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Abstract: A significant amount of stone sludge is generated as a by-product during the production of
crushed stone aggregate, and most of it is disposed of in landfill as waste. In order to recycle this stone
sludge, this study evaluated a controlled low-strength material (CLSM) using ultra-rapid-hardening
cement and stone sludge for application as backfill and subbase material for road excavation and
restoration work. In addition, considering the limited construction time of excavation and restoration
work in urban areas, backfill and subbase materials must simultaneously satisfy conditions of fluidity,
workability, quick curing time, and certain levels of strength. Therefore, in this study, CLSM was
manufactured according to various mixing ratios and flow, slump, and compressive strength tests
with age were evaluated. Additionally, the change trend in the microstructure of the CLSM with age
was analyzed. Through indoor experiments, the optimal mixing ratios for backfill and subbase CLSM
were determined, and field applicability and performance of field samples were evaluated through
small-scale field construction. It was concluded that CLSM, which contains a large amount of stone
sludge, can be sufficiently applied as a backfill and subbase material for excavation and restoration
work if appropriate admixtures are adjusted according to the weather conditions at sites.

Keywords: controlled low-strength materials; road excavation and restoration; ultra-rapid-hardening
cement; stone sludge; ettringite formation; field applicability evaluation

1. Introduction

A large portion of recent road pavement construction in South Korea has been car-
ried out to repair damaged pavement in urban areas. In particular, small-scale excava-
tion and restoration work on urban roads is constantly increasing as the deterioration
of underground utilities progresses. Excavation and restoration work in city centers is
mainly performed at night due to traffic control restrictions, and same-day excavation
and restoration are enforced in principle. Therefore, insufficient compaction occurs due
to the insufficient time for sufficient compaction of the backfill layer and subbase layer
during the restoration process. This eventually leads to sagging of the restored section and
damage to the pavement layer. To solve these problems, backfill materials that have the
properties of high flowability, self-compaction, short curing time, and minimum strength
for re-excavation are required. Furthermore, it is necessary to investigate mix designs with
ultra-rapid-hardening cement or quick-setting agents and mix designs with maximum
aggregates to reduce the amount of cement used. However, existing research attempting to
resolve these issues is currently insufficient [1].

In the early days of the construction industry, most concrete was produced using river
aggregate. However, as river aggregate became scarce, crushed aggregate from quarries
began to be used. Currently, crushed aggregate accounts for the largest proportion of
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aggregates used in concrete. Quarries produce crushed coarse aggregate and crushed
fine aggregate through dry and wet processes. The stone sludge generated through these
processes was found to account for approximately 5% of raw stone [2,3]. Based on Korea’s
crushed aggregate production, the annual stone sludge production is estimated to be more
than 15 million tons. Stone sludge can be recycled, but due to transportation and disposal
costs, most of it is illegally landfilled or dumped within construction sites [4–6].

In Europe, it was reported that stone sludge generates approximately 5 million tons
annually and this amount accounts for about 40% of granite and marble production [7,8].
The environmental pollution caused by large amounts of stone sludge waste has been
indicated. Landfills, in particular, have been linked to major contamination of farmland,
biota, surface water, and groundwater in countries with less restrictive environmental
regulations [9].

To address these problems, many studies have been conducted. In the early 2000s,
basic research was conducted on the flowability and strength as a function of water content,
admixture ratio, and other parameters, using stone sludge as an admixture [10]. In 2010,
various studies were conducted to expand its use by proposing a concrete production and
mix design replacing stone sludge with cement and aggregate particulates smaller than
0.08 mm [11–13]. Furthermore, various studies on cement [14,15], mortar [16], concrete [17],
gypsum mortar [18], artificial aggregate [19], and asphalt mixtures [20] utilizing stone
sludge have shown that the chemical composition of stone sludge directly affects the
mechanical properties of final products. Recent studies have succeeded in producing
concrete by replacing 10–15% of cement and fine aggregate with stone sludge. They also
suggest that stone sludge could be a sustainable waste management option as it enables
recycling of natural resources and is a low-carbon material [21–23].

Meanwhile, many road cave-ins, such as sinkholes, which have recently become an
issue, are caused by water leaks due to aging and poor construction and management
of underground pipes such as sewage and water pipes. Accordingly, in order to solve
problems such as difficulty in securing compaction of backfill for underground structures,
various studies are being conducted to develop and put into practice controlled low-
strength materials (CLSMs), which allow self-filling and self-compaction. CLSMs are
made by adding cement or cementitious materials to mud prepared by mixing soil from
construction sites and water [24].

Ling et al. examined 115 reports related to CLSM for backfill and found that the
materials used to produce CLSM varied across countries. They reported that the use of
different materials has a significant impact on CLSM research and field applications [25].
In particular, as CLSM-related research has become more active, more types of industrial
waste for CLSM have been researched. Zhang et al. applied fly ash and coal gangue
as filler materials and reported that when the ratio was 14:5:1 for gangue, fly ash, and
cement, the fluidity of the filler was good and compressive strength was sufficiently
developed [26]. Chen et al. evaluated CLSM using coal industry by-products (coal gangue,
fly ash, bottom ash, gasification slag, desulfurized gypsum) and cement and showed that it
met the criteria of the American Concrete Institute Committee 229 [27]. In particular, in
Japan, there are many reports on the characteristics of CLSM using by-products such as
low sludge aggregate and glass cullet [28–30]. Horiguchi et al. developed a CLSM by using
stone sludge, sludge ash, and sewage. After verifying the mechanical performance of the
fabricated CLSM and using it as an actual backfill material for construction, they concluded
that sewage, sludge ash, and stone sludge can be used as materials for new CLSMs [31].

In South Korea, as part of technological development toward practical applications
of fluidized backfill material for sewer pipes using site-excavated soil generated during
construction, a study presented a basic formulation range of CLSM that can respond to
site soil by considering engineering properties such as flowability, material separation
resistance, early strength, and re-excavation strength [32]. Lee et al. analyzed the physical
properties of CLSM by type of sandy clayey excavated soil and mixing factors. The results
showed that the mixing conditions needed to meet flowability and early compressive
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strength conditions varied even within the same soil classification. This is mainly due
to the particle size distribution and fine particle content within the same classification.
They reported that the maximum W/B required to meet the flowability and early strength
of CLSM utilizing sandy clayey excavated soil was 300% [33]. Kim et al. evaluated the
characteristics of CLSMs and derived the optimal mix design for fluidized backfill material
for sewer pipes using site-excavated soil generated during construction. Then, they built a
batch plant for on-site production to evaluate the re-excavatability and quality sustainability
of CLSMs after on-site construction [34].

As a result of reviewing the existing literature, it was found that most CLSM studies
were aimed at applications of backfill and did not include stone sludge or used only a
small amount. However, in urban road excavation and restoration work, the time for
sufficient compaction of not only the backfill layer but also the subbase layer constructed
on top of it is limited, causing the problem of sagging after construction. Therefore, the
development of backfill and subbase materials that do not require compaction and cure
quickly is required. To this end, this study developed and evaluated CLSMs as backfill and
subbase materials suitable for urban road excavation and restoration work. In addition, a
high percentage of stone sludge was applied to protect natural resources and expand the
recycling of industrial by-products. Performance evaluation and microstructure analysis
were performed on CLSM for backfill using stone sludge and ultra-fast-hardening cement
and on CLSM for subbase by adding coarse aggregate according to various mixing ratios.
The field applicability of CLSMs with the derived optimal mixing ratio was evaluated
through a small-scale field construction.

2. Materials and Methods
2.1. Stone Sludge

Stone sludge collected from Ewha Aggregate, an aggregate manufacturing plant in
Gyeonggi-do South Korea, was used for this study. As a result of evaluating the basic
properties, 100% of the stone sludge was found to pass through a 5 mm sieve and 47.54%
passed through a 0.075 mm sieve. The maximum dry density was 1.694 g/cm3 and the
water content of the stone sludge showed an average of 37.09%, as shown in Table 1.

Table 1. Water content of the stone sludge samples.

Division Sample-1 Sample-2 Sample-3

Wet soil (g) 525 802 731
Dry soil (g) 383 582 536
Water (g) 142 220 195

Water content (%) 37.08 37.80 36.38
Average water content (%) 37.09

2.2. Cement

Ordinary Portland cement from domestic company “Hanil” was used in this study
and Table 2 shows the physical properties and chemical composition ratio of this cement.

Table 2. Characteristics of ordinary Portland cement.

Density
(g/cm3)

Fineness
(cm2/g)

Chemical Composition (%)

SiO2 Al2O3 Fe2O3 CaO MgO SO3 Ig.Loss

3.14 3492 21.1 4.64 3.14 62.8 2.81 2.13 2.18

2.3. Ultra-Rapid-Hardening Cement

For the development of backfill material utilizing stone sludge, ultra-rapid-hardening
cement manufactured by domestic Company J was used in this study. The physicochemical
properties are presented in Table 3. The ultra-rapid-hardening cement used in this study
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belongs to the category of specialty cement, which develops a strength of 30–40% of its
ultimate strength (4 MPa) in less than 4 h of aging.

Table 3. Characteristics of the ultra-rapid-hardening cement.

Density
(g/cm3)

Fineness
(cm2/g)

Chemical Composition (%)

SiO2 Al2O3 Fe2O3 CaO MgO SO3 Ig.Loss

3.00 5070 3.02 23.19 0.45 46.15 0.43 24.14 1.24

2.4. Coarse Aggregate

A crushed granite aggregate was used for coarse aggregate. The particle size was be-
tween 5 mm and 25 mm, and Table 4 shows the physical properties of the coarse aggregate.

Table 4. Coarse aggregate properties.

Density
(g/cm3)

Absorption
(%)

Unit Weight
(kg/m3)

Fineness
Modulus

Sound
(%)

2.72 0.74 1664 7.03 3.09

2.5. Admixtures

In this study, superplasticizer and retarder were used to improve the workability of
the CLSMs and to ensure adherence to working time constraints. Tables 5 and 6 present the
physicochemical properties of the superplasticizer and retarder.

Table 5. Properties of superplasticizer.

Ingredient pH Density (g/cm3)
Evaporation

Residual Rate (%)

Polycarboxylate 5.5 0.5 84

Table 6. Properties of the retarder.

Ingredient pH Density (g/cm3) Purity (%)

Tartaric acid 7.0~8.5 0.31 95

2.6. CLSM for Backfill Material
2.6.1. Mix Proportion

Based on the results of the properties of the backfill material in the preliminary
study and the economic feasibility, a mix design of the backfill material using ultra-rapid-
hardening cement and stone sludge was created as shown in Table 7 [24]. The OPC-1 mix
using normal Portland cement was included for comparison with the mix using ultra-rapid-
hardening cement. For URHC-1, 2, and 3, the quantity of admixture was adjusted to achieve
excellent workability and adhere to working time constraints through flow measurement.
Furthermore, the compressive strength of the backfill material after 2 h, 4 h, and 1 day was
measured to observe the initial strength development and the compressive strength at 7, 14,
and 28 days was measured to examine the strength-increasing trend. The test also included
the case of the URHC-4 mix, where the amount of stone sludge was increased to reduce the
quantity of cement at 300% W/B.
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Table 7. Mix proportion.

Test ID
W/B
(%)

Binder Type
Weight Unit (kg/m3)

Weight Composition
(%/B)

Water Binder Stone Sludge P.C. R.T.

OPC-1

300

Cement 594 250 580 - -

URHC-1

Ultra-
rapid-hardening

cement

594 250 580

- -

URHC-2 0.20 0.20

URHC-3 0.30 0.20

URHC-4 503 236 752 0.30 0.20

2.6.2. Flow Test

The flowability of CLSMs in this study was evaluated according to ASTM D 6103
(Standard Test Method for Flow Consistency of Controlled Low Strength Material) [35].
Figure 1 shows the fabrication and measurement of a CLSM flow test specimen.
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2.6.3. Compressive Strength Test

ASTM D 4832 (Standard Test Method for Preparation and Testing of Controlled Low
Strength Material (CLSM Test Cylinders)) [36] was applied to measure the compressive
strength of the CLSMs. Cylindrical specimens, measuring 100 mm in height and 50 mm
in diameter, were prepared using a 2:1 cylinder-type mold. The testing temperature was
20 ± 5 ◦C. The CLSM specimens and testing setup are shown in Figure 2.
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2.7. CLSM for Subbase Material
2.7.1. Mix Proportion

The mix proportion for the subbase layer utilizing stone sludge and coarse aggregate
was derived from the CLSM mix for backfill material. The mixing quantity of coarse
aggregate was 40 Vol.% of the total volume of stone sludge and coarse aggregate. The
mixing equipment is shown in Figure 3, and the mix proportion is shown in Table 8.
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Test ID
W/B
(%)

Binder Type

Weight Unit (kg/m3)
Weight

Composition (%/B)

Water Binder Stone
Sludge Aggregate P.C. R.T.

URHC-5
300
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rapid-hardening

cement

489 206 478 478
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2.7.2. Slump Test

To examine the workability of CLSM for the subbase layer using stone sludge, coarse
aggregate and ultra-rapid-hardening cement, a slump test was conducted according to KS
F 2402 (Test Method for Concrete Slump) [37] as with the slump test for concrete. The test
setup is shown in Figure 4.

Buildings 2024, 14, 46 6 of 19 
 

2.7. CLSM for Subbase Material 

2.7.1. Mix Proportion 

The mix proportion for the subbase layer utilizing stone sludge and coarse aggregate 

was derived from the CLSM mix for backfill material. The mixing quantity of coarse 

aggregate was 40 Vol.% of the total volume of stone sludge and coarse aggregate. The 

mixing equipment is shown in Figure 3, and the mix proportion is shown in Table 8. 

  

Figure 3. Mixing of CLSM. 

Table 8. Mix proportions. 

Test ID 
W/B  

(%) 
Binder Type 

Weight Unit (kg/m3) 

Weight  

Composition 

(%/B) 

Water Binder 
Stone 

Sludge 
Aggregate P.C. R.T. 

URHC-5 

300 

Ultra- 

rapid-hardening 

cement 

489 206 478 478 

0.30 0.20 
URHC-6 394 185 588 588 

2.7.2. Slump Test 

To examine the workability of CLSM for the subbase layer using stone sludge, coarse 

aggregate and ultra-rapid-hardening cement, a slump test was conducted according to KS 

F 2402 (Test Method for Concrete Slump) [37] as with the slump test for concrete. The test 

setup is shown in Figure 4. 

 

Figure 4. Slump test. Figure 4. Slump test.



Buildings 2024, 14, 46 7 of 19

2.7.3. Compressive Strength Test

The compressive strength was measured using cylindrical specimens of ϕ 100 × 200 mm,
as shown in Figure 5, according to KS F 2405 (Test Method for Compressive Strength of Con-
crete) [38]. Specimens were tested at 20 ± 5 ◦C by measuring 2-h, 4-h, and 1-day compressive
strength values to observe initial strength development. Furthermore, 7-, 14-, and 28-day
compressive strength values were measured to examine strength-increasing trends.
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2.8. Microstructure Analysis
2.8.1. SEM and EDS

The microstructure of CLSMs containing stone sludge was analyzed using scan-
ning electron microscopy (SEM). The equipment used was a Merlin Compact (Carl Zeiss,
Oberkochen, Germany) equipped with an in-lens detector and various signal processing
functions. Additionally, the elemental composition of the surface of CLSM particles was
analyzed using energy-dispersive X-ray spectroscopy (EDS).

2.8.2. XRD

Materials generated from the hydration reaction of CLSMs were analyzed using X-ray
diffraction (XRD). The equipment used was Bruker’s 1 Dimensional LYNXEYE detector
and a D8 Advance diffractometer (Billerica, MA, USA). Samples were scanned in the 2θ
range of 5◦–95◦ with a step size of 0.01◦ and a time of 1 s per step. Qualitative analysis was
performed by obtaining XRD patterns for CLSM specimens and standard specimens under
identical conditions.

3. Results
3.1. CLSM for Backfill Material
3.1.1. Flow Test Result

The flow test results of the CLSM for backfill material utilizing ultra-rapid-hardening
cement and stone sludge are as shown in Figure 6. The OPC-1 with normal Portland
cement did not show any decrease in flow with the mixing time. However, in the case of
the URHC-1 mix using ultra-rapid-hardening cement with no admixture, the flow rate
tended to decrease after 5 min of mixing time. In contrast, URHC-2, 3, and 4 showed a very
sharp decrease in flow rate when the mixing time exceeded 10 min. URHC-2 and URHC-3
showed a difference of about 80 mm, depending on the quantity of superplasticizer used.
Moreover, both mix proportions showed similar trends of decreasing flow with mixing
time. It was determined that with an increasing quantity of superplasticizer, the flow
increased due to the separation of particles resulting from the increased free water, among
the free water, adsorbent bed water, and recharge water that affected the flow in the cement
matrix [39]. The flow of URHC-4 was measured lower than the other mix proportions.
This is thought to be due to the reduced free water and increased adsorbent bed water
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resulting from the relatively increased stone sludge in the URHC-2 and URHC-3 mixes,
which can have a negative impact on flowability [40]. Using a retarder of 0.2% by weight
of ultra-rapid-hardening cement resulted in a mixing time of about 10 min. Thus, it is
necessary to increase the retarder to adhere to time constraints according to the work
situation, and the superplasticizer needs to be increased to improve the work performance.
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3.1.2. Compressive Strength Test Results

Figure 7 shows the compressive strengths by age of CLSM for backfill material utilizing
ultra-rapid-hardening cement and stone sludge. OPC-1, which used ordinary Portland
cement as a binder, did not cure until 4 h, making it impossible to demold the specimen,
and strength measurement was possible from 1 day of age. The compressive strength was
low at 0.84 MPa even at 28 days of age due to the relatively high W/B. When ultra-rapid-
hardening cement was used, all mix proportions showed an initial strength higher than
0.14 MPa, which is sufficient for open traffic during the backfilling of buried pipes [41]. The
compressive strength values of URHC-1, 2, and 3 were rapidly increased from 2 h to 7 days
after the initial strength measurement. At 28 days of age, they exhibited a more moderate
increase in strength with values of 2.01, 1.98, and 1.96 MPa, respectively. The compressive
strength tended to decrease as the amount of superplasticizer increased. Although the
fluidity increased due to the increase in free water caused by the superplasticizer, the
free water consumed in the CLSM hydration reaction for backfill material was left as
pores. This led to a relatively large volume of pores, reducing its strength. Adding a
retarder can inhibit the hydration reaction of ultra-rapid-hardening cement for a while.
However, when the hydration reaction was initiated after some time, the final compressive
strength did not significantly change due to the exothermic action of hydration by chemical
reaction. Regarding compressive strength, the increase in superplasticizer decreased the
compressive strength, but the difference was insignificant, and the effect of retarder was
insignificant [42]. URHC-4 with an increased amount of stone sludge at the same W/B
showed excellent strength properties in every mix proportion. This is because although
the amount of binder was relatively reduced, the increase in stone sludge lowered the
flowability, and the strength increased because the hydration reaction was initially active.
Thus, considering the flowability and strength properties of backfill material mixed with
ultra-rapid-hardening cement and stone sludge, the most adequate mix proportions were
thought to be URHC-3 and URHC-4 with a W/B of 300%, 0.3% superplasticizer (wt./B),
and 0.2% retarder (wt./B) using ultra-rapid-hardening cement as the binder.
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3.2. CLSM for Subbase Material
3.2.1. Slump

The target slump of the CLSM for subbase layers utilizing ultra-rapid-hardening
cement, stone sludge, and coarse aggregate was set at 170 ± 10 mm considering the
flowability and workability. The slump test results showed that 20 min of mixing time was
required for URHC-5 to achieve the targeted flowability. The slump could not be measured
before achieving the target slump due to increased flowability, as shown in Figure 8, and
material separations occurred partially. URHC-6, which reduced the quantity of binder and
increased the quantity of stone sludge, took around 5 min to mix. A sharp deterioration in
flowability occurred about 10 min after achieving the target slump, as shown in Figure 9.
Thus, pouring should be performed immediately after adequate mixing.
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3.2.2. Compressive Strength Test

To analyze the compressive strength of CLSM for subbase layers utilizing ultra-rapid-
hardening cement, stone sludge, and coarse aggregate, the specimens were prepared with
the target slump. Figure 10 shows the results of the compressive strength test by age. Both
URHC-5 and URHC-6 mixes, which included 40% of coarse aggregate, showed compressive
strength values of more than 0.9 MPa at 2 h and more than 1.0 MPa at 4 h. This ensured
a compressive strength of 0.7 MPa for the following process (asphalt layer paving). For
the URHC-6 mix, the quantity of stone sludge was increased to reduce the unit amount
of binder. Thus, it showed a greater compressive strength because the amount of water
initially added was relatively reduced and the hydration reaction was active at an early
stage, shortening the mixing time to achieve the target slump. Therefore, URHC-6 is thought
to be adequate as a CLSM mix for subbase layers to complete pipeline construction in the
city center targeted in this study within the specified time, considering both workability
and compressive strength.
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3.3. Microstructure Analysis Results
3.3.1. SEM and EDS Analysis Results

CLSM specimens were taken at 2 h, 1 day, 7 days, 14 days, and 28 days of age and
analyzed by SEM and EDS. Figures 11 and 12 show the results of microstructure analysis.
The CLSM that used ultra-rapid-hardening cement as a binder initially showed a large
quantity of ettringite and dense microstructures. Furthermore, as the age increased, the den-
sity of internal microstructures increased because the hydration reaction with the cement
became more active. In the early stage, a large quantity of ettringite was observed. The
mechanism of strength development of ultra-rapid-hardening cement is that in the presence
of SO3, Ca2+ ions eluting immediately after contact with water and Al3+ ions eluting from
calcium aluminate react to produce calcium aluminate hydrate (CaO·Al2O3·nH2O). Then,
this reacts with gypsum in the cement to produce ettringite (3CaO·Al2O3·3CaSO4·32H2O),
which hardens rapidly, resulting in early strength development [43]. Consequently, a
large quantity of ionic components such as Al, O, Ca, and S were detected in the 2 h EDS
mapping as shown in Figure 11. Furthermore, the high fineness compared to ordinary
cement is highly reactive when mixed with water, causing an active hydration reaction.
As a result, the reaction that produces the hydrate of ettringite occurs more rapidly. This
suggests that the flow value was measured lower and the compressive strength was higher
compared to ordinary cement. The mix proportion with ultra-rapid-hardening cement
showed a large amount of ettringite and C–S–H and C–A–H gels at 7 days of age as shown
in Figure 12. In addition, on the Ca(OH)2 surface, thin sheet-shaped C–S–H gel appeared
widely distributed. This indicates that as Ca(OH)2 was consumed, secondary ettringite was
formed and C–S–H and C–A–H gels were generated at 7 days of age. At 28 days of age, as
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C–S–H gel and C–A–H gel were generated in large quantities around the ettringite nucleus,
it was confirmed that the internal structure was stabilizing by filling the micropores of
CLSM using ultra-fast-hardening cement and stone sludge.
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3.3.2. XRD Analysis Results

Figure 13 shows the XRD analysis results of a sample collected at 28 days of CLSM
using stone sludge and ultra-rapid-hardening cement. The peak of SiO2 became more evi-
dent in the mix using stone sludge. The CLSM with ordinary Portland cement showed very
low peaks except for ettringite. This is thought to be due to the relatively high W/B, which
inhibited the smooth hydration reaction. The CLSM with ultra-rapid-hardening cement
confirmed ettringite, C–S–H, and C–A–H gel hydrate, as shown by SEM. In particular, the
ettringite peak clearly appeared in the mix using ultra-rapid-hardening cement. This is
determined to be due to the hydration reaction characteristics of ultra-rapid-hardening
cement, as described in Section 3.3.1. Furthermore, Al2O3 in ultra-rapid-hardening cement
and SiO2, which is the main component of stone sludge, cause pozzolanic reactions with
CH in the cement matrix, and this accelerates the hydration reaction compared to ordinary
cement [44,45]. As a result, mixing proportions with ultra-rapid-hardening cement may
produce more C–S–H and C–A–H. The C–S–H and C–A–H are generated through poz-
zolanic reaction and they are attached to the surface of stone sludge, and the density within
the CLSM matrix increases, thereby reducing harmful voids [46].
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4. Evaluation of Field Applicability for CLSMs
4.1. Site Construction Overview

A field construction evaluation was carried out by applying the optimal mix propor-
tions of URHC-3 and URHC-6 derived from the indoor experimental evaluation. This
process is shown in Figure 14. The mixer used for the on-site production and pouring of
CLSMs was a piece of dedicated CLSM equipment developed as part of this study.
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Figure 14. Photographs of the field construction of the CLSMs. 
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(e) Soil penetrometer test 

Figure 14. Photographs of the field construction of the CLSMs.

As shown in Figure 15, before pouring the CLSM for each mix, a slump test and a
flow test were conducted to characterize the CLSMs, and specimens were fabricated in the
field. In addition, to evaluate the constructability of the upper layer after construction of
CLSM material, the change in hardness of the CLSM layer was measured through a soil
penetrometer test and a Kelly ball test.
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4.2. Field Evaluation Result
4.2.1. Evaluation of Mechanical Properties

The flow test result of CLSM for backfill satisfied the ASTM D 4832 standard [36] of
200 mm or more, as shown in Table 9. Furthermore, the slump test result of CLSM for
subbase layers showed a target slump of 170 ± 10 mm, as shown in Table 10. In addition,
both CLSMs were found to have excellent workability during field construction. As shown
in Table 9, the compressive strength of CLSM for backfill was greater than 0.6 MPa after
2 h. The compressive strength of CLSM for subbase layers was larger than 1.0 MPa after
2 h as shown in Table 10. The field test results showed lower flowability and increased
compressive strength compared to the indoor test. This difference occurred because of
the change in the water content due to the use of a large amount of stone sludge and the
performance difference between the mixer used in the indoor test and the mixer used in
the field test [47,48].

Table 9. Flow and compressive strength test result of CLSM for backfill.

NO. Flow (mm) Compressive Strength
(MPa, 2 h)

1 360 0.66
2 370 0.67
3 360 0.63

Average 363.3 0.65

Table 10. Slump and compressive strength test result of CLSM for subbase layers.

NO. Slump (mm) Compressive Strength
(MPa, 2 h)

1 165 1.14
2 161 1.01
3 160 1.12

Average 162 1.09

4.2.2. Review of Subsequent Process Initiation of CLSMs

To examine the possibility of subsequent processing of backfill material, an evaluation
was conducted with a soil hardness meter in accordance with ASTM D 6024, Standard Test
Method for Ball Drop on Controlled Low Strength Material (CLSM) to Determine Suitability
for Load Application [49], and Tokyo Metropolitan Construction Bureau Quality Standards
for Fluidized Treated Soil [50]. The construction area was divided into four zones, and each
zone was evaluated every 10 min. The results are summarized in Tables 11 and 12.
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Table 11. Soil penetrometer test result of backfill material.

NO.
Soil Penetrometer (mm)

10 min 20 min 30 min 40 min 50 min 60 min

1 1.2 2.1 3.1 3.7 4.2 5.2
2 1.3 2.0 3.3 3.9 4.3 5.3
3 1.3 2.8 3.4 3.7 4.1 4.9
4 1.4 2.2 3.5 4.1 4.5 5.5

Average 1.30 2.28 3.33 3.85 4.28 5.23

NO.
Kelly Ball (mm)

10 min 20 min 30 min 40 min 50 min 60 min

1 130.8 123.1 100.5 95.4 82.2 70.5
2 131.5 120.9 107.2 98.0 87.9 75.3
3 132.6 128.1 96.6 93.7 88.8 74.7
4 130.9 120.2 103.3 90.1 84.5 74.0

Average 131.45 123.08 101.90 94.30 85.85 73.63

Table 12. Soil penetrometer test result of subbase material.

NO.
Soil Penetrometer (mm)

10 min 20 min 30 min 40 min 50 min 60 min

1 1.3 2.7 3.5 4.2 4.9 6.2
2 1.5 2.7 3.6 4.8 5.6 6.7
3 1.6 2.4 3.8 4.5 5.3 6.3
4 1.6 2.6 3.4 4.3 5.5 5.9

Average 1.5 2.6 3.58 4.45 5.33 6.28

NO.
Kelly Ball (mm)

10 min 20 min 30 min 40 min 50 min 60 min

1 125.8 108.5 95.2 82.4 73.9 69.5
2 126.3 115.4 99.5 85.1 74.6 70.2
3 132.6 121.3 104.2 86.4 78.1 73.5
4 128.5 118.5 103.8 90.8 79.8 72.5

Average 128.3 115.93 100.68 86.18 76.6 71.43

As a result of the hardness characteristics of the backfill CLSM over time, by using a
soil hardness meter, penetration was measured at 4.28 mm at 50 min after pouring, meeting
the standard value (more than 3 mm). The penetration of subbase CLSM was measured to
be 4.45 mm after 40 min, about 10 min earlier than the backfill CLSM, meeting the standard
(more than 3 mm). As a result of the Kelly ball test, the backfill CLSM and subbase CLSM
values were found to be 73.63 mm and 71.43 mm, respectively, about 1 h after pouring, so
both CLSM met the standard (75 mm or less).

5. Conclusions

In this study, the engineering properties and microstructures of CLSMs for backfill
and subbase layers using ultra-rapid-hardening cement, stone sludge, and coarse aggregate
were analyzed. Additionally, small-scale field construction and testing were performed to
evaluate the field applicability of CLSMs. The following conclusions were drawn through
this study:

(1) For the backfill CLSM using stone sludge and ultra-rapid-hardening cement, the
addition of superplasticizer and retarder is inevitable considering the working en-
vironment of urban centers. Considering the flowability and early compressive
strength, the most adequate mix proportion for backfill CLSM is URHC-3 with a
W/B of 300%, 0.3% (wt./B) superplasticizer, and 0.2% (wt./B) retarder, using an
ultra-rapid-hardening cement as the binder;
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(2) For the subbase CLSM using ultra-rapid-hardening cement, stone sludge, and coarse
aggregate, it should be poured immediately after appropriate mixing due to the
decrease in flowability with mixing time. Therefore, URHC-6 is judged to be suitable
for subbase CLSM mixes used to complete pipe construction in urban areas within a
given time, considering both workability and compressive strength;

(3) The microstructure analysis results showed that the primary hydration reaction of
CLSM for backfill and subbase layers provided primary initial strength by generating
ettringite. Subsequently, the internal structure of the CLSM was stabilized and the
strength was enhanced as C–S–H and C–A–H gels were generated around SiO2, the
main component of the stone sludge, and the primary ettringite nucleus;

(4) As a result of small-scale field construction of CLSMs, it was found that they were
sufficiently applicable to the field in terms of constructability and performance. How-
ever, compared to the indoor test, fluidity was lowered and compressive strength was
increased. This is because the moisture content of stone sludge and the performance
of the mixer used in the field are different from those in the laboratory. Therefore, the
quantity of admixture used and the water content of the stone sludge need to be verified
through a water content experiment, considering weather conditions before mixing.

Author Contributions: Conceptualization, C.B.; methodology, J.L. and C.B.; validation, J.L. and C.B.;
formal analysis, J.L. and C.B.; investigation, J.L. and C.B.; resources, J.L. and C.B.; data curation, J.L.
and C.B.; writing—original draft preparation, J.L.; writing—review and editing, C.B.; visualization,
J.L.; supervision, C.B.; project administration, C.B.; funding acquisition, C.B. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Korea Agency for Infrastructure Technology Advance-
ment (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant No.
22POQWB152342-01).

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Han, S.H.; Yang, S.L.; Lee, J.W.; Back, C.M. Evaluation of fugitive dust emission generated by construction process of pavement

excavation-restoration through the field test. Int. J. Highw. Eng. 2020, 22, 61–68. [CrossRef]
2. Jeong, J.S.; Lee, J.C.; Yang, K.Y.; So, K.H. Utilization of stone sludge produced by stone block manufacturing process as concrete

admixtures. J. Korea Inst. Build. Constr. 2008, 8, 83–89. [CrossRef]
3. Han, C.G.; Shin, B.C.; Kim, G.C.; Lee, S.T. Strength and absorption properties of cement mortar produced with various content of

sludge powder at mines. J. Korea Concr. Inst. 2001, 13, 561–567.
4. Ko, D.; Choi, H. Basic performance evaluation of dry mortar recycled basalt powder sludge. J. Korea Inst. Build. Constr. 2013, 13,

131–138. [CrossRef]
5. Jeong, J.Y.; Choi, S.M.; Kawg, E.G.; Choi, S.J.; Lee, S.Y.; Kim, J.M. The Strength Properties of Concrete Used Stone Powder Sludge

as Siliceous Material. In Proceedings of the Korean Institute of Building Construction Conference, Seoul, Republic of Korea,
1 May 2005; pp. 85–88.

6. Galetakis, M.; Soultana, A. A review on the utilization of quarry and ornamental stone industry fine by-products in the
construction sector. Constr. Build. Mater. 2016, 102, 769–781. [CrossRef]

7. Graziani, A.; Giovannelli, G.I.L. Lapidei Struttura del Settore e Tendenze Innovative; Centro Studi Fillea: Rome, Italy, 2015. Available
online: http://www.filleacgil.it/nazionale/accordi/all_1817.pdf (accessed on 10 June 2020). (In Italian)

8. Zichella, L.; Bellopede, R.; Spriano, S.; Marini, P. Preliminary investigations on stone cutting sludge processing for a future
recovery. J. Clean. Prod. 2018, 178, 866–876. [CrossRef]

9. Nasserdine, K.; Mimi, Z.; Bevan, B.; Elian, B. Environmental management of the stone cutting industry. J. Environ. Manag. 2009,
90, 466–470. [CrossRef]

10. Lim, S.Y.; Song, J.H.; Jaung, J.D. A study on properties of general strength-high folw concrete using sludge of crushed stone.
J. Archit. Inst. Korea 2006, 26, 409–412.

11. Song, J.W.; Choi, J.J. The influence of fine particles under 0.08 mm contained in aggregate on the characteristics of concrete.
J. Korea Concr. Inst. 2013, 25, 347–354. [CrossRef]

12. Seo, J.Y.; Choi, S.J.; Kang, S.T. Physical effect of adding stone dust sludge on the properties of cement mortar. J. Korean Recycl.
Constr. Resour. Inst. 2015, 3, 152–158.

https://doi.org/10.7855/IJHE.2020.22.6.061
https://doi.org/10.5345/JKIC.2008.8.6.083
https://doi.org/10.5345/JKIBC.2013.13.2.131
https://doi.org/10.1016/j.conbuildmat.2015.10.204
http://www.filleacgil.it/nazionale/accordi/all_1817.pdf
https://doi.org/10.1016/j.jclepro.2017.12.226
https://doi.org/10.1016/j.jenvman.2007.11.004
https://doi.org/10.4334/JKCI.2013.25.3.347


Buildings 2024, 14, 46 18 of 19

13. Hong, K.N.; Lee, J.H.; Han, S.H.; Park, J.K. Mechanical properties of concrete using crushed stone sludge as substitutes. J. Inst.
Constr. Technol. 2012, 31, 79–84.

14. Mashaly, A.O.; Shalaby, B.N.; Rashwan, M.A. Performance of mortar and concrete incorporating granite sludge as cement
replacement. Constr. Build. Mater. 2018, 169, 800–818. [CrossRef]

15. Mashaly, A.O.; El-Kaliouby, B.A.; Shalaby, B.N.; El-Gohary, A.M.; Rashwan, M.A. Effects of marble sludge incorporation on the
properties of cement composites and concrete paving blocks. J. Clean. Prod. 2016, 112, 731–741. [CrossRef]

16. Lozano-Lunar, A.; Dubchenko, I.; Bashynskyi, S.; Rodero, A.; Fernández, J.M.; Jiménez, J.R. Performance of self-compacting
mortars with granite sludge as aggregate. Constr. Build. Mater. 2020, 251, 118998. [CrossRef]

17. Sardinha, M.; de Brito, J.; Rodrigues, R. Durability properties of structural concrete containing very fine aggregates of marble
sludge. Constr. Build. Mater. 2016, 119, 45–52. [CrossRef]

18. Nascimento, A.S.S.; Santos, C.P.; Melo, F.M.C.; Oliveira, V.G.A.; Betânio Oliveira, R.M.P.; Macedo, Z.S.; Oliveira, H.A. Production
of plaster mortar with incorporation of granite cutting wastes. J. Clean. Prod. 2020, 265, 121808. [CrossRef]

19. Chang, F.C.; Lee, M.Y.; Lo, S.L.; Lin, J.D. Artificial aggregate made from waste stone sludge and waste silt. J. Environ. Manag.
2010, 91, 2289–2294. [CrossRef] [PubMed]

20. Choudhary, J.; Kumar, B.; Gupta, A. Feasible utilization of waste limestone sludge as filler in bituminous concrete. Constr. Build.
Mater. 2020, 239, 117781. [CrossRef]
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