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Abstract: In the context of environmental protection, the construction industry plays a key role with
significant CO2 emissions from mineral-based construction materials. Recycling these materials is
crucial, but the presence of hazardous substances, i.e., in older building materials, complicates this
effort. To be able to legally introduce substances into a circular economy, reliable predictions within
minimal possible time are necessary. This work introduces a machine learning approach for detecting
trace quantities (≥0.06 wt%) of minerals, exemplified by siderite in calcium carbonate mixtures. The
model, trained on 1680 X-ray powder diffraction datasets, provides dependable and fast predictions,
eliminating the need for specialized expertise. While limitations exist in transferability to other
mineral traces, the approach offers automation without expertise and a potential for real-world
applications with minimal prediction time.

Keywords: machine learning; classification; minerals; X-ray diffraction; construction materials

1. Introduction

In the context of environmental protection, resource recycling is mandatory. The
construction industry assumes a pivotal role, manifesting notable CO2 emissions in the
production of mineral-based construction materials. A vital measure to alleviate this is
the recycling rate of mineral-based construction materials. Low traces of minerals in the
materials to be processed can lead to undesirable problems. They can have an impact
on recyclability, as the properties of the end product may change due to these traces
of minerals, making it necessary to change the production processes. A complicating
factor in this endeavor is the potential presence of hazardous substances in older building
materials, necessitating their exclusion from the material cycle. Within large-scale industrial
applications, time emerges as a critical economic factor. Additionally, legislation also
requires a significant increase in the recycling rate of construction and demolition waste
and aims to prevent the release of hazardous substances into the environment [1]. Strict
national regulations must be consistently adhered to, especially when it comes to threshold
values for hazardous substances. The economic reintegration of substances into the cycle
is contingent upon the near-100% reliability of predictions, achieved within the briefest
feasible timeframe. A viable methodology for discerning substances within mixtures is
X-ray powder diffraction (XRD). However, such analyses are proficiently executed solely
by specialists, entailing significant time investment. For this reason, methods must be
developed with which even small mass fractions can be quickly recognized. This work
introduces an approach to predicting trace quantities (≥0.06 wt%) of minerals, employing
siderite in mixtures as a paradigmatic instance. The beginning provides a brief overview of
current literature in the field of minerals combined with machine learning. Additionally,
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a brief overview of X-ray diffraction in the context of mineralogy is given. Subsequently,
data preparation for the later machine learning model is explained. The training data
are obtained from an experimental calcium carbonates dataset, utilizing pure siderite
measurements from XRD databases. By clustering the database data, relevant areas of the
experimental data can be identified and extracted as features. Following this, based on the
insights from the literature, a machine learning model is trained to detect mineral traces.
The following protocol is applied:

• Obtain pure measurements of the target mineral from the database and cluster the
highest peaks.

• Utilize these peaks to define a data region from which information can be extracted
for training and prediction from compound measurements.

• Train and test a machine learning model to detect traces of the target mineral.

The model thus affords a dependable and expeditious prediction of an arbitrary
quantity of measurements, devoid of the prerequisite of specialized expertise. In addition
to the improvements in the time and human capital factors, this avoids undesirable mineral
traces in recycled material in a very short time before the production process. It allows
adjustments before the production process right at the start of the recycling material feed.
This avoids rejects due to poor quality. But it also prevents hazardous impurities from
being fed in.

2. Literature Review

In addition to the classical methods for recognition, approaches using machine learning
and deep learning methods are increasingly emerging to recognize the characteristics of
minerals and mineral compounds. These characteristics are important, for example, in the
production of mineral materials for determining their mechanical properties. They are also
essential when it comes to introducing recycled materials into the manufacturing process
while retaining these attributes. In particular, in recent years, approaches using neural
networks (NN) are predominantly used for the detection of phases, crystal structures, and
other attributes of minerals and mineral compounds. The following section and Table 1 are
a brief overview of the current state of the literature.

Park et al. [2] used a convolutional neural network (CNN) for the prediction of space-
group, extinction-group, and crystal-system classifications. Ryan et al. [3] chose a deep
neural network (DNN) approach to predict the crystal structure. For this purpose, chemical
elements are detected using a DNN, and subsequently, the most similar crystal structure
from a database is identified through another DNN. Utimula et al. [4] used a dynamic
time warping (DTW) model to disregard unimportant information such as intensity and
to counteract a possible peak shift, in order to identify the concentration of substituents
in magnetic alloys, due to the fact that the classification is based on the absolute distance
between the peaks. Vecsei et al. [5] used a DNN for inorganic powder XRD to determine
space groups and crystal systems. In addition, they used the standard distribution and ad-
ditional noise for data augmentation. A comparison was made between a DNN and a CNN.
Oviedo et al. [6] implemented an all-convolutional neural network (a-CNN) in combination
with “class activation maps”, trained with data from the ICSD database and applied to
experimental data to classify the space groups and crystal dimensionality of metal-alloy
XRD spectra. They also augmented data to achieve better results, including the use of a
Savitzky–Golay filter, but also peak scaling, peak elimination, and pattern shifting. They
also compared the results of different machine learning models like naive Bayes, k-nearest
neighbors (kNN), logistic regression, random forest (RF), decision trees (DT), support vector
machine (SVM), gradient boosting regression trees, a fully connected DNN, and an a-CNN
with a global pooling layer and normalized DTW combined with a kNN classification. The
best results were achieved by the a-CNN and the DNN. Lee et al. [7] applied different CNN
architectures to enable phase identification. In addition, they compared these networks
with the classical machine learning methods kNN, RF, and SVM. RF was shown to be the
most suitable method for prediction in comparison. Wang et al. [8] also trained a CNN
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on theoretical and limited experimental data for the identification of experimental XRD
patterns of metal–organic frameworks. Dong et al. [9] presented a CNN approach to predict
scale-factor, lattice-parameter, and crystallite-size maps for all phases as a real-time full
profile analysis. Szymanski et al. [10] also used a CNN for predicting complex multiphase
mixtures. They showed a branching algorithm that iteratively predicts the contents of
the sample and at the end, the branch with the highest average probability is chosen.
Szymanski et al. [11] presented an approach to a CNN-guided XRD measurement that au-
tonomously identifies the phases. For this purpose, the unpredictable range is iteratively
restricted and measured with higher resolution. This is to make peaks predictable, which for
example are lost due to noise in a faster measurement. In addition to the approaches using
neural networks, there are also approaches using machine-learning algorithms. Bunn et al. [12]
showed an approach to identify different phases using ADAboost, which was extended by
Bunn et al. [13] using k-means clustering and an expert labeling data. As already mentioned,
Lee et al. [7] showed an additional approach that uses, among various other methods, an
RF. Yanxon et al. [14] used kNN, extra tree, gradient boosting, and RF for the detection
of single-crystal diffraction spots in XRD images so as to enable precise analyses of 1D
powder diffraction patterns. Again, RF proved to be the most suitable method.

Table 1. Literature overview.

Authors Year Algorithm Target

Bunn et al. [12] 2015 ADA boost Phase identification
Bunn et al. [13] 2016 k-means, experts Phase identification
Park et al. [2] 2017 CNN Space-group, extinction-group, crystal-system
Ryan et al. [3] 2018 DNN Crystal structure
Vecsei et al. [5] 2019 DNN, CNN Space-group, crystal-system

Oviedo et al. [6] 2019

Naive Bayes, kNN, logistic regression, RF, DT,
SVM, gradient boosting regression trees, fully

connected DNN, a-CNN,
DTW + kNN classification.

Space-group, crystal dimensionality

Utimula et al. [4] 2020 DTW Concentration of substituents
Lee et al. [7] 2020 CNN, kNN, RF, SVM Phase identification

Wang et al. [8] 2020 CNN Identification of XRD patterns
Dong et al. [9] 2021 CNN Scale factor, lattice parameter, crystallite size maps

Szymanski et al. [10] 2021 CNN, branching algorithm Phase identification
Szymanski et al. [11] 2023 CNN-guided measurement, RF Phase identification

Yanxon et al. [14] 2023 kNN, extra tree, gradient
boosting, RF Single-crystal diffraction spots

Even if the majority of current works use a neural network, it must be viewed crit-
ically, especially with regard to an industrial approach. Here, regulations apply from
the legislator, who wants proof on demand. The traceability of the prediction process
is not explicitly addressed in the listed works. There is also a lack of explicit informa-
tion on the detection limits, which are a prerequisite for industrial use. For example,
Dong et al. [9] stated a limit value of less than <1 wt% PdO in very specific sample configu-
rations. Bunn et al. [13] even utilized a threshold of 5% of the maximum intensity value for
feature extraction. In Yanxon et al. [14], the weight proportions of the minor components
were between 2% and 20% by mass for two-phase mixtures. Classical methods such as
RF have an advantage, as they offer traceability and explainability in the decisions. As an
example, it is possible to extract the specific probabilities for the presence of a substance,
which is important when this substance has low concentration limits. Further analytical
methods can also be used if higher probabilities are shown for a substance. Lastly, it should
be mentioned that only some of the work enables the detection of individual components
in mixtures. However, this is a very important point for commercial use, as it would not be
realistic to assume absolute purity.

3. X-ray Diffraction in Mineralogy

X-ray diffraction (XRD) is based on the interaction of X-rays with crystalline materials.
The X-rays are diffracted due to the periodic arrangement of the atoms within the crystal
lattice. The diffraction results in a distinct pattern (diffractogram), which can be translated
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into the crystallographic structure of the material. Bragg’s law (Equation (1)) describes the
fundamental theory of the method:

nλ = 2d sin θ (1)

with λ being the X-ray wavelength, d the lattice constant, and θ the diffraction angle.
Especially in mineralogy, utilizing monochromatic X-rays for XRD is one of the most

common methods. It allows extracting the exact crystal structure (via the lattice parameter d)
by analyzing the positions (the angle of diffraction) and intensities of the diffraction peaks.
This knowledge is fundamental to understanding the physical and chemical properties of
the investigated minerals.

The work concentrates on identifying siderite traces in different carbonate compounds.
Apart from siderite (FeCO3), the compounds consist of calcite (CaCO3), high-Mg cal-
cite (Ca,MgCO3), vaterite (CaCO3), smithsonite (ZnCO3), siderite (FeCO3), rhodochrosite
(MnCO3), dolomite (MgCO3), monohydrocalcite (CaCO3· H2O), and otavite (CdCO3). The
crystal structures of siderite and the other carbonate minerals are shown in Table 2.

Table 2. Lattice parameters of carbonate minerals [15].

Mineral Crystal System Unit Cell

Siderite trigonal α, β = 90◦ ; γ = 120◦

space group R3c a, b = 4.67 Å; c = 15.34 Å
Calcite trigonal α, β = 90◦ ; γ = 120◦

space group R3c a, b = 4.99 Å; c = 17.07 Å
High-Mg calcite trigonal α, β = 90◦ ; γ = 120◦

space group R3c a, b = 4.94 Å; c = 16.85 Å
Vaterite hexagonal α, β = 90◦ ; γ = 120◦

space group P63/mmc a, b = 4.13 Å; c = 8.49 Å
Smithonite trigonal α, β = 90◦ ; γ = 120◦

space group R3c a, b = 4.65 Å; c = 14.50 Å
Rhodochrosite trigonal α, β = 90◦ ; γ = 120◦

space group R3c a, b = 4.77 Å; c = 15.63 Å
Dolomite trigonal α, β = 90◦ ; γ = 120◦

space group R3 a, b = 4.81 Å; c = 16.01 Å
Monohydrocalcite trigonal α, β = 90◦ ; γ = 120◦

space group P3121 a, b = 10.55 Å; c = 7.54 Å
Otavite trigonal α, β = 90◦ ; γ = 120◦

space group R3 a, b = 4.93 Å; c = 16.27 Å

To differentiate between phases in a material compound, typically the diffractogram
is visually analyzed. The intensity of the corresponding peaks is proportional to the
concentration of the respective phase. This visual phase identification is typically possible
down to phase concentrations of 1–0.5%, depending on the experimental setup (instrument
resolution, integration time, background noise, etc.). Here, the ML-assisted analysis comes
into play, where even the slightest anomalies in the data signature can be recognized, which
leads to a lower detection limit.

4. Methods and Data

This section aims to delineate the methodological approach for detecting traces of
minerals within a mixture. For this approach, pure substance measurements are selected
from databases, and their highest peaks are determined, from which search ranges are
derived. Subsequently, these search ranges are utilized to delimit the regions containing
the requisite information for prediction in mixture measurements and for model training.
Following this, the results are verified, and the detection limit is established using this
model. This procedure is structured into three segments: data preparation, implementing
the machine learning model, and validating the outcomes.

4.1. Data Preparation

The following section describes the data preparation process. It can be divided into
three main steps. The first step is to extract the three highest peaks of pure substance
measurements of the searched substance from databases. In the next step, the peaks are
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clustered to obtain characteristic starting values, which should indicate the position of the
substance in the compound measurements. The final third step is the feature extraction
from an experimental dataset of compounds, which can be found in the literature.

For this purpose, the 2-theta value of the centroids is taken and extended to a sur-
rounding area from which the intensity data of the curves are taken. These data are later
used as training features for the model. As initially mentioned, in the first step, pure
substance measurements of siderite are obtained from XRD databases—in this case, from
the freely accessible RRUFF database [15]. There are 34 measurements available for deter-
mining the highest peaks of pure siderite. The data consist of dimensionless intensities
and their corresponding 2-theta values in degrees. In reality, slight deviations from the
ideal crystal structure can occur due to, e.g., moisture content, higher pressure, lattice
parameters, impurities, instrumental errors, or sample-displacement errors. Therefore, the
siderite peaks are clustered due to these possible peak shifts. The resulting centroids serve
as a center-point to define the areas of the peaks that are characteristic of siderite. The
elbow method is commonly used for determining the necessary number of clusters [16,17].
The clustering method used for this is k-means. Two inflection points can be identified
at positions 2 and 3 of the centroids (Figure 1), which are then usually assumed to be a
suitable number of clusters.

Figure 1. The elbow method, which shows a suitable number of clusters based on the inflection points.

For the subsequent procedure, three centroids of the pure siderite-peak clusters are
chosen as initial values. Due to potential overlaps of peaks in composite measurements,
multiple characteristic positions indicating the substance are advantageous in the mea-
surement. Two scenarios are shown below. In the first scenario, all database data related
to siderite are used. This approach is realistic if the data are retrieved via an API, for
example, without the measurement conditions being subsequently checked by an expert.
This also corresponds to one of the objectives of the work. In the second scenario, only
database data from siderite measurements under normal conditions are used. This serves
in particular to validate the results and to rule out the possibility of errors in connec-
tion with a possible shift. The following values define the 2θ-interval of each cluster:
[24.76°, 27.68°], [31.98°, 37.44°], and [52.81°, 61.74°]. The significant peak shifts within
the mentioned ranges can be explained by the presence of data in the database, such as
measurements taken under high-pressure conditions [18]. This is a positive side effect
when all database data are taken into account, as such anomalous data are also included in
cases where, for example, an automated database query is performed or no experts in the
field are involved in the process. This approach increases the resilience of the system when
it comes to dealing with problems of this kind.

The centroids of the siderite-peak clusters are represented by the values 26.38°, 35.08°,
and 57.84°. To determine the subsequent range from which data will be extracted for
training and prediction, ±1° around the centroids is considered (Figure 2). This results in
ranges of [25.38°, 27.38°], [34.08°, 36.08°], and [56.84°, 58.84°]. For training and validation,
the dataset from Amao et al. [19] is utilized. It comprises 1,680 measurements with precisely
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defined percentages of various calcium carbonate compounds. These composites can
contain up to nine components, which are calcite (CaCO3), high-Mg calcite (CaCO3),
vaterite (CaCO3), smithsonite (ZnCO3), siderite (FeCO3), rhodochrosite (MnCO3), dolomite
(MgCO3), monohydrocalcite (CaCO3· H2O), and otavite (CdCO3).

Figure 2. Visualization of the centroids that define the search area for the substance of interest; the
resulting data points serve as features for subsequent training.

For the presented approach, siderite was chosen based on its maximum and minimum
proportions in the mixtures, reaching a maximum of 0.79 wt%, a minimum of 0.00 wt%,
and a mean value of 0.07 wt%. In total, there were 1238 samples out of 1680 that included
siderite. Among them, 1672 composites had less than 0.5 wt%, which is generally accepted
for human recognition by experienced individuals in a diagram. Due to a 2-theta range
from 2° to 70° and a 0.01° step size in the measurements, this range contained 6603 data
points. In total, 603 data points from each curve were used for training and validation, with
201 points for each range around the centroid. Only the intensity values were considered
as training features, while the 2-theta values were used solely to define the range in which
the information to be trained lies (Figure 3).

4.2. Machine Learning Model

The process used for training and testing the model is outlined below (Figure 4).
All libraries and parameters employed are listed. Scikit [20] was utilized for machine
learning. The intensities of the 603 data points of each curve were used as the features for
training. Each curve consisted of a total of 6603 values. Each array containing 603 values
was assigned a binary label: 1 if siderite is present and 0 if not. Subsequently, training
and validation were conducted with these labeled data. A train–test split of 0.3 was used,
resulting in sets of 1176 test and 504 training data pieces. Based on the results from [6,7,14],
RF was chosen as the prediction method. This decision was based on the insights from
the literature described above, which identified RF, alongside NN, as the most suitable
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classifier. NN were not considered due to their lack of transparency, which makes them
less applicable for providing evidence, for example, to regulators.

Figure 3. Process flowchart depicting data preparation.

Figure 4. Continuation of the process flowchart (see Figure 3) involving the training and validation
of the machine learning model using an experimental dataset.

The five-fold cross-validation method was employed for validation. A randomized
search was conducted to find fitting parameters. The following parameters were tested
(Table 3):

Table 3. Hyper-parameters used for the randomized search.

Hyper-Parameter

n_estimators start = 10 end = 2000 num = 30
max_features sqrt
max_depth start = 10 end = 200 num = 20

min_sample_leaf 1 2 4
bootstrap True False
criterion gini entropy

Additionally to the hyper-parameters, the following settings were utilized for the ran-
domized search: n_iter = 10, cv = 5, verbose = 20, random_state = 42, and n_jobs = −1.
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Among these, the following parameter combination performed best: bootstrap = false,
criterion = gini, max_depth = 170, min_samples_leaf = 1, n_estimators = 421. With this
combination, a training accuracy of 83% could be achieved. The trained model was then
utilized to make predictions on the test data. This was evaluated using 504 datasets with
378 samples containing siderite and 126 samples without siderite, achieving an accuracy of
81% (Table 4).

precision =
true positives (tp)

(tp + false positives (fp))
(2)

recall =
tp

(tp + false negatives (fn))
(3)

F1-score = 2
(

recall · precision
recall · precision

)
(4)

Table 4. Classification report .

Precision Recall F1-Score Support

Devoid of siderite 0.72 0.37 0.49 126
Containing siderite 0.82 0.95 0.88 378

Accuracy 0.81 504
Macro average 0.77 0.66 0.69 504

Weighted average 0.80 0.81 0.78 504

This can be further detailed in a confusion matrix. The confusion matrix reveals that
out of a total of 504 measurements, 439 were classified in the class containing siderite, and
55 were classified in the class without siderite. Among these, 407 values were correctly
predicted. These correct predictions can be further categorized into 360 true positives and
47 true negatives (Figure 5). Upon examining the scatter plot (Figure 6), it becomes evident
that the incorrectly predicted mixtures are situated below a threshold of siderite content in the
mixture. Upon closer examination of these data points, it is evident that no mixture with a
siderite content above 0.06 wt% was incorrectly predicted.

Figure 5. Confusion matrix, with the labels ‘1’ for compounds containing siderite and ‘0’ for com-
pounds without siderite.
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Figure 6. Scatter plot with the prediction of the test data. The ordinate shows the amount of siderite
in the predicted compound, and the abscissa is the index of the predicted test data.

As already described, a second scenario was carried out with the siderite database data,
which only takes into account measurements that were carried out under normal conditions.
There were only three datasets remaining, but this should not have posed any problems,
as there was now minimal deviation expected between the datasets. The centroids were
therefore at 24.80°, 32.07°, and 52.94°. Consequently, the ranges ±1° around the centroids
were determined at [23.80°, 25.80°], [31.07°, 33.07°], and [51.94°, 53.94°]. The data were
extracted from the dataset in the same way as described before. For a better overview of
the procedure, the intervals are shown as examples in two measurements (Figure 7). These
include one measurement with 0.79 wt% (#364) and another with 0.06 wt% (#1219), which
corresponds to the highest mass fraction of siderite in all compounds and the limit reached
in this approach. In addition, the highest siderite peak (012) in the measurement #364 is
shown enlarged. This represents the most recognizable siderite peak in all XRD patterns
because of the highest siderite wt% of all compounds.

Figure 7. XRD patterns of compound #364 (0.79 wt% siderite) and #1219 (0.06 wt% siderite), with an
enlarged view of the (012)-siderite peak in #364. The grey bands depict the data ranges used for the
machine learning analysis.
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Both the train–test split and the hyper-parameters for the randomized search remained
the same. The following parameter combination delivered the best results: bootstrap = false,
criterion = gini, max_depth = 52, min_samples_leaf = 1, n_estimators = 673, and a training
accuracy of 80%. Even though others may have found a different parameter combination, a
nearly identical result was achieved. Predictions were again made for 504 measurements,
this time with 118 measurements without siderite in the mixture and 386 with siderite.
There was even a slight increase in accuracy to 83%. The corresponding classification report
can be found below (Table 5).

Table 5. Classification report of the second scenario.

Precision Recall F1-Score Support

Devoid of siderite 0.92 0.29 0.44 118
Containing siderite 0.82 0.99 0.90 386

Accuracy 0.83 504
Macro average 0.87 0.64 0.67 504

Weighted average 0.84 0.83 0.79 504

As can be seen from the adjustments to the input data for the centroids and the
resulting shift in the ranges, there has been a change in the predictions. The lowest
misclassification is 0.03 wt% by weight (Figure 8), albeit accompanied by a deterioration in
the false positive rate (Figure 9).

Figure 8. Scatter plot for the second run depicting predictions on test data (y-axis = siderite content
in wt%, x-axis = # of the samples).
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Figure 9. Confusion matrix for the second run (1 with siderite and 0 without siderite).

5. Discussion and Further Research

Looking at the results achieved with the described machine learning approach for de-
tecting mineral traces, it becomes evident that the threshold for nearly complete detection of
low traces of minerals in a mixture is plausible. Dong et al. [9] were also able to detect small
phases of low-mass fractions (<1 wt% PdO) with their method under specific conditions,
but this also required a CNN. Correct classifications below the threshold were possible in
the used training dataset as well as when excluding siderite content. However, some de-
crease in accuracy must be accepted. Even though a lower value was achieved in the second
iteration, the higher initial value is considered crucial. This is because in order to filter out
measurements in databases, more specific knowledge is required. Since one of the objectives
is to eliminate the need for a dedicated expert, it must be assumed that all database data, for
instance, would be retrieved from an API. The RF approach, which has been successfully
used in various scenarios in the literature for detecting properties of inorganic compounds,
has proven to be suitable in this application scenario. Lee et al. [7] showed that RF achieved
the best results after NN. A modification of the method could indeed offer significant
potential for improving detection. It is important to note that this work presents just one
approach. Current literature primarily relies on various forms of NNs, yielding good
results [2,3,5,7–10]. However, there are situations where they cannot always be applied,
such as when legal requirements demand evidence of how decisions were made. This
proof cannot be provided with neural networks. In such cases, methods like random forests
clearly have an advantage. The limitations of this work lie particularly in the transferabil-
ity to other mineral traces. Further studies would be needed to explore such issues and
possible solutions, such as increasing the number of considered areas or expanding their
range. An important step in identifying these necessary adjustments is the identification of
siderite in other mixtures, especially in minerals with a high degree of similarity or overlap
of peaks. Such difficult conditions should highlight the potential to improve the model
and thus lead to an increase in reliability. Another point that should be researched in the
future is the detection of a variety of minerals or other substances simultaneously. All
samples could then be automatically analyzed for every substance to create the individual
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fingerprint of each sample. Automation, whether with one or multiple sought substances,
is one of the advantages of this approach over conventional methods and could be used in
the future during operation without the need for expert knowledge. Improvement through
continuously gained data during usage is also conceivable. Further research should focus
on requiring significantly fewer pieces of training data, simplifying real-world applications.
Another advantage of this approach is that after the time-consuming training before actual
use, the actual prediction time becomes negligibly small.

6. Conclusions

In this work, a machine learning approach is presented, which can be used to detect
traces of minerals in mixtures analyzed using XRD. For this purpose, pure substance
measurements of the target substance are used from relevant database data. The three
highest points of each measurement are extracted and clustered. This results in three
centroids, allowing the definition of a central point in the range where a peak shift seems
possible. Expanding this point to a range of ±1° around the centroid enables capturing the
surrounding area and its characteristic curve even with a peak shift. These ranges were
extracted from 1680 measurements of carbonate compounds [19], providing 603 data points
as features for training and testing. This high number of data points allows for presenting
the curve as a feature in the area of interest in a very granular way, making it possible to
capture even small changes in the curve. This is particularly important for small admixture
proportions since, naturally, with the chosen method of analysis, only minor fluctuations in
the curves are to be expected. Based on relevant literature, a RF was chosen as the machine
learning method. An accuracy of 83% was achieved in training. Randomized search was
used for parameter tuning, and a five-fold cross-validation was employed for validation.
With a train–test split of 0.3, an accuracy of 81% was achieved in predicting test data. Upon
closer analysis, it was observed that no prediction errors occurred above a threshold of
0.06 wt%. This threshold is significantly below the common assumption of 0.5 wt%, where
trained users typically recognize specifically sought substances in a curve. In addition, a
second iteration was performed using only siderite data from measurements under normal
conditions to obtain the centroids. As a result, no peak shift is expected within the data
and the centers are almost identical. The result was a slight improvement to 0.03 wt%,
although with an increase in the false positive rate. The work can be summarized in the
following points:

• Objective: Develop a machine learning approach for detecting mineral traces in XRD-
analyzed mixtures.

• Data source: Use of pure substance measurements for the searched mineral (siderite)
from a relevant database and 1680 measurements of carbonate compounds for training
and testing.

• Feature Extraction: Extract the highest points from each pure substance measurement
and cluster them, resulting in centroids. The intensities extracted from 1680 measure-
ments around the mean 2-theta values serve as characteristics for training and testing.

• Machine learning method: Random forest (RF) was chosen, achieving an 83% accuracy
in training. A randomized search was employed for parameter tuning, and five-fold
cross-validation was used for validation.

• Results: An 81% accuracy was achieved in predicting test data. No prediction errors
were observed above 0.06 wt% of siderite content in the compounds.

This approach provides a method for identifying mineral impurities in mineral mix-
tures. The ability to do this quickly and without extensive expertise would be a crucial
aspect in the production of mineral-based building materials. It enables rapid testing of
incoming batches of recycled material and facilitates quick decisions to either reject them
due to hazardous substances, for example, or to react appropriately to specific impurities if
they have the potential to affect the properties of final material.
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a-CNN all-Convolutional Neural Network
CNN Convolutional Neural Network
DNN Deep Neural Network
DT Decision Tree
DTW Dynamic Time Warping
fn false negatives
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kNN k-Nearest Neighbor
NN Neural Network
RF Random Forest
SVM Support Vector Machine
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XRD X-ray powder diffraction

References
1. Papamichael, I.; Voukkali, I.; Loizia, P.; Zorpas, A.A. Construction and demolition waste framework of circular economy: A mini

review. Waste Manag. Res. 2023, 41, 1728–1740. [CrossRef] [PubMed]
2. Park, W.B.; Chung, J.; Jung, J.; Sohn, K.; Singh, S.P.; Pyo, M.; Shin, N.; Sohn, K.S. Classification of crystal structure using a

convolutional neural network. IUCrJ 2017, 4, 486–494. [CrossRef] [PubMed]
3. Ryan, K.; Lengyel, J.; Shatruk, M. Crystal structure prediction via deep learning. J. Am. Chem. Soc. 2018, 140, 10158–10168.

[CrossRef] [PubMed]
4. Utimula, K.; Hunkao, R.; Yano, M.; Kimoto, H.; Hongo, K.; Kawaguchi, S.; Suwanna, S.; Maezono, R. Machine-Learning

Clustering Technique Applied to Powder X-Ray Diffraction Patterns to Distinguish Compositions of ThMn12-Type Alloys.
Adv. Theory Simul. 2020, 3, 2000039. [CrossRef]

5. Vecsei, P.M.; Choo, K.; Chang, J.; Neupert, T. Neural network based classification of crystal symmetries from x-ray diffraction
patterns. Phys. Rev. B 2019, 99, 245120. [CrossRef]

6. Oviedo, F.; Ren, Z.; Sun, S.; Settens, C.; Liu, Z.; Hartono, N.T.P.; Ramasamy, S.; DeCost, B.L.; Tian, S.I.; Romano, G.; et al. Fast and
interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks. NPJ Comput.
Mater. 2019, 5, 60. [CrossRef]

7. Lee, J.W.; Park, W.B.; Lee, J.H.; Singh, S.P.; Sohn, K.S. A deep-learning technique for phase identification in multiphase inorganic
compounds using synthetic XRD powder patterns. Nat. Commun. 2020, 11, 86. [CrossRef] [PubMed]

8. Wang, H.; Xie, Y.; Li, D.; Deng, H.; Zhao, Y.; Xin, M.; Lin, J. Rapid identification of X-ray diffraction patterns based on very limited
data by interpretable convolutional neural networks. J. Chem. Inf. Model. 2020, 60, 2004–2011. [CrossRef]

9. Dong, H.; Butler, K.T.; Matras, D.; Price, S.W.; Odarchenko, Y.; Khatry, R.; Thompson, A.; Middelkoop, V.; Jacques, S.D.;
Beale, A.M.; et al. A deep convolutional neural network for real-time full profile analysis of big powder diffraction data. NPJ
Comput. Mater. 2021, 7, 74. [CrossRef]

https://doi.org/10.1016/j.dib.2022.108204
http://doi.org/10.1177/0734242X231190804
http://www.ncbi.nlm.nih.gov/pubmed/37653387
http://dx.doi.org/10.1107/S205225251700714X
http://www.ncbi.nlm.nih.gov/pubmed/28875035
http://dx.doi.org/10.1021/jacs.8b03913
http://www.ncbi.nlm.nih.gov/pubmed/29874459
http://dx.doi.org/10.1002/adts.202000039
http://dx.doi.org/10.1103/PhysRevB.99.245120
http://dx.doi.org/10.1038/s41524-019-0196-x
http://dx.doi.org/10.1038/s41467-019-13749-3
http://www.ncbi.nlm.nih.gov/pubmed/31900391
http://dx.doi.org/10.1021/acs.jcim.0c00020
http://dx.doi.org/10.1038/s41524-021-00542-4


Buildings 2024, 14, 340 14 of 14

10. Szymanski, N.J.; Bartel, C.J.; Zeng, Y.; Tu, Q.; Ceder, G. Probabilistic deep learning approach to automate the interpretation of
multi-phase diffraction spectra. Chem. Mater. 2021, 33, 4204–4215. [CrossRef]

11. Szymanski, N.J.; Bartel, C.J.; Zeng, Y.; Diallo, M.; Kim, H.; Ceder, G. Adaptively driven X-ray diffraction guided by machine
learning for autonomous phase identification. NPJ Comput. Mater. 2023, 9, 31. [CrossRef]

12. Bunn, J.K.; Han, S.; Zhang, Y.; Tong, Y.; Hu, J.; Hattrick-Simpers, J.R. Generalized machine learning technique for automatic
phase attribution in time variant high-throughput experimental studies. J. Mater. Res. 2015, 30, 879–889. [CrossRef]

13. Bunn, J.K.; Hu, J.; Hattrick-Simpers, J.R. Semi-supervised approach to phase identification from combinatorial sample diffraction
patterns. Jom 2016, 68, 2116–2125. [CrossRef]

14. Yanxon, H.; Weng, J.; Parraga, H.; Xu, W.; Ruett, U.; Schwarz, N. Artifact identification in X-ray diffraction data using machine
learning methods. J. Synchrotron Radiat. 2023, 30, 137–146 . [CrossRef] [PubMed]

15. Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. Highlights Mineral. Crystallogr.
2015, 1, 25. [CrossRef]

16. Thorndike, R.L. Who belongs in the family? Psychometrika 1953, 18, 267–276. [CrossRef]
17. Yuan, C.; Yang, H. Research on K-value selection method of K-means clustering algorithm. J 2019, 2, 226–235. [CrossRef]
18. Lavina, B.; Dera, P.; Downs, R.T.; Yang, W.; Sinogeikin, S.; Meng, Y.; Shen, G.; Schiferl, D. Structure of siderite FeCO3 to 56 GPa

and hysteresis of its spin-pairing transition. Phys. Rev. B 2010, 82, 064110. [CrossRef]
19. Amao, A.O.; Al-Otaibi, B.; Al-Ramadan, K. High-resolution X–ray diffraction datasets: Carbonates. Data Brief 2022, 42, 108204.

[CrossRef] [PubMed]
20. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1021/acs.chemmater.1c01071
http://dx.doi.org/10.1038/s41524-023-00984-y
http://dx.doi.org/10.1557/jmr.2015.80
http://dx.doi.org/10.1007/s11837-016-2033-8
http://dx.doi.org/10.1107/S1600577522011274
http://www.ncbi.nlm.nih.gov/pubmed/36601933
http://dx.doi.org/10.1515/9783110417104-003
http://dx.doi.org/10.1007/BF02289263
http://dx.doi.org/10.3390/j2020016
http://dx.doi.org/10.1103/PhysRevB.82.064110
http://dx.doi.org/10.1016/j.dib.2022.108204
http://www.ncbi.nlm.nih.gov/pubmed/35572794

	Introduction
	Literature Review
	X-ray Diffraction in Mineralogy
	Methods and Data
	Data Preparation
	Machine Learning Model

	Discussion and Further Research
	Conclusions
	References

