. The integration of nanotechnology, such as nano-silica and
other nanoparticles, has a significant impact on the properties of UHPC. While these
nanoparticles improve the mechanical strength, they also affect the freshness properties,
which requires careful consideration when developing the mix. In addition, UHPC shows
promising progress as a smart and multifunctional material, offering capabilities such as
superhydrophobicity, self-sensing, self-heating and self-luminescence.

The focus of further research and activities in UHPC should be on improving envi-
ronmental impact and sustainability, implementing real cost reduction strategies, fostering
innovations and exploring opportunities for global market expansion. To summarize:

• It is imperative to minimize the environmental footprint of UHPC production. Ex-
ploring sustainable alternatives, recycling methods and environmentally friendly
components will improve the overall environmental profile.

• Overcoming the challenges of large-scale production is crucial for the wide acceptance
of UHPC. Solving problems related to mixer failures and optimizing production
processes can pave the way for wider application in construction projects.

• Developing cost-effective formulations without compromising performance is
essential. Exploring alternative materials and production techniques may contribute
to reducing the overall cost of UHPC, making it more accessible for various
construction projects.

• Further research into the effects of different nanoparticles on the properties of UHPC
is warranted. Understanding the interaction mechanisms and optimizing the nanoma-
terial content can lead to improved mechanical and fresh properties.

• Investigating the use of waste materials from different industries, such as the perfume
or geranium industry, can contribute to sustainable and environmentally conscious
UHPC practices. This can provide valuable insights into novel waste materials that
can improve the performance of UHPC.

• Extending life-cycle assessments (LCAs) to comprehensively evaluate the environ-
mental impact of UHPC throughout its entire life cycle is crucial. Incorporating
LCA considerations into material selection and production processes can lead to
sustainable practices.

• With a high projected growth rate, the UHPC market is expected to expand globally.
Ongoing research, coupled with successful applications in real-world projects, is likely
to increase adoption and have a greater impact on the construction industry.

Addressing challenges and exploring innovative solutions will contribute to the con-
tinued growth and sustainable integration of UHPC in various construction applications,
including bridges, buildings, marine structures, military applications, wind turbine tow-
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ers, railroad components, water and wastewater infrastructure, tunnels, smart concrete
applications, noise barriers and custom architectural elements.
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