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Abstract: Ensuring the structural integrity of window frames and detecting subtle defects, such as
dents and scratches, is crucial for maintaining product quality. Traditional machine vision systems
face challenges in defect identification, especially with reflective materials and varied environments.
Modern machine and deep learning (DL) systems hold promise for post-installation inspections
but face limitations due to data scarcity and environmental variability. Our study introduces an
innovative approach to enhance DL-based defect detection, even with limited data. We present a
comprehensive window frame defect detection framework incorporating optimized image enhance-
ment, data augmentation, and a core U-Net model. We constructed five datasets using cell phones
and the Spot Robot for autonomous inspection, evaluating our approach across various scenarios
and lighting conditions in real-world window frame inspections. Our results demonstrate significant
performance improvements over the standard U-Net model, with a notable 7.43% increase in the F1
score and 15.1% in IoU. Our approach enhances defect detection capabilities, even in challenging
real-world conditions. To enhance the generalizability of this study, it would be advantageous to
apply its methodology across a broader range of diverse construction sites.

Keywords: surface detection; image enhancement; image processing techniques; segmentation
networks

1. Introduction

The construction industry stands at a pivotal juncture, grappling with the dual chal-
lenge of escalating demand for quality inspection and a diminishing pool of available
inspectors. Traditional inspection mechanisms, long reliable in controlled manufacturing
environments, face redefinition in response to evolving industry dynamics, particularly
in construction.

This transformation stems from a growing emphasis on post-installation quality assess-
ments, notably in uncontrolled environments like bustling construction sites. Traditional
machine vision systems, foundational to industrial processes, reveal their limitations
in these dynamic settings, characterized by unpredictable variables and ceaseless activ-
ity. These systems often require extensive parameter tuning and can falter, especially in
uncontrolled environments marked by fluctuating lighting conditions and unexpected
defects [1–3].

In parallel, the allure of machine and deep learning (ML/DL) promises to overcome
these challenges by offering a more adaptable approach to defect detection. However,
the effectiveness of ML/DL critically hinges on the availability of extensive, high-quality
datasets, a rarity in the context of construction quality inspection. Even advanced DL
models can underperform due to the scarcity of comprehensive training data and the
influence of unpredictable external factors, as exemplified by notable studies [1,2,4–6].

To bridge this critical gap, the integration of data augmentation surfaces as the initial
solution [7,8]. Furthermore, image enhancement techniques aim to bolster DL models by
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enhancing image clarity, mitigating shadows, and accentuating defects. The synergistic
fusion of DL with a judicious image enhancement (IE) strategy can revolutionize defect
identification and reshape the industrial landscape [9]. Recent research, exemplified by
Wu et al. [10] and Tang et al. [11], has effectively utilized these strategies to improve
segmentation networks. Wu et al. notably enhanced crack segmentation accuracy using
MobileNetV2_DeepLabV3, while Tang employed image refinement post-processing with U-
Net for similar gains. These studies showcase the applicability of these strategies in current
research. Alongside technological challenges, the construction sector faces an escalating
demand for rigorous quality inspections and a diminishing pool of human inspectors.
Even seemingly minor defects can tarnish a brand’s reputation and compromise functional
aesthetics [3].

This paper introduces a novel amalgamation of advanced image processing, data aug-
mentation techniques, and DL methodologies to address the challenges posed by intricate
lighting conditions and limited data availability on construction sites. We aim to ensure
consistent inspections in uncontrolled domains and establish a benchmark for construction
quality assessments. Additionally, through a rigorous comparison with a sophisticated seg-
mentation model, we underscore the potential of our proposed methodology, particularly
in the burgeoning domain of automated building inspection [7,8].

Our primary research objective is to develop an advanced defect detection method
utilizing deep learning (DL). Specifically, we present an innovative DL-based framework
for detecting defects in window frames. This framework combines data augmentation,
customized image enhancement techniques, and a detection model designed to enhance
the quality of defect detection.

In this context, we operate under the assumption that construction sites often present
intricate lighting conditions and suffer from limited data availability. These inherent
challenges in uncontrolled environments require a more robust defect detection solution.
Our research addresses these assumptions by establishing a new benchmark for quality
inspections in construction sites.

The subsequent sections of this paper are structured as follows: Section 2 delves into
the relevant literature, Section 3 outlines our approach, Section 4 unveils our experimental
design and findings, and Section 5 offers conclusions and insights from our research.

2. Related Work

This section provides a comprehensive overview of prior research and methodolo-
gies in defect detection, tracking the historical evolution of techniques and highlighting
recent advancements.

2.1. Traditional Computer Vision Approaches

Defect detection in construction and manufacturing has been a prominent research
focus. Traditional machine vision systems, relying on predefined algorithms, have played a
pivotal role in quality control across diverse industries [12].

• Threshold Techniques: Automatic thresholding has been crucial in industries such
as glass manufacturing [13,14] and textiles [15]. Dynamic thresholding has found
applications in road crack segmentation [16]. The Retinex Algorithm has been used for
edge detection [17,18], and innovative approaches like combining morphological pro-
cessing with genetic algorithms have introduced new dimensions to defect detection
strategies [19].

• Edge Detection and Morphological Processing: The Retinex Algorithm has been
prominent in edge detection for defect identification. The fusion of morphological
processing with genetic algorithms has also introduced innovative dimensions to
defect detection strategies.

• Fourier and Texture Analysis: Fourier series is useful in line defect detection [20],
while texture analysis proves reliable in labs [18,21–23]. Combining impulse/response
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testing with statistical pattern recognition has helped to detect defects in concrete
plates [24].

• Innovative Approaches: Recent innovations, such as impulse/response testing and
statistical pattern recognition, have effectively detected defects in concrete plates.
However, traditional machine vision systems have limitations in complex, dynamic
settings like construction sites, where unpredictable variables like complex lighting
challenge their efficacy.

2.2. Challenges in Conventional Machine Vision Methods

Traditional machine vision methods excel in controlled environments but face significant
hurdles in complex settings like construction sites. Key challenges include the following:

• Variable Lighting: Fluctuating natural and artificial lighting conditions impact system
performance [1–3].

• Dynamic Environments: Rapid changes in construction sites challenge machine vision
adaptability, reducing accuracy.

• Noise and Interference: Visual noise and electromagnetic interference disrupt defect
detection [1].

• Scale and Perspective Variations: Varying object sizes and perspectives require exten-
sive system adjustments.

• Real-Time Demands: Meeting real-time requirements can be challenging for tradi-
tional methods.

• Data Annotation: Creating and maintaining labeled datasets is labor-intensive and
complex in dynamic environments.

Innovative approaches, including deep learning and adaptive algorithms, are needed
to enhance defect detection in construction.

2.3. Machine Learning and Deep Learning-Based Methods

This subsection explores recent advancements in machine learning, particularly deep
learning (DL) models, for defect detection. With increased computing power and data
availability, DL, particularly convolutional neural networks (CNNs), has gained popularity
in quality inspection.

• Supervised object detection supervised defect detection relies on labeled datasets with
defect-free and defective samples, resulting in high detection rates. This approach
annotates each object with its class label and bounding box coordinates during training.
Various datasets are used in supervised learning, including fabric defect datasets [25]
and rail defect datasets [26,27].

• Unsupervised object detection unsupervised methods aim to overcome the limitations
of supervised learning by leveraging inherent data characteristics for classification.
These approaches detect defects and objects in images without using labeled training
data. Instead, they rely on patterns, structures, or anomalies in the data to identify
objects. Techniques like clustering, anomaly detection, and feature extraction are
commonly used for unsupervised defect detection.

• Object detection model current object detection in deep learning falls into two main
categories. The first encompasses two-stage object detection models, which include
R-CNNs [28], Fast R-CNNs [29], and Faster R-CNNs [30]. For example, U-Net for
defect segmentation using synthetic data was used by Boikov et al. [31]. The second
category features one-stage models like YOLO [32] and SSD [33].

2.4. Challenges in DL-Based Defect Detection

In the realm of deep learning-based defect detection in construction, formidable
challenges persist despite significant advancements in computer vision for monitoring
structural health and identifying unsafe behaviors [34]. These challenges encompass a range
of issues, including identifying multiple defects or concurrent unsafe behaviors, which
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remain problematic due to the high noise levels inherent in construction settings. Balancing
datasets for deep learning training poses difficulties, particularly when certain defects or
behaviors occur infrequently, leading to unbalanced data [35]. Moreover, the scarcity of
labeled data, especially for rare defects, hampers the development of robust models. Pursu-
ing real-time performance without compromising accuracy is an ongoing challenge, and the
issue of inaccurate or inconsistent labeling adversely affects model precision. Furthermore,
the variability in inspection standards hinders integrating deep learning models with hu-
man inspectors. At the same time, environmental factors like changing lighting conditions
introduce variability in model accuracy in the dynamic construction environment.

2.5. Hybrid Models for Defect Detection

Hybrid models for defect detection represent a compelling approach by integrating
image processing techniques (IPTs) and image enhancement techniques (IETs) with machine
learning (ML) and deep learning (DL) methodologies. This fusion has demonstrated
significant advantages across various domains, including defect identification. This section
delves into such hybrid models’ underlying principles and practical applications. One
avenue of exploration involves the integration of IPTs with ML techniques, offering a robust
framework for defect detection. For instance, combining edge detection algorithms with
convolutional neural networks (CNNs) has yielded substantial improvements in tasks like
weld segmentation, resulting in enhanced accuracy and efficiency in defect identification
processes. Additionally, the domain of deep learning has witnessed a transformative impact
on defect detection, particularly through models like CNNs. However, integrating image
enhancement techniques can further elevate their performance, making them increasingly
applicable in industries such as construction. Techniques like data augmentation, which
generates diverse training data, and image enhancement algorithms that enhance image
clarity, reduce shadows, and accentuate defects, contribute to fine-tuning DL models
for more effective defect identification tasks, ultimately facilitating their integration into
real-world applications such as construction [36].

These hybrid models find applications across industries, from manufacturing to con-
struction, demonstrating their ability to handle complex image data and enhance defect
identification in challenging settings. However, challenges remain, including parameter
optimization and dataset availability. Some recent research used image enhancement and
refinement to improve crack segmentation [10,11]. Our research addresses these chal-
lenges, focusing on the domain-specific context of cosmetic quality inspection for window
frames. We aim to uncover the most effective image enhancement strategies and data
augmentation techniques to enhance defect detection systems’ precision, robustness, and
real-world applicability.

3. Proposed Method

The demand for robust defect detection becomes paramount in industrial environ-
ments marked by unpredictable lighting conditions. Our proposed method is a compre-
hensive solution that integrates an image quality assessment tool, a sophisticated image
enhancement strategy, advanced data augmentation processes, and a deep learning-based
defect detection model. The framework of our approach, illustrated in Figure 1, visually
represents the various components and their interplay.

Our system begins with inputting RGB images captured by the Spot Robot. Sub-
sequently, the data augmentation module comes into play, employing a combination of
geometric operations and a range of image enhancement techniques to generate vast
enhanced data.



Buildings 2024, 14, 3 5 of 19Buildings 2024, 14, x FOR PEER REVIEW 5 of 20 
 

 
Figure 1. The framework of the window frame defect detection system (WFDD). The input com-
prises RGB images captured by the Spot Robot. The data augmentation module employs geometric 
operations and applies different image enhancement techniques. The preprocessing module is then 
employed to enhance the performance of the defect detection model. Within the detection module, 
defects are identified among all detected window frames, with the output showcasing U-Net-gen-
erated segmentation blobs. 

Our system begins with inputting RGB images captured by the Spot Robot. Subse-
quently, the data augmentation module comes into play, employing a combination of ge-
ometric operations and a range of image enhancement techniques to generate vast en-
hanced data. 

The preprocessing module further enhances the defect detection model’s perfor-
mance, ensuring optimal results. Finally, within the detection module, defects are identi-
fied among all detected window frames, with the output showcasing U-Net-generated 
segmentation blobs, ultimately providing a comprehensive overview of detected defects 
within the industrial setting. This holistic approach empowers the system to operate ef-
fectively in dynamic and challenging environments, setting new standards for defect de-
tection accuracy and reliability. 

3.1. Data Collection 
Our dataset consists of 1356 original images sourced from five distinct datasets: 

• Cellphone Dataset (441 Images): This dataset comprises color images capturing non-
installed window frames both indoors and outdoors (see Figure 2). 

• Construction Site Dataset (235 Images): Captured on a real-world construction site 
using inspector cellphone cameras, this dataset includes various installed window 
frame types and diverse conditions (see Figure 3). 

• Lab-1 Dataset (100 Images): Collected in a controlled lab environment using the Spot 
Robot’s PTZ camera, this dataset features a range of window frame samples with 
variations in colors, lighting conditions and angles (see Figure 4). 

• Lab-2 Dataset (80 Images): Focused on a single window frame within a cluttered lab 
setting, this dataset offers images captured at different zoom levels (see Figure 5). 

• Demo Site Dataset (500 Images): Captured at a construction site using the Spot Robot, 
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Figure 1. The framework of the window frame defect detection system (WFDD). The input com-
prises RGB images captured by the Spot Robot. The data augmentation module employs geometric
operations and applies different image enhancement techniques. The preprocessing module is then
employed to enhance the performance of the defect detection model. Within the detection module, de-
fects are identified among all detected window frames, with the output showcasing U-Net-generated
segmentation blobs.

The preprocessing module further enhances the defect detection model’s performance,
ensuring optimal results. Finally, within the detection module, defects are identified among
all detected window frames, with the output showcasing U-Net-generated segmentation
blobs, ultimately providing a comprehensive overview of detected defects within the
industrial setting. This holistic approach empowers the system to operate effectively in
dynamic and challenging environments, setting new standards for defect detection accuracy
and reliability.

3.1. Data Collection

Our dataset consists of 1356 original images sourced from five distinct datasets:

• Cellphone Dataset (441 Images): This dataset comprises color images capturing non-
installed window frames both indoors and outdoors (see Figure 2).

• Construction Site Dataset (235 Images): Captured on a real-world construction site
using inspector cellphone cameras, this dataset includes various installed window
frame types and diverse conditions (see Figure 3).

• Lab-1 Dataset (100 Images): Collected in a controlled lab environment using the Spot
Robot’s PTZ camera, this dataset features a range of window frame samples with
variations in colors, lighting conditions and angles (see Figure 4).

• Lab-2 Dataset (80 Images): Focused on a single window frame within a cluttered lab
setting, this dataset offers images captured at different zoom levels (see Figure 5).

• Demo Site Dataset (500 Images): Captured at a construction site using the Spot Robot,
this dataset encompasses multiple window frame types and a variety of lighting
conditions (see Figure 6).
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3.2. Data Labeling

Our data labeling process was meticulously designed to accurately identify defects
within the images. The manual labeling of images was conducted using the Roboflow
Platform [37]. Examples of labeled defects, including dents and scratches, are visually
depicted in Figures 5 and 6.

The labeling process is visualized in Figure 7. Following the meticulous labeling
procedure, images were stored in COCO format at a resolution of 500 × 500 pixels.
This curated labeled image dataset was an invaluable reference standard for our defect
detection methodology.

3.3. Geometric Data Augmentation

In the first stage, we leveraged geometric data augmentation techniques to enhance
dataset diversity and size. This process involved applying three geometric transformations:
anti-clockwise rotation, clockwise rotation, and horizontal flipping. By incorporating these
transformations, we expanded our dataset threefold, enriching the variety of samples
available for training and validation.
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3.4. Image Enhancement Techniques (IETs)

Our defect detection methodology incorporates a range of image enhancement tech-
niques (IETs) carefully selected to enhance the quality of input images before input into the
segmentation network. These techniques are pivotal in accentuating object details, reducing
noise, and optimizing overall image quality, thus facilitating more precise detection. Below
is an overview of the IETs employed in our approach:

• Shadow Removal (SR): To address shadow removal, we adopted the pre-trained dual
hierarchical aggregation network (DHAN) developed by Cun et al. [38], which is based
on VGG16 with the context aggregation network (CAN). This approach effectively
mitigates shadows, a common challenge in image quality.

• Color Neutralization (CN): CN plays a crucial role in ensuring a consistent foun-
dation for subsequent processing by harmonizing color variations across images,
promoting uniformity.

• Contrast Enhancement (CE): CE significantly enhances image clarity, making even
subtle defects more discernible. This enhancement aids in the accurate identification
of defects.

• Intensity Level Neutralization (IN): IN standardizes intensity levels across the dataset,
reducing disparities that could otherwise affect the analysis. This step contributes to
data consistency.

• CLAHE (Contrast-Limited Adaptive Histogram Equalization): CLAHE, a localized
contrast enhancement technique, enhances small-scale details while preserving over-
all image contrast. It improves the visibility of fine details without oversaturating
the image.

The choice of these five image enhancement techniques and our data augmentation
strategy was informed by extensive experimentation, explained in Section 4. We rigorously
assessed various combinations of techniques to ensure they collectively enhanced image
quality without introducing noise or misleading information. This careful selection process
ensures the reliability and effectiveness of our approach in the context of defect detection.

3.4.1. Shadow Removal (SR) Process

Harnessing the capabilities of the pre-trained dual hierarchical aggregation network
(DHAN) proposed by Cun et al. [38], we adeptly addressed the challenge of shadow
removal. The DHAN network, underpinned by the esteemed VGG16 architecture—a
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convolutional neural network archetype—employs the context aggregation network (CAN)
for encoding.

The DHAN network pinpoints and eliminates shadows from the imagery by orches-
trating dilation convolutions and leveraging hierarchical aggregation of multi-contextual
features. With weights furnished by the original authors, our application of the network
inference method effectively expunged shadows from the entire dataset, as elucidated in
Figure 8.
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3.4.2. Color Neutralization (CN)

It was imperative to refine the color definition within the dataset. Our approach
pivoted on the Von Kries chromatic adaptation transformation [39], a robust chromatic
adaptation methodology. This technique seamlessly transitions from source to target colors
within the LMS (long, medium, short) color spectrum. By adapting the RGB illuminant
color of dataset samples to varied illuminates, it preserves the pristine white color. This
equates to enhanced color consistency and bolsters feature extraction, as illustrated in
Figure 9.

Buildings 2024, 14, x FOR PEER REVIEW 9 of 20 
 

process ensures the reliability and effectiveness of our approach in the context of defect 
detection. 

3.4.1. Shadow Removal (SR) Process  
Harnessing the capabilities of the pre-trained dual hierarchical aggregation network 

(DHAN) proposed by Cun et al. [38], we adeptly addressed the challenge of shadow re-
moval. The DHAN network, underpinned by the esteemed VGG16 architecture—a con-
volutional neural network archetype—employs the context aggregation network (CAN) 
for encoding. 

The DHAN network pinpoints and eliminates shadows from the imagery by orches-
trating dilation convolutions and leveraging hierarchical aggregation of multi-contextual 
features. With weights furnished by the original authors, our application of the network 
inference method effectively expunged shadows from the entire dataset, as elucidated in 
Figure 8. 

 
Figure 8. Comparative sample using the shadow removal technique. 

3.4.2. Color Neutralization (CN) 
It was imperative to refine the color definition within the dataset. Our approach piv-

oted on the Von Kries chromatic adaptation transformation [39], a robust chromatic ad-
aptation methodology. This technique seamlessly transitions from source to target colors 
within the LMS (long, medium, short) color spectrum. By adapting the RGB illuminant 
color of dataset samples to varied illuminates, it preserves the pristine white color. This 
equates to enhanced color consistency and bolsters feature extraction, as illustrated in Fig-
ure 9. 

 
Figure 9. Comparative sample using the color neutralization technique. 

3.4.3. Contrast Enhancement (CE) 
Our image processing strategy concluded with a pivotal step—contrast enhance-

ment. By transmuting dataset samples into RGB channels, we embraced a histogram 
equalization approach [40]. This technique magnifies the visual fidelity of the image, mak-
ing defect spotting significantly more intuitive. The overall image contrast is augmented 

Figure 9. Comparative sample using the color neutralization technique.

3.4.3. Contrast Enhancement (CE)

Our image processing strategy concluded with a pivotal step—contrast enhancement.
By transmuting dataset samples into RGB channels, we embraced a histogram equalization
approach [40]. This technique magnifies the visual fidelity of the image, making defect
spotting significantly more intuitive. The overall image contrast is augmented by stream-
lining the histogram, translating it to an enriched feature representation, and consequently
enhancing it in the deep-learning phase, as showcased in Figure 10.
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3.4.4. Intensity Level Neutralization (IN)

The multi-scale Retinex (MSR) algorithm was brought to refine the intensity channel.
The outcome colors were fine-tuned such that the chromaticity mirrored the original snap-
shot. This meticulous filtration aids in preserving relative lightness, ensuring a harmonized
image intensity without any distortion to chromaticity and color composition.

Land and Maccan’s research [41] laid the groundwork for this approach. They postu-
lated that the visual cortex discerns relative, not absolute, lightness—nuances in localized
image segments.

Our adherence to this philosophy culminated in negating intensity variations that
might otherwise hamper feature extraction and image data processing, as captured in
Figure 11.
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3.4.5. Contrast-Limited Adaptive Histogram Equalization or CLAHE (CLAHE)

CLAHE plays a pivotal role in our novel strategy, enhancing image contrast by equal-
izing the histogram for each contextual region or tile in an image. This technique effectively
limits histogram amplification via clipping at a predefined limit. The crucial steps of the
CLAHE algorithm are as follows:

1. Divide the input image into non-overlapping tiles of size m × n, resulting in M × N tiles.
2. Perform histogram equalization on each tile, using the probability density function (PDF)

and cumulative distribution function (CDF) to distribute pixel intensities effectively.
3. Apply contrast limiting by clipping the histogram at a predefined limit, CL, to prevent

excessive amplification.
4. Conduct bilinear interpolation to eliminate artificial boundaries between tiles, result-

ing in a smoothly enhanced output image.

Our study applied the contrast-limited adaptive histogram equalization (CLAHE)
method to the luminance (L) channel within the lab color space. Results are shown in
Figure 12.
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3.5. IE-Enhanced Data Augmentation

We implemented an advanced data augmentation process involving an IE-enhanced
augmentation. For the second stage of data augmentation, we harnessed the power of 40 IE
combinations, including the ‘Normal’ dataset and results from five image enhancement
techniques (IETs) where the order of application was irrelevant. This comprehensive
approach created 40 distinct datasets, each representing a unique IE combination. These
augmented datasets played a vital role in training our model, enabling it to learn from
various enhanced variations, ultimately enhancing its defect detection capabilities. Notably,
this 40 included the 4! (4 factorial) combinations from the five IEs, and 16 additional
datasets were created by inserting CLAHE into the best-performing ones.

3.6. Defect Detection Model

Our defect detection model is a culmination of data augmentation and image enhance-
ment techniques strategies, meticulously designed to enhance its performance. The model
leverages a U-Net neural network architecture to segment defects within the input images
effectively. A detailed breakdown of our defect detection process is described as follows:

1. Data Preprocessing: Following data augmentation and IPT application, we preprocess
the images to prepare them for defect detection. These preprocessed images, post-IPT,
were resized to a standardized 500 × 500 pixel format.

2. Ground Truth-Guided Learning: During the training phase, our U-Net neural network
relied on ground truth masks. These masks serve as invaluable references, guiding
the network to detect defects with exceptional precision.

3. Intersection of Classes: Our defect detection is specifically tailored to identify defects
within window frames. We utilize the concept of the intersection of classes, ensuring
that our results exclusively represent defects inside the window frames.

4. Neural Network Architecture: Our neural network architecture is a fusion of two
powerful components: ResNet152 and U-Net. We employ transfer learning to harness
the feature extraction capabilities of ResNet152. Its encoder is utilized, with the last
layer discarded and then integrated with a decoder. This fusion results in an expansive
feature map that excels in defect localization.

5. Semantic Segmentation Model: The architecture of our deep learning-based semantic
segmentation model. This model combines the robustness of ResNet152 with the preci-
sion of U-Net, providing an ideal balance between feature extraction and localization.

Integrating U-Net with the feature-rich ResNet152 encoder enhances the model’s
ability to accurately detect defects within window frames, making it a formidable tool for
defect detection in industrial environments.

4. Experiments and Results

In this section, we delve into the practical aspects of our experiments, which aimed to
optimize defect detection in window frames through the strategic deployment of image en-
hancement techniques (IETs). Our objective was to evaluate the performance enhancements
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achieved by these strategies, comparing them against a baseline machine learning (ML)
model. To quantitatively assess the efficacy of our approach, we employed two key metrics:
the F1-score and IoU (intersection over union). The F1 score provides a balanced measure
of precision and recall, allowing us to gauge the accuracy of our defect detection model.
Additionally, IoU quantifies the overlap between predicted and ground truth defect regions,
offering insights into the model’s localization precision. Together, these metrics enable us
to comprehensively evaluate and present the results of our defect detection system.

4.1. Data Collection

To assess the efficacy of our IET-enhanced deep learning-based defect detection model,
we utilized the Spot Robot using Boston Dynamics in our experiments. This robotic
platform allowed us to capture high-resolution images of window frames under various
lighting conditions, enabling a comprehensive examination of defect detection in complex
real-world environments.

4.2. Experimental Setup

At the heart of our defect detection model lies the integration of image enhancement
techniques (IETs). Informed by insights from our experiments, we devised four distinct
methods and their synergistic combinations tailored for robust industrial-scale deployment.
These strategies draw from our findings in Experiments 1 and 2, wherein specialized
techniques and IET-based data augmentation played pivotal roles in improving the defect
detection accuracy.

4.3. Experiment 1: Integration of Image Enhancement Techniques

This experiment enhanced defect detection accuracy by optimizing our preprocessing
pipeline’s sequence of image enhancement techniques (IETs). We evaluated IETs individu-
ally and in various combinations.

The best strategies are summarized in Tables 1 and 2.

Table 1. Comparison of F1 scores for bend, dent, and scratch detection.

Process/Test Metrics
Bend Dent Scratch

F1-Score F1-Score F1-Score

Normal 0.857 0.648 0.529
Best IET Strategy 0.906 0.713 0.572

Improvement 5.70% 9.92% 8.11%

Table 2. Comparison of IoU scores for bend, dent, and scratch detection.

Process/Test Metrics
Bend Dent Scratch

IoU IoU IoU

Normal 0.848 0.627 0.473
Best IET Strategy 0.903 0.6945 0.518

Improvement 6.49% 10.70% 9.60%

4.3.1. Experiment 1 Results

In our pursuit of elucidating the factors behind our results, particularly concerning
performance disparities across different defect detection categories, we comprehensively ex-
plored over 40 image enhancement (IE) combinations. The derivation of this extensive set of
combinations involved a meticulous examination of 24 permutations of the 4 enhancement
techniques, each applied in varying orders—a total of 24 of the 4 factorials. Additionally, we
introduced the “CLAHE” (contrast-limited adaptive histogram equalization) enhancement
technique to the best 16 combinations, further enriching our analysis.

We present the top 10 image enhancement (IE) combinations for each defect out of the
over 40 combinations tested.
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Bend Detection Results

Table 3 shows the top 10 IE combinations with the highest F1 scores for bend detection.

Table 3. Bend F1 scores for IE combinations.

IE Combination Bend F1 Score

CLAHE + SR + CN + IN 0.9065
CLAHE + SR + IN + CE 0.8780

CLAHE + CE 0.8779
CLAHE + CE + IN 0.8734

CLAHE + SR + CE + IN + CN 0.8716
CLAHE + SR + IN 0.8702

CLAHE + SR 0.8663
CLAHE + SR + CE + CN + IN 0.8661

CE + IN + CN + SR 0.8661
CLAHE + SR + IN + CN 0.8575

Dent Detection Results

Table 4 presents the top 10 IE combinations with the highest F1 scores for dent detection.

Table 4. Dent F1 scores for IE combinations.

IE Combination Dent F1 Score

CLAHE + SR + IN + CE 0.7130
CLAHE + CN 0.7022
CLAHE + IN 0.6773
CE + CN + IN 0.6749
SR + IN + CE 0.6699

CLAHE + IN + CE 0.6719
CLAHE + CN + IN + CE 0.6706

CE + CN 0.6683
CLAHE + SR + CN + IN 0.6633

SR + IN + CE + CN 0.6696

Scratch Detection Results

Table 5 displays the top 10 IE combinations with the highest F1 scores for scratch detection.

Table 5. Scratch F1 scores for IE combinations.

IE Combination Scratch F1 Score

CE + CN + IN 0.5721
CLAHE + IN 0.5721

IN + CE 0.5703
SR + IN 0.5696

CLAHE + SR + IN + CE 0.5689
CE + CN 0.5672

IN + CE + CN 0.5672
CN 0.5672

CLAHE + IN + CE 0.5664
SR + IN + CE + CN 0.5662

4.3.2. Experiment 1 Insights

This thorough exploration allowed us to systematically evaluate a broad spectrum
of enhancement strategies and their influence on defect detection performance. From this
exhaustive analysis, the following key insights emerged:

• IE Strategy Effectiveness: The most notable discovery revolves around the substantial
enhancements observed in F1 and IoU scores across all defect categories (bend, dent,
and scratch) when implementing the ‘Best IE Strategy’. The improvement in dent
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detection is particularly striking, showcasing a remarkable 9.92% increase in the
F1 score and an impressive 10.70% surge in the IoU score. This underscores the
pivotal role of tailored image enhancement strategies in effectively addressing specific
defect characteristics, particularly those highly susceptible to lighting conditions, as
exemplified by the dent defects.

• Overall Improvement: On average, our model featuring the “Best IE Strategy” con-
sistently outperformed the baseline U-Net model, achieving a noteworthy 7.67%
improvement in F1 scores and an impressive 8.60% enhancement in IoU scores. This
serves as compelling evidence for the efficacy of integrating IE techniques into the
defect detection pipeline.

• Performance Variability: It is crucial to acknowledge that the magnitude of improve-
ment varied across defect categories. This variability emphasizes the need for adapt-
able defect detection systems capable of accommodating the diverse characteristics
and challenges associated with different defect types.

• Enhancement Strategies: A consistent trend emerges in our findings, revealing that
the combination of image enhancement techniques consistently enhances F1 scores
and precision. This underscores the intrinsic value of systematic experimentation in
optimizing image enhancement for defect detection.

• CLAHE Success: The “CLAHE” technique consistently played a pivotal role in en-
hancing F1 scores and precision across various defect categories. This reaffirms its
significance in improving detection accuracy and highlights its effectiveness.

• Trade-offs and Context: It is essential to strike a balance between accuracy and local-
ization precision, as certain enhancements may influence IoU values differently. This
trade-off consideration underscores the need for a nuanced approach in selecting and
fine-tuning enhancement techniques based on specific detection requirements.

• Fine-tuning Opportunities: The results underscore the potential for further customiza-
tion by exploring enhancement combinations and adjustments to model architectures.
This fine-tuning process holds the key to optimizing defect detection systems for
specific application contexts.

In summary, our meticulous exploration of over 40 IE combinations, driven by
24 permutations of the 4 enhancement techniques and incorporating “CLAHE” into the
best 16 combinations, provides a robust foundation for understanding the intricate rela-
tionship between image enhancement strategies and defect detection performance. These
findings offer valuable insights into the dynamic interplay of enhancement techniques in
optimizing the accuracy and precision across diverse defect categories.

4.4. Experiment 2: IE-Data Augmentation and Results

In Experiment 2, we investigated the impact of IE (image enhancement) as a data aug-
mentation technique on object detection performance across various categories, including
bend, dent, and scratch. IE-based data augmentation involves enhancing the quality and
features of input images before applying object detection algorithms.

4.4.1. Experiment 2 Results

This subsection discusses the findings and insights gained from this experiment. These
results are visualized in Tables 6 and 7.

We exhaustively explored 30 IE combinations to identify the most effective strategies.
The outcomes of the top 10 IE combinations are presented in Tables 8–10. Our approach
resulted in over 30 combinations tested, as we initially generated 24 combinations using the
permutations of 4 enhancement techniques (4 factorial) and subsequently inserted CLAHE
into the 6 best-performing combinations. This approach ensured a thorough evaluation
of enhancement strategies, considering their individual and collective impact on defect
detection performance. Table 8 presents the top 10 combinations of Image Enhancement (IE)
techniques that yield the highest F1 scores for detecting bends. Similarly, Table 9 continues
this analysis, showcasing the top 10 IE combinations with the highest F1 scores specifically
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for scratch detection. Meanwhile, Table 10 focuses on the top 10 IE combinations that have
achieved the best F1 scores for detecting dents.

Table 6. Comparison of F1 scores for bend, dent, and scratch detection in Experiment 2.

Process/Test Metrics Bend F1 Dent F1 Scratch F1

Normal 0.877 0.706 0.570
Best IE 0.980 0.7122 0.626

Improvement 11.65% 0.83% 9.82%

Table 7. Comparison of IoU scores for bend, dent, and scratch detection in Experiment 2.

Process/Test Metrics Bend IoU Dent IoU Scratch IoU

Normal 0.872 0.683 0.507
Best IE 0.980 0.691 0.669

Improvement 12.33% 1.13% 31.84%

Table 8. Top 10 image enhancement combinations for bend defect.

IE Combination Bend F1 Score

CE 0.98
CN + IN + CE 0.95855

SR 0.936037
SR + CE 0.926856

SR + CN + CE 0.913967
SR + IN + CE 0.882706

SR + CN + IN + CE 0.889351
CN + CLAHE 0.883122385

CN + CE + CLAHE 0.855731428
IN + CLAHE 0.860007882

Table 9. Top 10 image enhancement combinations for the scratch defect.

IE Combination Scratch F1 Score

CN 0.547862
SR + CE 0.494919
CN + CE 0.480775

CE + CLAHE 0.453691274
SR + IN + CE + CLAHE 0.54746002

SR + CN + IN + CE + CLAHE 0.564718306
SR + CN + CE + CLAHE 0.538104832
SR + CN + IN + CLAHE 0.577393591

IN + CLAHE 0.585907996
CN + IN + CE + CLAHE 0.590137661

Table 10. Top 10 image enhancement combinations for the dent defect.

IE Combination Dent F1 Score

CLAHE + SR + IN + CE 0.7130
CLAHE + CN 0.7022
CLAHE + IN 0.6773
CE + CN + IN 0.6749
SR + IN + CE 0.6699

CLAHE + IN + CE 0.6719
CLAHE + CN + IN + CE 0.6706

CE + CN 0.6683
CLAHE + SR + CN + IN 0.6633

SR + IN + CE + CN 0.6696
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4.4.2. Experiment 2 Insights

Experiment 2 introduced a distinct dimension to our exploration by employing image
enhancement (IE) techniques not only to enhance the quality of the existing data but also
to create new data samples through augmentation. This innovative approach provided
valuable insights into the interplay between IE techniques and defect detection performance,
particularly in the context of industrial applications.

• Impact of Image Enhancement Techniques: We assessed the influence of individual
image enhancement techniques (e.g., CE, IN, CN, SR, and CLAHE) on object detection
accuracy. These techniques exhibited varying effects on IoU scores, highlighting
trade-offs between localization accuracy and detection precision.

• Combination Strategies: Combinations of enhancement techniques, such as “CN + CE”
and “SR + IN”, were explored to evaluate their impact on detection performance.
Different combinations produced diverse outcomes, emphasizing the complexity of
selecting the right strategy.

• CLAHE Effectiveness: CLAHE consistently improved IoU values across multiple
detection categories, underscoring its importance in enhancing accuracy and precision.

• Comprehensive Combinations: Comprehensive combinations like “SR + CN + IN +
CE + CLAHE” were investigated to identify strategies with strong overall performance
regarding IoU scores, but their complexity warrants careful evaluation.

• Balancing Trade-offs: IE-based data augmentation involves balancing improved IoU
scores and detection accuracies. Some techniques may favor one aspect, requiring
thoughtful adaptations to specific detection needs.

• Comparison of F1 and IoU Scores: We compared F1 and IoU scores for bend, dent, and
scratch detection under “Normal” and “Best IE” strategies. Our strategy consistently
improved both scores, enhancing detection accuracy.

In summary, IE-based data augmentation significantly enhances object detection
accuracy and precision. The enhancement techniques and combinations should align
with the specific detection goals and trade-offs that are set. Experiment 2 highlights the
importance of IE-based data augmentation and its potential to improve object detection
performance substantially.

4.5. Experiment 1 vs. Experiment 2: A Comparison
4.5.1. Experiment 1 Insights

• Category-Specific Improvement: Experiment 1 showed significant F1 score improve-
ments for bend (5.70%), dent (9.92%), and scratch (8.11%) detection, highlighting the
importance of tailored enhancement strategies.

• IoU Improvement: IoU scores were improved, with bend IoU and dent IoU increasing
by 6.49% and 10.70%, respectively, and scratch IoU improving by 9.60%.

• Model Architecture Impact: Our model consistently outperformed U-Net, emphasiz-
ing the role of the model’s architecture.

4.5.2. Experiment 2 Insights

• IE-Based Data Augmentation: Experiment 2 introduced IE-based data augmentation,
resulting in substantial F1 and IoU score improvements across all defect categories.
Notably, the scratch detection F1 score improved by 9.82%.

• Category-Specific Improvement: Category specific enhancement, with bend F1 and
dent F1 scores showing notable increases (11.65% and 0.83%, respectively).

• IoU Improvement: IoU scores were improved, with bend IoU and dent IoU in-
creasing by 12.33% and 1.13%, respectively, and scratch IoU showing a remarkable
31.84% improvement.

• Overall Model Performance: Our model enhanced with IE-based data augmentation
outperformed the baseline U-Net model, with a 7.43% improvement in the F1 score
and a substantial 15.10% improvement in IoU scores.
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4.5.3. Comparative Insights

Both experiments emphasize the importance of tailored strategies and model archi-
tecture choices in defect detection. Experiment 2’s IE-based data augmentation approach
demonstrated superior results, particularly in improving IoU scores, making it a promising
avenue for enhancing defect detection accuracy in complex environments. The insights
from both experiments contribute to the understanding of how image enhancement tech-
niques can be seamlessly integrated into deep learning architectures for defect detection.

5. Discussion

Our extensive experiments have underscored the significant impact of image enhance-
ment (IE) techniques on enhancing defect detection accuracy and offered crucial insights
for their application in industrial contexts. Our findings’ implications extend to industrial
quality control, where precise defect identification is paramount.

In Experiment 1, we unequivocally demonstrated the effectiveness of tailored enhance-
ment strategies. These strategies led to substantial improvements in both F1 and IoU scores
across all defect categories. The marked enhancement in dent detection, with a notable
9.92% increase in the F1 score and a 10.70% surge in the IoU score, emphasizes the value
of personalized enhancement techniques. These findings underscore the importance of
making informed choices when selecting enhancement methods, thereby optimizing defect
detection accuracy.

Building on the insights from Experiment 1, Experiment 2 introduced an innovative
concept—IE-based data augmentation. This novel approach further elevated detection
performance, particularly in improving IoU scores. The implications of this experiment
are profound, as they suggest a promising avenue for substantially enhancing defect
detection accuracy in complex industrial environments. In industrial settings where precise
localization of defects is critical, the improved IoU scores offer a compelling advantage.

The practical implications of these insights for industrial applications are significant.
Our research highlights the transformative potential of seamlessly integrating IE techniques
into deep learning architectures for defect detection. By doing so, we not only enhance
the accuracy of defect detection but also open valuable opportunities for fine-tuning
and optimizing industrial quality control processes. Our findings offer a path to more
reliable and effective quality control in the industrial sector, where even minor defects can
compromise product quality, reputation, and safety. The ability to detect defects accurately,
particularly in challenging environments with varying lighting conditions and defect types,
is essential for ensuring product excellence and safety.

In conclusion, our experiments provide valuable guidance for implementing IE tech-
niques in industrial defect detection, showcasing their potential to revolutionize the field.
These insights promise to enhance the accuracy and efficiency of quality control processes,
ultimately benefiting industrial applications and contributing to improved product quality
and safety.

6. Conclusions

In conclusion, our study has illuminated a path of profound significance in industrial
defect detection by integrating image enhancement (IE) techniques with deep learning.
Our research is not just a scientific endeavor; it is a practical solution that holds transfor-
mative implications for industries relying on precise defect identification in challenging
operational environments.

Across two comprehensive experiments, we have emphasized the critical importance
of customization, underlining the necessity of tailoring enhancement strategies to specific
defect categories. Furthermore, we have highlighted the pivotal role played by the selection
of model architecture, showcasing how it can influence the accuracy and precision of defect
detection. Experiment 2, introducing IE-based data augmentation, has emerged as an
innovative development. It has yielded remarkable improvements in F1 and IoU scores,
offering a novel method for enhancing detection accuracy in complex industrial settings.
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This innovative approach unlocks the potential for industries to significantly elevate their
product quality and bolster their production efficiency by ensuring precise defect detection.

Our research is not confined to theoretical insights; it provides practical solutions for
real-world challenges. We have demonstrated that industries can achieve more accurate
and reliable defect detection with the right combination of enhancement techniques and
thoughtful adaptations. As computer vision continues to evolve, our findings offer a
clear roadmap for implementing advanced defect detection systems, ultimately enhancing
product quality, safety, and operational efficiency within industrial settings. There are
numerous avenues for future research, including expanding datasets to encompass a
broader range of defect types and operational conditions, exploring adaptive strategies for
automatic technique selection, and integrating our enhanced defect detection approach
into real-time industrial quality inspection using mobile robots.

In summary, our research signifies a pivotal moment in the domain of image enhance-
ment techniques for industrial defect detection. It provides practical solutions and novel
insights that empower industries to embrace cutting-edge technology, ensuring product
excellence, reputation protection, and efficient production processes. Our journey has
just begun, and we look forward to further advancing the field and driving excellence in
industrial quality control.
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