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Abstract: The local buckling of I-section beams is investigated with the flange–web interactions taken
into account. Using numerical results employing the finite element method and a semi-analytical
method, the flange–web interactions of I-sections and their effects on the buckling stresses are
explored and discussed. Simple approximate solutions for the buckling coefficients of the web and
compressive flange are developed using the energy method, and they are refined using the numerical
results. Using the simple solutions for buckling coefficients, the limits for the width-to-thickness
ratio of the compressive flange and web of I-section beams are then proposed. Comparisons with the
results of existing solutions and provisions in design codes imply that the proposed solutions are
superior in predicting the limits for width-to-thickness ratios, and they are capable of accounting for
the flange–web interactions at the local buckling of I-section beams.
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1. Introduction

The strength of thin-walled members is frequently governed by local buckling failure.
To prevent the premature local buckling, the width-to-thickness ratios of the plate elements
of thin-walled sections are limited in design codes (e.g., GB50017 [1], AISC360 [2], and
EC3 [3]). In current design codes, each plate element of a thin-walled section is nearly
treated as an isolated plate in determining its width-to-thickness limit, and its boundary
conditions are normally assumed to be simply supported, clamped, or partially restrained.
However, existing studies have revealed that plate elements may strongly interact at
areas of local buckling via the intersections in between, and these interactions may have
significant effects on the local buckling strengths.

Although the local buckling of thin-walled sections has attracted much attention over
recent decades [4–20], investigations accounting for the interactions between the plate
elements are relatively few and have been conducted mainly through numerical methods.
The local buckling behaviors of thin-walled sections subjected to axial compression, major
axis bending, and minor axis bending were investigated by Seif and Schafer [9] using the
finite strip method. In their study, the non-dimensional parameter η = (h/tw)(2tf/bf)
(where bf and tf are the width and thickness of the flange, respectively, and h and tw are the
height and thickness of the web, respectively,) was proposed to consider the plate element
interactions, and simple solutions for the buckling coefficients that were dependent on the
unique parameter η were then developed. Using the finite strip method, Gardner et al. [10]
presented the following solution for the local buckling stresses of thin-walled sections:

σcr,cs = σSS
cr,p + ζ

(
σF

cr,p − σSS
cr,p

)
, (1)
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where σSS
cr,p = min

(
σSS

cr,f, σSS
cr,w

)
, σF

cr,p = min
(

σF
cr,f, σF

cr,w

)
, the subscripts “f” and “w” respec-

tively stand for the flange and web, and the superscripts “SS” and “F” represent the simply
supported and fixed conditions of the plate element, respectively. In this solution, the
buckling stress of a plate element (σcr,cs) is gained by interpolating between the buckling
stresses of the plate element with simply supported (σSS

cr,p) and fixed conditions (σF
cr,p), and

the coefficient ζ, used to consider the interactions between adjacent plate elements, is a
function of the parameter ϕ = σSS

cr,f/σSS
cr,w. Gardner et al. [10] found that ϕ is essentially

identical to the parameter η as presented by Seif and Schafer [9]. Simple solutions were
also given by Gardner et al. [10], where the interactions between the buckling coefficients
of the flange and web of the I-sections were relevant to tf/tw and ϕ. It should be noted
that in their solutions, the same expression for the interactive parameter ζ was used for the
interpolation between σSS

cr,p and σF
cr,p for the sections subjected to different loads, indicating

that the interaction behaviors between the plate elements were independent of the stress
distributions in the cross-section.

A similar interpolation method (Equation (2)) was adopted by Jin et al. [11] in which
the interaction coefficient ζ was given as follows:

ζ =
3κ

3κ + 1
, (2)

where κ is the ratio of the free torsional rigidities of the flange and web (i.e., κ = bft3
f /ht3

w).
It is worth mentioning that the use of the interaction coefficient ζ implies that the flange pro-
vides a rotational restraint equal to the free torsional rigidity of the web at the flange–web
conjunction, which may be overestimated for I-sections under axial compression in many
cases (where h/b is not greater than 10 [15]). Based on the general beam theory, a parametric
study was conducted by Vieira et al. [12] through numerical analyses, where the rectangular
hollow sections with equally thick flanges and webs were subjected to a combined axial
force, and biaxial bending was considered. Expressions for the buckling stress that were
capable of considering the stress distribution variations in the cross-sections were given.
The values of the constants for these expressions were listed in a table, and they mainly
depended on the aspects of the cross-sections. An inelastic analysis method was developed
by Ragheb et al. [13] in which I-sections, regardless of the stress distributions, were divided
into a series of strips in the uniformly distributed axial stresses. By taking into account the
residual stress and initial deflection, the width-to-thickness limits for the I-sections under
axial compression and bending were presented.

As mentioned above, most of the existing studies on the local buckling of thin-walled
sections have been based on numerical analyses where the interactions between the plate
elements are considered. Moreover, there has been a lack of simple solutions for buckling
stresses and the width-to-thickness limits for thin-walled sections incorporating the in-
teractions between plate elements of the thin-walled sections. Based on a previous study
on I-section columns [15], this paper presents a systematical study on the local buckling
of I-section beams, with flange–web interactions taken into account. Approximate solu-
tions for the buckling stresses are presented based on the energy method, and they were
validated using the results of the finite element analysis and a semi-analytical solution.
Using the parameter η, as presented by Seif and Schafer [9], simple solutions are then
proposed for the buckling coefficients, which were in very good agreement with the FE
results. New limits for the width-to-thickness ratios of I-sections under pure bending are
also presented, and they are capable of precisely considering the flange–web interactions at
the local buckling. Comparisons with the FE results and predictions of existing solutions
and design codes imply the very good performance of the proposed solutions.

2. Finite Element Analysis
2.1. Finite Element Modeling

Finite element (FE) analyses were performed using the general FE software ANSYS
17.0. The FE modeling used herein was similar to that in [15] for I-columns, except for
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the different loading conditions. As shown in Figure 1, the I-section beam was modeled
using the SHELL63 elements of ANSYS. SHELL63 is a four-node, thin-shell element with
six degrees of freedom at each node, and it is suitable for large deformation analyses [21].
To simulate the simply supported boundary conditions at both ends, the translations in the
z and y directions of both beam ends were restrained (Figure 1). The displacement along
the x-direction of the middle height of the web was also restrained to eliminate the rigid
body motion. The bending moments were applied at both beam ends via a series of nodal
forces along the longitudinal direction. At each node, the nodal force was calculated by
considering the width and thickness of the element, in addition to the stress distributions
due to the pure bending, being uniform in the flanges and linear variations in the web.
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Figure 1. I-section subjected to pure bending (FE model). 

The local buckling behaviors of I-sections under pure bending were investigated us-
ing eigenvalue buckling analyses on a total of 329 I-sections. For the FE analyses, b = 200 
mm and tf = 10 mm were adopted for all I-sections (see Figure 1), while the values of h/b 
and tf/tw varied from 1.0 to 10.0 and 0.7 to 4, respectively. A much wider range of h/b ratios 
was adopted in this study for the I-beams compared to that used in reference [15] for I-
sections subjected to the axial compression, which was due to the consideration that I-
sections with large h/b ratios are frequently utilized in flexural members for achieving 
good bending–resisting capacities. 

A critical local buckling stress might be defined at the local minimum, the point of 
inflection, or the distinct transition between the local and global buckling on the signature 
curve [10]. In this study, the local minimum was used for all the specimens, as the latter 
two cases usually exist in L- and T-sections under combined axial compression and bend-
ing [10]. In gaining the buckling stress of the local minimum, for each I-section, a series of 
FE analyses were performed, with the length l varying from 0.3h to 5.0h, and then the 

minimal buckling stress crbσ  and the corresponding length a could be obtained. 

  

Figure 1. I-section subjected to pure bending (FE model).

The local buckling behaviors of I-sections under pure bending were investigated using
eigenvalue buckling analyses on a total of 329 I-sections. For the FE analyses, b = 200 mm
and tf = 10 mm were adopted for all I-sections (see Figure 1), while the values of h/b
and tf/tw varied from 1.0 to 10.0 and 0.7 to 4, respectively. A much wider range of h/b
ratios was adopted in this study for the I-beams compared to that used in reference [15]
for I-sections subjected to the axial compression, which was due to the consideration that
I-sections with large h/b ratios are frequently utilized in flexural members for achieving
good bending–resisting capacities.

A critical local buckling stress might be defined at the local minimum, the point of
inflection, or the distinct transition between the local and global buckling on the signature
curve [10]. In this study, the local minimum was used for all the specimens, as the latter two
cases usually exist in L- and T-sections under combined axial compression and bending [10].
In gaining the buckling stress of the local minimum, for each I-section, a series of FE analyses
were performed, with the length l varying from 0.3h to 5.0h, and then the minimal buckling
stress σcrb and the corresponding length a could be obtained.

2.2. Results and Discussions

As long as the critical local buckling stress is known, the buckling coefficient can be
back-calculated using Equation (3), as follows:

kwb = σcrb
12(1 − µ2)h2

π2Et2
w

, (3)

where E and µ are, respectively, the elastic modulus and Poisson’s ratio of the material
and h and tw are the height and the thickness of the web, respectively (Figure 1). It is
noteworthy that the cross-section in the FE modeling was represented with the mid-surface
line for all the plates.

The relationships between Kwb, FE, and the non-dimensional parameter η (η = h
b

tf
tw

)

for I-beams with different ζ ratios (ζ = tf
tw

) are depicted in Figure 2a, where Kwb and FE are
the buckling coefficients of the web, and they were calculated using the buckling stresses
σcrb from the FE analysis and considering the relationship in Equation (3). It can be seen
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from Figure 2a that the use of the non-dimensional parameter η from Seif and Schafer [9]
was beneficial for achieving a good correlation between the buckling coefficients of the
I-sections, accounting for the flange–web interactions. As is shown in Figure 2a, Kwb and
FE increased with η due to the increments in the rotational restraint of the flange to the
web. After the ascending branch, Kwb and FE reached a plateau, indicating that the restraint
of the flange was close to that of the fixed condition. The relationships between Kwf and
FE, the buckling coefficient of the compressive flange, and the parameter η are plotted in
Figure 2b. The relationship Kfb,FE = Kwb,FE/η2 was adopted for obtaining the values of
Kwf and FE, as the compressive stress in the flange was equal to the maximal compressive
stress in the web when the cross-section was subjected to major axis bending.
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Gardner et al. [10] found that the relationship min
(

σSS
cr,f, σSS

cr,w

)
≤ σcr,cs ≤ min

(
σF

cr,f, σF
cr,w

)
was always satisfied for I-sections subjected to pure bending, where σcr,cs stands for the
minimal buckling stress of the cross-section and the other variables represent the min-
imal buckling stresses of the isolated plates under simply supported (with the super-
script “SS”) and fixed boundary conditions (with the superscript “F”). The subscripts
“f” and “w” represent the flange and web, respectively. The above-mentioned rela-
tionship could be converted into min

(
0.4255η2, 23.9

)
≤ Kwb ≤ min

(
1.247η2, 39.6

)
and

min
(
0.4255, 23.9/η2) ≤ Kfb ≤ min

(
1.247, 39.6/η2) by considering the buckling stresses of

the isolated plates. Consequently, the upper and lower bounds of Kwb and Kfb could be
obtained, as illustrated in Figure 2a,b with the black dashed lines.

2.3. Comparison with Analytical Solutions

For the elastic local buckling of I-sections under axial compression, a theoretical
solution has been presented, and buckling stresses can be obtained by solving a differential
equation and considering the boundary conditions [15]. Very good agreement has been
found between the analytical and FE results. However, this theoretical solution is not
applicable to loading conditions other than axial compression. An analytical approach was
also presented in the study by Ragheb [22] on the elastic local buckling of pultruded FRP
sections under eccentric compression. In his approach, the web, with the stress gradient,
was divided into strips under axial compression (Figure 3). A differential equation could be
created for each strip, and they were treated as thin plates under the axial compression. By
applying the continuity conditions between adjacent strips and the boundary conditions,
the characteristic transcendental equation in matrix form could be obtained. By assuming
the buckling displacements, the buckling stresses could be solved via a numerical program.
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Figure 3. Modeling of a steel I-shaped section subjected to pure bending.

The analytical approach presented by Ragheb [22] was modified in this study to solve
the buckling stress of the I-section beams under pure bending. In doing so, each of the
flanges was divided to two strips of the same dimensions, while n = 10 was adopted for the
web division. Following the method established by Ragheb [22], a matrix (4n + 8 and 4n + 8)
for the characteristic transcendental equation was obtained. A Matlab code was then
developed for solving the characteristic transcendental equation, with which the buckling
coefficients, Kwb,t and Kwf,t, could be calculated (Figure 4). As shown in Figure 4a,b, the
buckling coefficients from the FE analyses and analytical approach matched very well,
indicating that both methods were reliable.
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2.4. Buckling Mode

The flange–web interactions at the local buckling could be seen in the buckling modes
given in Table 1. For each value of tf/tw, three typical I-sections were chosen to show the
flange-dominated, weak-interaction, and web-dominated buckling modes. In the middle
column of Table 1, the weak-interaction buckling modes correspond to the cases where
σSS

cr,f = σSS
cr,w. It can be seen from Table 1 that strong interactions between the web and

compressive flange may have occurred, while the tensile flanges were nearly in their



Buildings 2024, 14, 347 6 of 20

original configurations, in most cases, which meant that it was reasonable to assume the
tensile flange as the fixed boundary of the web.

Table 1. Typical buckling modes from the FE analysis.

Case Flange-Dominated Mode Weak Interaction Web-Dominated Mode

tf/tw = 0.7
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3. Simple Solution Development
3.1. Energy Method

Approximate solutions for the elastic local buckling coefficients of the I-beams were
derived through the energy method, which was further used in the development of the
width-to-thickness ratio limits of the compressive flange and web.

The total potential of a thin plate under uniaxial compression is given by the following [5]:

∏ =
1
2

D
x
{(

∂2w
∂x2 +

∂2w
∂y2

)2

− 2(1 − µ)

[
∂2w
∂x2

∂2w
∂y2 −

(
∂2w
∂x∂y

)2]}
dxdy − 1

2

x
(

Nx

(
∂w
∂x

)2
)

dxdy, (4)

where x and y are the coordinates along the longitudinal and transverse directions, respec-
tively, w is the deflection of the plate, Nx is the axial load per unit of width, t is the thickness
of the plate, and D is the flexural rigidity of the plate per unit of width (D = Et3/12(1 − µ2),
where E is the elastic modulus and µ is the Poisson’s ratio of the material).

Two local Cartesian coordinate systems, x-1-y1 and x-2-y2, were established for the
compressive flange and web, respectively (Figure 5).
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For the I-sections during bending, the axial load per unit of width in the compressive
flange (Nxf) and web (Nxw) were given by the following:

Nxf = σtf and (5)

Nxw = σ
(

1 − 2
y2

h

)
tw, (6)

where σ is the longitudinal stress at the mid-face of the compressive flange and the maxi-
mum compressive stress of the web. The deflection of the web was assumed to be as follows:

ww(x, y2) = A

(
sin

πy2

h
+

√
634

100
sin

2πy2

h
+

1
75

sin
3πy2

h

)
sin

πx
a

, (7)

where a is the half-length of the buckling mode in the longitudinal direction.
It should be noted that the deflection function of Equation (7) satisfied all boundary

conditions. As illustrated in Equation (7), three terms were adopted in this deflection
function, where the constants were determined based on the buckling mode corresponding
to the minimal buckling load of the simply supported plates, with a large a/h ratio. For
detailed information on the development of this equation, readers are referred to [23]. By
substituting Equations (6) and (7) into Equation (4), the total potential of the web could be
derived as follows:

∏w =
Dw

4
ah
(

634
625

π4

h4 +
47, 861
90, 000

π4

a4 +
1569
1250

π4

a2h2

)
A2 − σtw

4
ah

5072
√

634
140, 625

π2

a2 A2. (8)

The deflection of the compressive flange was assumed to be as follows:
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wf(x, y1) = C
y1

b
sin

πx
a

. (9)

At the flange–web conjunction, ∂ww
∂y2

∣∣∣
y2=0

= ∂wf
∂y1

∣∣∣
y1=0

needed to be satisfied due to the

rotational continuity at the flange–web conjunction, which provided the following:

C = 1.5436
πb
h

A. (10)

Using Equation (10), Equation (9) could also be written as follows:

wf(x, y1) = 1.5436
πy1

h
A sin

πx
a

. (11)

Substituting Equations (5) and (11) into Equation (4), the total potential of the com-
pressive flange could be obtained as follows:

∏f = 2(1.5436)2 A2 π2b2

h2
1
b2

{
π4bDf

12a

[
b2

a2 +
6(1 − ν)

π2

]
− σtfπ

2b3

12a

}
. (12)

Taking ∂(∏f +∏w)
∂A to be zero provided the following:[

2.3827 2π2

3
tfb3

h + h2tw
5072

√
634

140,625π2

]
σ =

π2E
12(1−ν2)

{
2.3827 2π2

3
b
h

[
b2

a2 +
6(1−ν)

π2

]
t3
f +

(
634
625

a2

h2 +
47,861
90,000

h2

a2 + 1569
1250

)
t3
w

} . (13)

Applying ∂σ
∂a = 0 to Equation (13) provided the following:

αmin =
a
h
=

4

√
15.455

b3t3
f

h3t3
w
+ 0.5242, (14)

where αmin is the normalized half-length of buckling mode corresponding to the min-
imal local buckling stress σcr. Substituting Equation (14) into Equation (13) provided
the following:

σcr =
π2Et2

w
12(1 − µ)h2

2
√

0.54 + 15.90 ζ6

η3 + 6.67 ζ4

η + 1.26

15.68 ζ4

η3 + 0.09
, (15)

where ζ = tf
tw

and η = htf
btw

.
Then, the buckling coefficient could be obtained as follows:

Kwb1 =

2
√

0.54 + 15.90 ζ6

η3 + 6.67 ζ4

η + 1.26

15.68 ζ4

η3 + 0.09
. (16)

As is shown in Figure 6, the buckling coefficients derived from the energy method
(Kwb1) were in good agreement with the FE results (Kwb,FE) for ζ > 1.5 and relatively small
h/b values. However, the comparisons in Figure 6 show that Kwb1 was always greater than
Kwb,FE for greater h/b values, and it may have exceeded the upper limit of Kwb. Therefore,
based on the FE results, the maximum values for Kwb1 could be derived from Equation
(17). The predictions from Equation (17) (Kwbm) were compared with those from the FE
analyses (Kwbm,FE), and as shown in Figure 7, they matched well.

Kwbm = 29.8 + 9.5tanh[1.35(ζ − 1.3)]. (17)
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Besides the maximum values, significant differences between Kwb1 and Kwb,FE could
be seen in many cases, as shown in Figure 6, especially for the I-sections with small values
for ζ (i.e., ζ < 1.5). This was mainly due to the discrepancies between the assumed and
actual buckling modes (see Figure 8), which may have resulted in the overestimation in the
buckling load in employing the energy method. We compared the buckling modes with
the FE results, and as seen in Figure 8, the assumed buckling modes in Equations (7) and
(9) are shown using red solid lines.

The expression of Kwb1 was further modified, and the new solution for the buckling
coefficient of the web could then be given as follows:

Kwbs = tanh(1.2ζ)ρKwb1 < Kwbm and (18)

ρ =

0.02
(

h
b − 3

)2
+ 0.85 < 1.9 − ζ for ζ < 1.0

ρ = 1.0 for ζ ≥ 1.0,
(19)

where Kwb1 and Kwbm are as given in Equations (16) and (17), respectively.
Comparisons between the predictions of Equation (18) and the FE results were made,

and as shown in Figure 9 (ζ < 1.0) and Figure 10 (ζ ≥ 1.0), good matches were found. As
shown in Figure 9b, the buckling coefficients of the compressive flange could be calculated
using Kfbs = Kwbs/η2. It is worth mentioning that ζ

(
= t f /tw

)
< 1.0 was not practical for

the I-sections under pure bending, although it was covered in this study.
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3.2. Comparison with Existing Solutions

A simple expression of the web buckling coefficient of I-sections under major axis
bending (Equation (20)) was developed by Seif and Schafer [9] through the finite strip
analyses using CUFSM, as follows:

kw =
1

1.5/η2 + 0.015
. (20)

The buckling coefficient kw illustrated in Equation (20) is related to a single variable,
η, which is different from the solution illustrated in Equation (18), depending on the
values of both η and ζ. The buckling coefficients of the compressive flange and the web
from Equation (18) were compared with those from the solution established by Seif and
Schafer [9] and the FE analyses shown in Figure 11. It can be seen from Figure 11 that the
simple solution established Seif and Schafer [9] may provide conservative predictions in
most cases.
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Figure 11. Comparison of the buckling coefficients with existing solutions [9].

Employing the same software (CUFSM v4.03), the local buckling of the structural
steel sections under different loading conditions were studied by Gardner et al. [10]. In
their study, the web of an I-section was regarded as a thin plate with boundary conditions
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between the simply supported and fixed conditions due to the flange–web interaction at the
site of the local buckling. The formulas for the buckling coefficients were then developed.
For the case studied in this paper (i.e., I-sections subjected to pure bending), the buckling
coefficients of the web can be expressed as follows:

Kwb,G =


η2(0.4255 + 0.8215ψf) η < 5.64
0.4255(1 − ψf)η

2 + 39.6ψf 5.64 ≤ η < 7.49
23.9 + 15.7ψw η ≥ 7.49

, (21)

where ψf and ψw are the parameters accounting for restraining the flanges, and they can be
obtained as follows:

ψf = 0.00267ζη2 ≥ 0.4 − 0.00445η2

ζ
and (22)

ψw = ζ

(
0.45 − 946.5

η4

)
. (23)

As shown in Figure 12a,b, the predictions of Equation (18) were compared with
those of Equation (21) and the buckling coefficients of the compressive flange from the
solution established by Gardner et al. [10] (i.e. the value of Kfb,G) was calculated using
the relationship Kfb,G = Kwb,G/η2. It can be seen from Figure 12a that the values of the
buckling coefficients of the web, determined using Equation (21), were slightly less than
those determined using Equation (18) for I-sections with relatively small tf/tw and h/b
ratios (i.e., tf/tw = 1.0 for h/b < 6.7 and tf/tw =1.2 for h/b < 5.4), which led to the notable
overestimation of Kfb,G shown in Figure 12b. However, the predictions of Equation (21)
were always greater than those of Equation (18) for I-sections with relatively large h/b
ratios, especially for the cases with large tf/tw ratios (see Figure 12a for tf/tw = 2.6 and 3.0).
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4. Width-to-Thickness Limit for I-Section Beams
4.1. Method for the Determination of the Width-to-Thickness Limit

The limits of the width-to-thickness ratios for I-section beams could be obtained using
Equation (24), similar to reference [15] for I-section columns, as follows:

λr =

(
b
t

)
r
= αr

√
k

π2

12(1 − µ2)

√
E
fy

, (24)



Buildings 2024, 14, 347 13 of 20

where αr is a constant that considers the effects of residual stress and imperfection, as
well as the plasticity-developing requirement of the cross-section, λ (=b/t) is the width-to-
thickness ratio of a plate (flange or web), k is the elastic local buckling coefficient of the
plate, and E and µ are the elastic modulus and Poisson’s ratio of material, respectively. In
this study, E = 206,000 N/mm2 and µ = 0.3 were used (unless otherwise stated).

According to GB50017-2017 [1], the width-to-thickness limits for classes S1, S2, S3, and
S4 sections could be taken as 0.5, 0.6, 0.7, and 0.8 times the yield slenderness, respectively
(i.e., αr = 0.5–0.8 for Equation (24)).

The interactions between the width-to-thickness ratios of the compressive flange and
the web are shown in Figure 13 for the S1 sections (αr = 0.5). It should be noted that the
value of k adopted in Figure 13 was from the FE analyses, and the yield stress fy was taken
as 235 N/mm2. As shown in Figure 13, the width-to-thickness limits of the compressive
flange and the web were no longer constant as long as the flange–web interaction was
taken into consideration in the analyses. As shown in Figure 13, all curves of the interaction
intersected at a unique point (67, 10), at which point no interaction between the compressive
flange and the web existed at the local buckling. For the width-to-thickness ratio of the
web (h/tw, a value smaller than 67), the width-to-thickness limits of b/tf were greater
than 10 due to the rotational restraints of the web. This restraining effect decreased with
the increase in the h/tw ratio, leading to the reduction in the width-to-thickness limit of
b/tf. The compressive flanges turned to provide rotational restraints to the webs when the
width-to-thickness ratio of the web, h/tw, became greater than 67, which resulted in the
width-to-thickness ratio of the compressive flange, b/tf, being smaller than 10. Further,
for all the curves shown in Figure 13, the b/tf limits tended toward 15.72 (corresponding
to k = 1.247), with the h/tw limits approaching zero. It is worth mentioning that k = 1.247
was the upper bound of the buckling coefficient of the compressive flange (i.e., the fixed
condition at the flange–web conjunction).
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Figure 13. Interactive curves for width-to-thickness ratios of the class S1 sections.

With the decrease in the b/tf ratio, the width-to-thickness ratios of the web, h/tw,
increased due to the increment in the rotational restraint of the compressive flange, and
they reached their respective maximum values at approximately b/tf = 5–6 in most cases
(i.e., tf/tw = 1.0–2.0). For the cases with large tf/tw ratios (i.e., tf/tw = 2.6 and 3.0), the
restraints of the compressive flange were strong enough for the web at b/tf ≤ 9.6 to achieve
the fixed condition at the flange–web conjunction, corresponding to the width-to-thickness
limit of the web equal to 88.56 (i.e., k = 39.6). However, the width-to-thickness limit of the
web eventually tended toward 68.8 (i.e., k = 29.3) with an extremely small value of b/tf,
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where the torsional rigidity of the compressive flange was infinitesimal and the boundary
condition of the web at the flange–web conjunction became simply supported.

4.2. Revised Width-to-Thickness Limits

The width-to-thickness limits for class S1 in GB50017 [1] are also shown in Figure 13
using the red dashed-dotted lines. As shown in Figure 13, the constant limits for the
compressive flange and web of the I-sections were 9 and 65, respectively. Compared
to the FE results of this study, the width-to-thickness limits given in GB50017 [1] were
conservative, and therefore, we developed more precise solutions with the flange–web
interaction at the local buckling taken into account.

As shown in Figure 14, when the flange–web interaction was considered, the entire
h/tw − b/tf curves could be divided into the following three zones: the basic zone, the
flange-strengthened zone, and the web-strengthened zone. New and simple solutions were
then developed, as follows:

[
h

tw

]
=
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[
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tw

]
w

for
[

b
tf

]
≤
[

b
tf

]
w

, (27)

where [h/tw] and [b/tf] are the width-to-thickness limits of the web and the compressive
flange, respectively. The subscripts w, 0, and f stand for the three characteristic points W, O,
and F (see Figure 14). Of these characteristic points, point O ([h/tw]0, [b/tf]0) represents
no flange–web interaction, while the points W([h/tw]w, [b/tf]w) and F([h/tw]f, [b/tf]f) are
the maximum width-to-thickness limits of the web and the compressive flange of each
curve, respectively. The values of [h/tw]0, [b/tf]0, [h/tw]w, [b/tf]w, [h/tw]f, and [b/tf]f for
the I-sections of classes S1–S4 are given in Table 2.
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Table 2. The interactive limited values of the width-to-thickness ratios.

Class

S1 S2 S3 S4[
h

tw

]
0
/
√
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fy

67 81 94 107[
b
tf

]
0
/
√
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10 12 14 16[
b
tf

]
f
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−1.3 + 1.275ζ + 13.22√
ζ

−1.56 + 1.52ζ + 15.86√
ζ
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ζ[

h
tw

]
w

/
√

235
fy

96.7 − 24.8
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12 − 6.6
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Comparisons between the predictions of the solutions illustrated in Equations (25)–(27)
(λs) and the FE results (λFE) were made, as shown in Figure 14, and very good agreement
could be found between the two. For h/tw values less than approximately 25, the predic-
tions of Equation (25) for b/tf were slightly conservative compared to the FE results. As
shown in Figure 14, constant values for the width-to-thickness limit of the web, h/tw, could
be calculated using Equation (27) for the regions below point W, which may have led to
the overestimation of h/tw for very small b/tf values. Fortunately, these extreme values of
b/tf were not within the practical region of the I-beams.

4.3. Evaluation of the Provisions of AISC and EC3

As mentioned in a previous section, the values for αr are taken as 0.5–0.8 for the
S1–S4 class sections in GB50017 [1], while, as listed in Table 3, two parameters (αr and
αp) are involved in AISC360 [2] and EC3 [3] for the sections of the different classes. In
these two design codes, λp (using αp) is used to distinguish the compact and non-compact
sections in AISC 360 [2] and the class 2 and class 3 sections in EC3 [3], while λr (using αr) is
the criterion for classifying the non-compact and slender sections in AISC 360 [2] and class
3 and class 4 sections in EC3 [3].

Table 3. αr and αp given in design codes and used in this paper.

λp
Design
Codes

αp
Design
Codes

αp
In this
Section

λr
Design Codes

αr
Design
Codes

αr
In this
Section

AISC

Rolled
I-shaped
sections

Flange 0.38
√

E/ fy 0.46 a 0.46 1.0
√

E/ fy 1.0 a 1.0

Web 3.76
√

E/ fy 0.58 a 0.58 5.7
√

E/ fy 1.0 a 1.0

Built-up
I-shaped
sections

Flange 0.38
√

E/ fy 0.46 a 0.46
0.95

√
kcE/

(
0.7 fy

)
0.35 ≤ kc =

4√
h/tw

≤ 0.76
1.19 a 1.19

Web 3.76
√

E/ fy 0.58 a 0.58 5.7
√

E/ fy 1.0 a 1.0

EC3
Flange 10

√
235/ fy 0.54 b 0.54 14

√
235/ fy

0.751 b

0.748 c 0.751

Web 83
√

235/ fy 0.60 b 0.60 124
√

235/ fy
0.893 b

0.874 c 0.893

a, given by reference [9]; b, back-calculated by Equation (24) using λp or λr from EC3 [3] and k of a simply
supported plate, respectively; c, given by EC3 parts 1–5 [24].

The width-to-thickness limits given in AISC360 [2] and EC3 [3] were compared with
those calculated using the FE results, as shown in Figure 15, where the interaction curves
of the FE results were obtained using the buckling coefficients calculated from the FE
results associated with the same αr(or αp) as the design codes (see Table 3). Therefore, with
this treatment, the differences in the width-to-thickness limits between the FE results and
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the design codes were only due to the different buckling coefficients, as the limits of the
width-to-thickness ratio using Equation (24) were dependent on both k and αr (or αp). It
can be seen from Figure 15a that the width-to-thickness limits given in AISC [2] for the
non-compact sections were greater than those obtained using the FE results for most of the
rolled I-sections. However, the predictions of AISC [2] for the built-up sections were nearly
at the lower bound of the results of the FE analyses, except for slight overestimations for
the web of the I-sections with tf/tw values less than 1.8 (Figure 15b). This was because,
as mentioned in AISC [2], the flange–web interactions were partially considered for the
built-up sections. As shown in Figure 15c, the width-to-thickness limits given in AISC [2]
for the compact sections were the same for both the rolled and built-up sections, which
were greater than the results from the FE analyses for both the compressive flange and the
web, in most cases (Figure 15c). It should be noted that the width-to-thickness limits of
AISC [2] were determined based on the condition that four times the yield strain could be
achieved in the compressive flange prior to the local buckling occurring (i.e., ψ = 4) or the
rotation capacity R could exceed 3.0 [25,26]. The width-to-thickness limits in EC3 [3] for
the class 2 and class 3 I-sections were smaller than those in the FE results (Figure 15d,e).
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4.4. Comparison with Solutions in Existing Studies

A numerical program was developed by Ragheb et al. [13] to determine the inelastic
local buckling of I-section members. By considering the initial deformation and residual
stresses, the solutions for the width-to-thickness limits by taking the flange–web interactions
into consideration were proposed. The limits of b/tf for the compressive flange buckling
can be calculated as follows:

λp = 0.61

√
E
fy

/

[(
B
h

)0.15( h
tw

)0.18
]

and (28)

λr =

√
E
fy

/

[(
B
h

)0.20( h
tw

)0.10
]

, (29)

and the limits of h/tw for the web buckling can be calculated as follows:

λp = 2.75

√
E
fy

·
(

B
h

)0.10
and (30)

λr = 5.8

√
E
fy

·
(

B
h

)0.035
, (31)

where the flange width B = 2b and the limits λp and λr correspond to the rotation index ψ
of 4 and 1, respectively. ψ is defined as the rotation of the beam at the local buckling over
the rotation of the beam at yield. As shown in Figure 16a,b, the predictions of Equations
(28)–(31) were compared with those from the solutions of the present study (Equations
(25)–(27)) for I-sections with h/b values equal to 2.0. The values of the elastic modulus E
and the yield stress f y adopted herein were 200,000 N/mm2 and 250 N/mm2, respectively.
It can be seen from Figure 16a,b that the width-to-thickness limits proposed by Ragheb [13]
were greater than those obtained using the solutions in this study for non-compact sections
(equivalent to class 3 or S4), but they were conservative for compact sections (equivalent to
class 2 or S2). As shown in Figure 16a,b, the width-to-thickness limits of the compressive
flange decreased with increases in the h/tw ratio, which was the case for the predictions
of both solutions. It should be noted that the variations in b/tf and h/tw, as shown in
Figure 16a,b, were achieved by varying the values of tf/tw, as the aspect ratio h/b was fixed
at 2.0.
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More comparisons between these two solutions were made, as shown in Figure 17a,b.
In order to obtain the relationship between b/tf and h/tw, Equations (28)–(31) were rewrit-
ten as follows: for the compressive flange buckling of compact sections,(

b
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for the web buckling of compact sections,(
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Using Equations (32)–(35), the relationships between b/tf and h/tw could be identified
with different tf/tw ratios (λR in Figure 17a,b). All the results presented in Figure 17 were
obtained using E = 200,000 N/mm2 and f y = 250 N/mm2. As shown in Figure 17a, for
the non-compact I-sections (i.e., class S4), the variations in the predictions of Equation (33)
and Equations (25)–(27) (λs) for certain tf/tw values with increases in h/tw were different
for the I-sections that failed during the compressive flange-dominated local buckling.
Moreover, it was also shown that the width-to-thickness limits from Equation (33) were
slightly greater than those obtained from Equations (25)–(27) for the I-sections that failed
during the web-dominated local buckling. For the compact sections (i.e., class S2), the
width-to-thickness limits from Equations (32) and (34) were smaller than those obtained
from Equations (25)–(27) for both the compressive flange and the web. It should be noted
that the method for the determination of the width-to-thickness limits of the I-sections in
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the study by Ragheb [13] was based on an inelastic numerical analysis, which was different
from that used in this study.
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Figure 17. Comparison of the interactive curves for the limits of the width-to-thickness ratios.

5. Conclusions

By taking the flange–web interactions into account, the elastic local buckling and width-
to-thickness limits of I-section beams were investigated in this study. Simple solutions
for the elastic local buckling coefficients for I-sections under pure bending incorporating
flange–web interactions were developed through the energy method and refined based on
the FE results. The predictions of the presented solutions were in very good agreement
with the FE results and much better than those obtained using existing solutions. Using the
simple solutions for the buckling coefficients, the limits for the width-to-thickness ratios
of I-section beams were also proposed. The proposed limits were then compared with
those from the FE analyses and design codes, which also indicated the superiority of the
proposed solutions.
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