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Abstract: This study proposes a deep learning model utilizing the BACnet (Building Automation
and Control Network) protocol for the real-time detection of mechanical faults and security vulnera-
bilities in building automation systems. Integrating various machine learning algorithms and outlier
detection techniques, this model is capable of monitoring and learning anomaly patterns in real-time.
The primary aim of this paper is to enhance the reliability and efficiency of buildings and indus-
trial facilities, offering solutions applicable across diverse industries such as manufacturing, energy
management, and smart grids. Our findings reveal that the developed algorithm detects mechanical
faults and security vulnerabilities with an accuracy of 96%, indicating its potential to significantly
improve the safety and efficiency of building automation systems. However, the full validation of the
algorithm’s performance in various conditions and environments remains a challenge, and future
research will explore methodologies to address these issues and further enhance performance. This
research is expected to play a vital role in numerous fields, including productivity improvement, data
security, and the prevention of human casualties.

Keywords: ICS (industrial control system); BAS (building automation system); BACnet protocol;
cybersecurity; smart buildings; fault detection

1. Introduction

In today’s increasingly complex and interconnected world, the architecture of build-
ings and industrial facilities has undergone significant changes [1,2]. Not only have these
structures expanded in scale, but the systems that manage them have become very com-
plex [3,4]. This is driving the demand for sophisticated building automation and control
systems [5–7]. BACnet is an essential component among the various protocols that drive
this. It plays an indispensable role in seamlessly integrating and managing various subsys-
tems, including heating, ventilation, air conditioning (HVAC), lighting control, and safety
and security systems [8–12]. However, the complexity of these integrated systems creates
a number of problems that are difficult to overlook [13]. Among them are mechanical
anomalies and security vulnerabilities that can seriously compromise the reliability and
efficiency of the entire system [14]. These problems can have a series of serious conse-
quences, including productivity degradation, data leakage, and in extreme cases, loss of
life [15,16]. Therefore, the main objective of this study is to develop a robust algorithm
that can quickly and accurately detect mechanical anomalies and security vulnerabilities
in building automation systems using the BACnet protocol. For this purpose, we utilized
state-of-the-art machine learning algorithms and data analysis methodologies. These tools
are used to design algorithms that can be monitored in real-time by learning anomalies and
patterns of anomaly behavior. The second goal of this study is to extend the applicability
of the findings. In addition to building management, we believe that this algorithm can
be applied to various industries such as manufacturing, energy management, and smart
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grids [17–19]. This can greatly improve the universality of our findings. The main contri-
bution of this thesis is the development and evaluation of a deep learning model for the
real-time detection of mechanical faults in building network systems.

• First, this research leveraged deep learning to develop a model that achieves sig-
nificantly higher accuracy and efficiency than traditional fault detection methods,
particularly through the process of adding noise to the data to improve the model’s
generalization performance.

• Second, the paper goes beyond simply detecting a single defect and presents a strategy
that can cope with many different defect situations. This allows for high performance
not only for single faults but also for complex multi-fault situations. This is of great
practical significance as it provides concrete suggestions on how to maintain high
performance in these various situations.

• Third, the model developed in this study is designed for practicality and scalability.
The model can be easily applied to real building network systems, allowing building
managers or system engineers to make faster and more accurate decisions. This is
expected to improve the reliability and efficiency of the overall building network
system. Our model is designed to operate smoothly with the addition of new HVAC
and AHU equipment to building network systems. This ensures efficient operation,
even as the complexity and size of the system increase.

This paper consists of six chapters in total. Section 1, the ‘introduction’, details the
background, necessity, and purpose of the study. In Section 2, ‘Related Work’, we review
existing studies on anomaly detection and BACnet to explain how this work provides
new value. Section 3 details the research ‘Methodology’ used in this study. One can learn
more about how to collect and preprocess data, and how to design and implement the
model. Section 4 focuses on ‘Experiments and Results’. It analyzes the various experiments
conducted in this study and their results to assess whether the study objectives have been
achieved. Section 5 ‘Discussion’ the limitations of the study results and the direction of
future research. Through this, we would like to recognize the limitations of this study and
suggest future research directions. Finally, Section 6 summarizes the main findings and
‘Conclusion and Future Work’ of this study. This paper proposes a new way to increase the
reliability, efficiency, and scalability of building automation and control systems through
this configuration and verifies its practical applicability.

2. Related Work
2.1. Machine Anomaly Detection Research

Machine anomaly detection continues to be a hot research topic in both industry
and academia. In its early stages, anomaly identification was primarily based on statis-
tical methodologies, analyzing simple characteristics and patterns in the data to identify
anomalies [20,21]. While these approaches were effective for detecting simple and ob-
vious anomalies, they were limited when it came to complex or unexpected anomalies.
However, with the advancement of machine learning algorithms, various techniques
such as Support Vector Machines (SVM), K-Nearest Neighbors (K-NN), and Decision
Trees began to be increasingly applied to anomaly detection [22–25]. More recently, deep
learning techniques, especially various forms of neural networks, have been excelling in
anomaly detection [26,27]. These deep learning models are highly capable of handling
high-dimensional and complex data and are also useful for real-time monitoring and pre-
diction [28]. Machine anomaly detection is being used in a wide variety of applications,
including industrial robots, manufacturing processes, and energy systems, which further
emphasizes its importance [29–33]. Furthermore, anomaly detection is also an important re-
search topic in network security and information security [34]. Initially, intrusion detection
systems (IDS) primarily used rule-based methods to detect known attack patterns based on
predefined rules [35]. While these methods performed well against known attack types,
they were vulnerable to new types of attacks or complex attack patterns. Typically, there are
“Zero-Day Attacks” using unknown vulnerabilities, or “Multi-Vector Attacks” that attempt
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multiple attacks simultaneously. To address this, new technologies such as anomaly-based
analysis and state protocol analysis are being researched, and these approaches can identify
more diverse and complex anomaly patterns by incorporating machine learning algorithms.
These techniques, which perform well even on real-time data streams, can be utilized in a
variety of applications and systems.

2.2. Research with BACnet

BACnet is a widely used protocol for building automation and control, initially focused
on HVAC and lighting control [36]. It has since expanded to include energy management,
smart grid connectivity, and Internet of Things (IoT) integration [37,38]. Kaur et al. focus on
the BACnet protocol and list several possible attacks that can occur on BACnet networks,
such as network flooding, traffic redirection, and rerouting [39]. Holmberg aims to raise
awareness of the threats involved when connecting building control systems (especially
BACnet systems) to a wider network. He presents countermeasures to combat security
threats and provides information on current BACnet security and planned developments
to improve security. The work also provides an overview of the use of firewalls, VPNs,
intrusion detection systems, and security policies [40]. However, there is a relative lack of
research on the security and anomaly detection aspects of BACnet. Most research focuses on
the communication efficiency, compatibility, and scalability of BACnet, while the anomaly
detection and security aspects are relatively neglected. Against this background, research
on anomaly detection using BACnet is becoming increasingly important and requires the
development of new approaches and algorithms.

3. Methodology

As shown in Figure 1, this study aims to develop a model that predicts and detects
possible mechanical defects in real time within the building’s automation system and
network. We focus on various types of mechanical faults that may occur in HVAC systems,
Air Handling Units (AHU), and energy management systems. These faults can have
catastrophic consequences, such as the inefficient use of energy or, in severe cases, damage
to the system, making their prevention and rapid response critical. To build the model, we
first collect health information on the building network and mechanical devices at 10 min
intervals using high-performance sensors and data collection devices. The collected data
are stored in a local database and used as the source data for further analysis. Based on this
data, data preprocessing and feature engineering are performed to transform the data into
a form that is easy to analyze.
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As shown in Figure 2, this study demonstrates a model design that can detect me-
chanical failures using a total of 60 min of data, and this is performed by resampling and
analyzing six consecutive data points every 10 min. The reason is that if failure occurs in
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an actual building operation situation, the impact accumulates over a period of time, so it
is more accurate to comprehensively analyze the data over a period of time than to analyze
simple instantaneous data. Because a minimum detection time of 10 min is set for each
rule and interval A and interval B are compared, the fault lasts for a total of 60 min if the
same fault occurs in six successive intervals (three A intervals and three B intervals). The
maximum allowable time for the scenario set in this study is 1 h, and the time required to
restore the system to its original state after the failure proposed by NREL is 2 h. In this
study, we would like to use this methodology to propose a practical model for detecting
mechanical failures in building networks that are expected to have a positive effect on the
energy efficiency of buildings.
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3.1. The Dataset

In this study, a special simulation platform was used to analyze the impact of cyberse-
curity threats on the building’s mechanical systems. The simulation is based on a reference
building model from the U.S. Department of Energy (DOE), reproducing a cyberattack
scenario through a log device. Network data and building physical health data obtained in
this process provide great help in a clear understanding the real impact of cyberattacks and
their causes. ‘A dataset of cyber-induced mechanical faults on buildings with network
and buildings data’ [41] provided by NREL was first utilized. This dataset contains var-
ious mechanical conditions and network data for the building and has the advantage of
reproducing complex real-world situations. Given these characteristics, it was considered a
suitable dataset for the purpose of this study.

The simulation was run through a tool called ‘Alfalfa’, which not only allows you to
query various pieces of state information of the building but also provides an interface
function that applies external inputs to the model. This Alfalfa tool, in conjunction with the
Building Automation System (BAS), centrally manages building health information and
delivers necessary control commands to other BACnet devices. For example, BAS receives
data from Alfalfa, such as building temperature, humidity, and energy usage, and controls
BACnet devices such as air conditioners and dampers.

The dataset in this study comprehensively includes various variables and state changes
that occur during these simulations, as well as the impact of malicious attackers on the
system. Specifically, it contains detailed information about how an attacker distorts or
interferes with BAS control commands and what mechanical faults occur in the building
system as a result.

Table 1 is the ‘Experimental Scenario’ dataset provided by NREL that describes the
various failure situations that occur in a building’s HVAC systems, and which includes the
following key columns.
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Table 1. Description of columns in ‘Experimental Scenarios’.

Column Name Description

Model Building model name
Weather Source of weather data
System Loop System loop (e.g., air side)
Equipment Related equipment (e.g., AHU)
Scenario Number Scenario number
Scenario Name Name of the scenario
Fault Explanation Explanation of the fault
Fault Expression Logical conditions to activate the fault
Required Variables Variables required to determine the fault
Equivalent Point Name Column name in the actual dataset corresponding to the required variables
Impact Potential impact of the fault
Warmup Time required to stabilize the system before applying the fault
Attack Run Time Duration the fault lasts
Cooldown Time required to restore the system to its original state after the fault
Scenario Season Season in which the fault occurs
Fault Injecting Scenario Method of injecting the fault
Expected Response Expected system response to the fault
Attack Type Type of attack causing the fault

Table 2 shows that ‘Experimental Scenarios’ provides detailed information about
various experimental conditions and variables. First, “Fault Expression” according to
“Scenario Name” is also described in detail. Not only does this information help in a clear
understanding of the situation each scenario is trying to simulate, but it also explains why it
is important to predict the likelihood of failure conditions. Next, the item “Impact” analyzes
in depth the potential impact of each failure situation on the building’s mechanical system.
This analysis provides a credible basis for which cyberattacks can have a catastrophic
impact on building systems. Finally, the “Cool Down” section specifies the time required to
stabilize the system before applying the failure. In addition to designing experiments, this
information serves as an important reference for developing effective response strategies to
real-world cyber threat situations.

Table 2. Part of the ‘Experimental Scenarios’.

Scenario Name Impact Cool Down Fault Expression

Cooling Coil Valve Stuck
Closed

Insufficient cooling,
occupant thermal discomfort 2 h

x = IF outside air temp > 35
& Supply air flowrate > 0
& Chilled water Valve Command > 50 pct
& (discharge air temperature
> discharge air temperature setpoint + 5)
for 30 min THEN 1 ELSE 0

Heat Cool Operation without
Min OA Damper Energy waste 2 h

x = IF Supply air flowrate > 0 is ON
& hot water valve command > 0
& chilled water valve command > 0)
for 15 min THEN 1 ELSE 0

Cooling Coil Valve Stuck
Open

Space over cooling,
occupant thermal discomfort,
energy waste

2 h

x = If Supply air flowrate > 0
& Chilled water Valve command = 0
& (discharge air temperature
< discharge air temperature setpoint - 5)
for 30 min THEN 1 ELSE 0

OA Damper Stack Open Energy waste 2 h

x = If unit is ON or Supply air flowrate > 0
& outside air damper command is CLOSED
& (abs (Return air temperature
- Mixed air temperature) > 5)
for 30 min THEN 1 ELSE 0
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Table 2. Cont.

Scenario Name Impact Cool Down Fault Expression

Low Supply Fan Speed Under heating/cooling 2 h

x = If Discharge Air Flows > 0
& Supply fan Speed command < 100%
& (discharge air Static Pressure
< discharge air Static pressure setpoint - 0.25)
for 1 h THEN 1 ELSE 0

High Supply Fan Speed Energy waste 2 h

x = If Discharge Air Flows > 0
& Supply fan Speed command = 100%
& (discharge air Static Pressure
> discharge air Static pressure setpoint + 0.25)
for 1 h THEN 1 ELSE 0

3.2. Data Analysis

As you can see in Table 3, each of the six Fault Names identified through data analysis
has a different Fault Description, and they are categorized by relying on certain Variables.
These ‘Variables’ are variables that are directly measured or monitored in the dataset
to analyze the nature and cause of the fault. Therefore, the accurate measurement and
monitoring of these variables plays a very important role in the correct detection and
classification of faults. Therefore, the main objective of this research is the detection of six
different ‘Fault Names’.

Table 3. Fault analysis table.

Rule_Id Scenario_Name Fault Description Variables

1 Cooling Coil Valve Stuck Closed This fault occurs when the cooling coil valve
is closed, leading to insufficient cooling.

weaSta_reaWeaTDryBul_y
hvac_oveAhu_yCoo_y
hvac_oveAhu_TSupSet_y
hvac_reaAhu_TSup_y
hvac_reaAhu_V_flow_sup_y

2 Heat Cool Operation without
Min OA Damper

This fault occurs when the cooling valve and
hot water valve are both open, leading to

energy waste.

hvac_oveAhu_yCoo_y
hvac_oveAhu_yHea_y
hvac_oveAhu_yOA_y
hvac_reaAhu_V_flow_sup_y

3 Cooling Coil Valve Stuck Open This fault occurs when the cooling coil valve
is open, leading to excessive cooling.

hvac_oveAhu_yCoo_y
hvac_reaAhu_TSup_y
hvac_oveAhu_TSupSet_y
hvac_reaAhu_V_flow_sup_y

4 OA Damper Stack Open This fault occurs when the outdoor air
damper is open, leading to energy waste.

hvac_reaAhu_TMix_y
hvac_oveAhu_yOA_y
hvac_reaAhu_TRet_y
hvac_reaAhu_V_flow_sup_y

5 Low Supply Fan Speed This fault occurs when the supply fan speed
is too low, leading to insufficient airflow.

hvac_oveAhu_dpSet_y
hvac_reaAhu_dp_sup_y
hvac_oveAhu_yFan_y
hvac_reaAhu_V_flow_sup_y

6 High Supply Fan Speed This fault occurs when the supply fan speed
is too high, leading to energy waste.

hvac_oveAhu_dpSet_y
hvac_reaAhu_dp_sup_y
hvac_oveAhu_yFan_y
hvac_reaAhu_V_flow_sup_y

3.3. Variable Selection

In this study, only 13 important variables were selected from a total of 96 columns and
used for analysis. This choice was based on several key reasons. First, high-dimensional
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data reduced the number of variables because they increased computational complexity
and increased the risk of overfitting the model. Second, to clearly interpret the analysis
results, we chose only the variables most directly related to the purpose of the analysis,
excluding non-critical variables. Third, the fewer variables selected, the shorter the model’s
learning and prediction time, resulting in more computational efficiency. Finally, to increase
the reliability of the analysis, we removed unnecessary variables that could be noise. In this
way, we were able to increase the efficiency and accuracy of our research at the same time.

Table 4 lists the 13 variables required for this study and their descriptions. These
selected variables consider the building’s HVAC system, weather conditions, and various
mechanical factors, and we believe they are well suited to the objectives of this study. The
variable selection process was an important step in improving the predictive performance
and computational efficiency of this study.

Table 4. Selected variables.

Variable Name Explanation

Time Time Stamp of the Data
weaSta_reaWeaTDryBul_y Outside Dry Bulb Temperature from Weather Station

hvac_reaAhu_V_flow_sup_y Supply Air Flow Rate from AHU (Air Handling Unit)
hvac_oveAhu_yCoo_y Cooling Command from AHU
hvac_reaAhu_TSup_y Supply Air Temperature from AHU

hvac_oveAhu_TSupSet_y Setpoint for Supply Air Temperature from AHU
hvac_oveAhu_dpSet_y Setpoint for Differential Pressure from AHU
hvac_oveAhu_yFan_y Fan Status from AHU
hvac_oveAhu_yHea_y Heating Command from AHU
hvac_oveAhu_yOA_y Outside Air Command from AHU
hvac_reaAhu_TMix_y Mixed Air Temperature from AHU
hvac_reaAhu_TRet_y Return Air Temperature from AHU

hvac_reaAhu_V_flow_ret_y Return Air Flow Rate from AHU

3.4. Characteristic Engineering

To determine the variables in the model, we focused on characteristic engineering.
In this step, we selected and combined existing variables based on 13 previously selected
variables. This can be valid for understanding the correlation between each variable and
for various situations and conditions in complex building systems.

Table 5 adds extra variables, focusing on characteristic engineering. For example,
we introduced a binary property that returns 1 if the value of a particular property ex-
ceeds a predefined threshold, or 0 otherwise. The new characteristics created in this way
contributed to improving the predictive performance of the model.

Table 5. Final variables.

Variable Name Explanation

Time Time Stamp of the Data
weaSta_reaWeaTDryBul_y Outside Dry Bulb Temperature from Weather Station

hvac_reaAhu_V_flow_sup_y Supply Air Flow Rate from AHU (Air Handling Unit)
hvac_oveAhu_yCoo_y Cooling Command from AHU
hvac_oveAhu_yFan_y Fan Status from AHU
hvac_oveAhu_yHea_y Heating Command from AHU
hvac_oveAhu_yOA_y Outside Air Command from AHU

Extra_1 hvac_reaAhu_TSup_y > hvac_oveAhu_TSupSet_y +5
Extra_2 hvac_reaAhu_TSup_y < hvac_oveAhu_TSupSet_y - 5
Extra_3 hvac_reaAhu_TRet_y - hvac_reaAhu_TMix_y > 5
Extra_4 hvac_oveAhu_dpSet_y < hvac_reaAhu_dp_sup_y - 0.25
Extra_5 hvac_oveAhu_dpSet_y > hvac_reaAhu_dp_sup_y - 0.25
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3.5. Poisson Distribution

We calculated the probability of occurrence of each rule using Poisson distribution.
This distribution quantitatively assessed the frequency and importance of the rules. The
parameters of the distribution were set by referring to the characteristics of the dataset. The
probability of k events in the interval, P(X = k), is expressed as follows:

P(X = k) =
λk·e−λ

k!
(1)

where λ is the average rate of events per interval (also known as the rate parameter) and k!
is the factorial of k.

The use of the Poisson distribution in our study is particularly justified due to its
suitability in modeling the frequency of events in complex systems like building networks.
This distribution is a perfect fit for several reasons. Firstly, the Poisson distribution is ideal
for situations where events occur independently. In the context of building network systems,
this is a crucial factor since faults and vulnerabilities, such as failures of “cooling coil valve
fails” or “outside air damper is open”, usually occur without any direct correlation to one
another. The Poisson distribution captures this aspect of independence effectively, allowing
for a more accurate representation and analysis of these events. Secondly, the randomness
of event occurrences in building networks is another critical aspect well-handled by the
Poisson distribution. These systems are subject to a variety of faults and vulnerabilities
that appear at unpredictable intervals. The Poisson distribution, with its ability to model
random occurrences within a defined time frame, offers a reliable way to predict the
frequency of these events. This ability to handle randomness is especially important
for creating models that can anticipate and prepare for a wide range of potential issues.
Additionally, the Poisson distribution is beneficial in quantitatively assessing the frequency
and importance of different rules or events within the system. By setting the parameters of
the distribution based on the characteristics of the dataset, it becomes possible to obtain a
nuanced understanding of how often certain types of faults or vulnerabilities might occur.
In summary, the choice of the Poisson distribution aligns well with the nature of building
network systems, where faults and vulnerabilities occur independently and randomly. It
provides a statistically sound method to handle the complexity of these systems and offers
a way to estimate the probability of each event occurring more accurately. This makes the
Poisson distribution an invaluable tool in our analysis, enhancing the overall reliability and
effectiveness of our modeling approach.

3.6. Noise Addition

Adding noise is an important way to increase the generalization power of a machine
learning model. Generalization means that the model is not limited to the training data,
but also performs well on new data. This is very important because it determines how
useful the model will be in the real world. Preventing overfitting is one of the main goals
of adding noise. Overfitting typically results in poor performance, with new input as a
model is excessively fitted by training data, resulting in poor performance on new data.
By adding noise to prevent this, the model is forced to pay more attention to the general
characteristics of the training data. Data augmentation is also an important purpose of
adding noise. In situations where data are sparse, adding noise artificially increases the
amount of data available, allowing the model to learn different patterns. Adding noise
also has the effect of making the model more robust. Real-world data is often noisy, and
training a model with noisy data improves the model’s robustness to that noise. In this
study, we added a normally distributed noise with a mean of 0.5 to the training data to add
noise similar to the distribution of the original data and a standard deviation of 0.001 to
prevent the noise from overfitting the model without significantly affecting the original
data. We also added noise by setting 5% of the total data as outliers, which allows the
model to cope well with outliers and minor noise. This strategy has multiple benefits: it
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improves the model’s generalization ability, prevents overfitting, and makes it more robust
to real-world data.

3.7. Detection Algorithm Model

As shown in Figure 3, this study contains the design of a deep learning model to
effectively detect mechanical defects. First of all, we chose the most basic and widely used
‘simple random segmentation’ method as the data segmentation method. This method
splits the entire dataset into training and test sets at random. Specifically, 80% of all data
were allocated as training data and the remaining 20% as test data. This segmentation is
known to help evaluate the generalization ability of the model by leveraging randomness
to segment datasets evenly. We selected a model that combines multilayer perceptron
(MLP), Gated Recurrent Unit (GRU), and Rectified Linear Unit (ReLU) as appropriate
algorithms. This algorithm was deemed very suitable for the purpose of this study for
several reasons. First, the multilayer structure allows the model to learn even complex
patterns. This allows it to accurately model the various variables and interactions in the
building network. Second, GRU cells can reflect the characteristics of time series data well.
GRU efficiently utilizes historical information to predict current and future conditions,
so it can accurately determine the impact of historical data on current mechanical faults.
Third, enabling ReLU speeds up computation. This saves time in the training and inference
phases of the model and can be applied to real-time flaw detection systems. Finally, the
Adam optimization algorithm allows us to optimize the performance of the model quickly
and accurately. For these reasons, we chose a deep-learning model based on this algorithm.
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Figure 3. Algorithm model.

We chose Adam as the optimizer and used “categorical_crossentropy” as the loss
function. The learning rate of the Adam optimizer was set to 0.005, which was deemed
to be the most appropriate for the purpose of this study, as well as previous studies. To
avoid overfitting the model and to achieve optimal performance, we also applied an early
stopping technique, which automatically stops learning if the model’s performance does
not improve over 20 epochs.

3.8. Model Performance Validation Metrics
3.8.1. Confusion Matrix

Table 6 is the Confusion Matrix. A confusion matrix is a visual representation of how
well a model classifies. It is a fundamental tool for evaluating a model’s performance,
providing basic elements such as True Positive, True Negative, False Positive, and False
Negative. These elements provide the foundational information needed to calculate other
performance metrics.

Table 6. Confusion Matrix.

Prediction
Positive Negative

Actual
Positive TP FN

Negative FP TN
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• True Positive (TP): It’s Actually Positive, and the model classified it as Positive.
• True Negative (TN): Actually Negative, and the model also classified it as Negative.
• False Positive (FP): Actually Negative, but the model classified it as Positive.
• False Negative (FN): Actually Positive, but the model classified it as Negative

3.8.2. Performance Metrics

• Accuracy is a metric that indicates how much of the total data the model correctly
classified. This is the most intuitive metric to understand model performance, but it
requires caution as it can be misleading if there is an imbalance in the data.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

• Precision refers to the percentage of data that the model classifies as positive that is
actually positive. This metric is useful when it is important to reduce the number of
false positives.

Precision =
TP

TP + FP
(3)

• Recall indicates the percentage of data classified as positive by the model that is
actually positive. This metric is useful when reducing the number of false negatives
is important.

Recall =
TP

TP + FN
(4)

• F1 Score is the harmonic mean of precision and recall. This metric is used in situations
where both precision and recall are important. When the two metrics are balanced, the
F1 Score is higher.

F1 Score = 2· Precision·Recall
Precision + Recall

(5)

These performance metrics allow us to evaluate different aspects of how well our
model actually works. Especially when it comes to the problem of detecting mechanical
faults in building network systems in real time, these metrics are very useful for measuring
the reliability and efficiency of our model.

4. Experiment and Results

In this study, we developed deep learning models to detect mechanical faults in
building network systems in real-time. The experiments were based on data resampled
every 10 min and successfully detected faults from a variety of situations and data. We
used a Confusion Matrix and several Performance Metrics to evaluate and interpret the
performance of these models.

4.1. Confusion Matrix and Performance Metrics

As shown in Figure 4, the performance of the deep learning model developed in this
study for detecting mechanical faults in building network systems can be considered very
high. From the confusion matrix, we can see that all the classes were classified very well:
almost all the samples in each class were classified correctly. The performance metric also
shows very high values. The accuracy is 96.59%, which means that the model made correct
predictions in most cases. A precision score of 1 indicates that all the cases that the model
classified as positive were actually positive. The recall and F1 scores were also near perfect.
This high performance is likely due to the impact of adding noise to the data. Adding
noise can contribute to improved performance because it improves the model’s ability to
generalize and prevents overfitting.
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As can be seen from Table 7, defect detection was performed for each of the six classes,
and the results confirmed the high performance of the model. Accuracy, precision, recall,
and F1 scores for each class were all high. These high-performance indicators suggest
that the model can effectively detect even complex defect patterns. However, particularly
noteworthy is the model’s performance in Class 6. In this class, precision was measured as
relatively low, which makes it more likely that the model is over-detecting defects for Class
6. In fact, the number of samples classified by the model was significantly higher than the
actual number of samples. This point indicates that the model may tend to overreact to
Class 6. In addition, when viewed through the F1 score, the model maintains a good balance
between precision and recall. This means that the model will show a stable performance
even in real-world situations. In conclusion, although the model in this study shows high
performance, it was confirmed that there is a need to improve the model in the future due
to the relatively low precision of Class 6.

Table 7. Multi-class classification performance assessment metrics.

Class n (Truth) n (Classified) Accuracy Precision Recall F1 Score

0 204 198 98.89% 0.98 0.95 0.97
1 209 208 98.81% 0.97 0.96 0.96
2 212 206 99.52% 1.0 0.97 0.99
3 209 199 99.21% 1.0 0.95 0.98
4 204 197 99.45% 1.0 0.97 0.98
5 224 254 97.31% 0.87 0.99 0.93

4.2. One Type of Defect Is Detected

This study is specifically designed to assume excessive situations. Specifically, while
normal conditions remain in place for 60 h (3600 min), we model scenarios in which
abnormal or malicious behavior occurs for a continuous hour (60 min). This design involves
a class imbalance problem, but it was a deliberate choice. One of the main objectives of
this study was to measure how quickly our model can detect anomalies in these excessive
and realistic situations. This approach is significant for increasing model applicability in a
variety of systems and applications where fast responsiveness in production environments
is important.

In Figure 5, models specifically designed for experiments are set to detect only certain
types of defects, and if a specific defect, such as “Cooling Coil Valve Stuck Closed”, is
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detected out of a total of six rules, it means that the cooling coil valve is operating in a
closed state, which may not receive adequate cooling and therefore requires a prompt
response. Because our model sets a detection time of at least 10 min for each rule, the actual
detection time for the entire rule set is 60 min. In particular, if there are six successive
sections (section A and section B), the fault lasts for a total of 60 min. If a defect in “Cooling
Coil Valve Stuck Closed” is detected, ‘0’ in the variable column indicates that the rule or
condition is inactive or undetected, whereas if only four columns display ‘1’, it means that
those four conditions are active or detected.

Buildings 2024, 14, x FOR PEER REVIEW 12 of 18 
 

4.2. One Type of Defect Is Detected 
This study is specifically designed to assume excessive situations. Specifically, while 

normal conditions remain in place for 60 h (3600 min), we model scenarios in which ab-
normal or malicious behavior occurs for a continuous hour (60 min). This design involves 
a class imbalance problem, but it was a deliberate choice. One of the main objectives of 
this study was to measure how quickly our model can detect anomalies in these excessive 
and realistic situations. This approach is significant for increasing model applicability in 
a variety of systems and applications where fast responsiveness in production environ-
ments is important. 

In Figure 5, models specifically designed for experiments are set to detect only certain 
types of defects, and if a specific defect, such as “Cooling Coil Valve Stuck Closed”, is 
detected out of a total of six rules, it means that the cooling coil valve is operating in a 
closed state, which may not receive adequate cooling and therefore requires a prompt 
response. Because our model sets a detection time of at least 10 min for each rule, the 
actual detection time for the entire rule set is 60 min. In particular, if there are six succes-
sive sections (section A and section B), the fault lasts for a total of 60 min. If a defect in 
“Cooling Coil Valve Stuck Closed” is detected, ‘0’ in the variable column indicates that the 
rule or condition is inactive or undetected, whereas if only four columns display ‘1’, it 
means that those four conditions are active or detected. 

 
Figure 5. One type of defect detected. 

If you detect only one type of fault, as shown in Table 8, you can create a response plan 
that is specific to that fault. This allows building managers or system engineers to take 
quicker and more accurate actions, contributing to a more reliable and efficient system. 

Table 8. One type of defect detection result. 

Analysis Explanation 
Predict_rule_id [1] 
Detected Fault Cooling Coil Valve Stuck Closed 
Analysis_score [0.99994] 

Sum_of_analysis_score 0.99993997812227112 

4.3. Multiple Defects Detected 
As shown in Figure 6, the model can detect multiple faults simultaneously, including 

‘Cooling Coil Valve Stuck Closed’, ‘Heat Cool Operation without Min OA Damper’, and 
‘OA Damper Stack Open’. This experimental setup is intended to simulate a situation 
where the cooling coil valve, the hot water valve, and the outside air damper are 

Figure 5. One type of defect detected.

If you detect only one type of fault, as shown in Table 8, you can create a response
plan that is specific to that fault. This allows building managers or system engineers to take
quicker and more accurate actions, contributing to a more reliable and efficient system.

Table 8. One type of defect detection result.

Analysis Explanation

Predict_rule_id [1]
Detected Fault Cooling Coil Valve Stuck Closed
Analysis_score [0.99994]

Sum_of_analysis_score 0.99993997812227112

4.3. Multiple Defects Detected

As shown in Figure 6, the model can detect multiple faults simultaneously, including
‘Cooling Coil Valve Stuck Closed’, ‘Heat Cool Operation without Min OA Damper’, and
‘OA Damper Stack Open’. This experimental setup is intended to simulate a situation where
the cooling coil valve, the hot water valve, and the outside air damper are simultaneously
causing problems. The model can accurately detect situations in which the same fault
persists for 60 min in six successive sections with a slight lag (three A sections and three B
sections that will occur in the future).

When three faults occur simultaneously, as shown in Table 9, they can have a very
large impact on the building’s HVAC system. Therefore, it is essential to detect and
analyze various faults simultaneously, especially since one fault is likely to trigger another.
Therefore, such multi-fault situations require more thorough monitoring and a faster
response, and it is important to analyze each fault independently and understand their
interaction as much as possible. To this end, the model developed in this study is designed
to provide detailed information about each fault, enabling effective responses in real-
world operations.
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Table 9. Multiple defects detected result.

Analysis Explanation

Predict_rule_id [1, 2, 4]
Detected Fault Cooling Coil Valve Stuck Closed
Detected Fault Heat Cool Operation without Min OA Damper
Detected Fault OA Damper Stack Open
Analysis_score [0.99997, 0.9999, 0.99996]

Sum_of_analysis_score 2.9998300075531006

4.4. Multiple Defects and One Insufficient Score Detected

In Figure 7, a number of defects, including ‘Cooling Coil Valve Stuck Closed’, ‘Cooling
Coil Valve Stuck Open’, ‘OA Damper Stack Open’, ‘Low Supply Fan Speed’, and ‘High
Supply Fan Speed’, occurred simultaneously with high probability. However, ‘Heat Cool
Operation without Min OA Damper’ assumes a fault with a relatively low probability. The
model can accurately detect situations in which a number of defects except one persist
for a total of 60 min, even if the same defect occurs in six successive sections with a slight
lag (three A sections and three B sections to occur). In addition, if one fault signal occurs
during one unit of time (10 min), it can accurately detect at least six faults in 60 min.
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These situations, like the one in Table 10, require particular attention. A fault detected
with a high score indicates that a clear problem is occurring within the system and may
require an immediate response. However, a fault detected with a low score, such as “Heat
Cool Operation without Min OA Damper”, may be easy to ignore, but it may indicate that
the cooling and hot water valves are not being regulated properly. This low score may be
caused by the interaction with other faults or the influence of other system variables, which
may lead to an increasingly large impact on the overall system. Therefore, these low scores
are also significant and should be utilized in the evaluation of the overall system health.
The model developed in this study is designed to flexibly respond to these different fault
situations and score distributions. This will enable more accurate and efficient mechanical
fault detection.

Table 10. Multiple defects and one insufficient score detected result.

Analysis Explanation

Predict_rule_id [1, 2, 3, 4, 5, 6]
Detected Fault Cooling Coil Valve Stuck Closed
Detected Fault Heat Cool Operation without Min OA Damper
Detected Fault Cooling Coil Valve Stuck Open
Detected Fault OA Damper Stack Open
Detected Fault Low Supply Fan Speed
Detected Fault High Supply Fan Speed
Analysis_score [0.99997, 0.71518, 0.99996, 0.99996, 0.99999, 0.99998]

Sum_of_analysis_score 5.715039968490601

4.5. Not Detected

For Figure 8, we assume that a number of faults are rare with low probability over
a unit of time (10 min). This can occur when the model collects data or when the equip-
ment is switched. Because of this, it is highly likely that defects will not be detected in
these situations.
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If no failures are detected, as shown in Table 11, this can mean two possibilities. The
system could be stable and fault-free. This is when the model is working correctly and
has correctly determined that there are no faults. This situation can be a good indicator
of the stability of the system. The system could be faulty but has not detected any faults.
This situation requires attention. A situation where the model fails to detect a defect can be
caused by a number of things. For example, a new type of fault might occur and the model
might not recognize it. Or the model might misjudge the fault due to noise or the influence
of other variables. Even when faults are not detected, periodic system checks and further
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analysis are still required, especially to ensure that the model’s performance is constantly
monitored and updated as needed to ensure that no faults are missed.

Table 11. ‘Not detected’ result.

Analysis Explanation

Predict_rule_id [1, 2, 3, 4, 5, 6]
Analysis_score [0.0019, 0.117, 0.21459, 0.04307, 0.01659, 0.58922]

Sum_of_analysis_score 0.9823699831031263

5. Discussion

The deep learning model developed in this study showed very high accuracy in detect-
ing mechanical defects in real time in building network systems. As a result of evaluation
based on the confusion matrix and performance indicators, the model achieved an excellent
accuracy of 96.59%. This indicates that the model performed accurate predictions in most
situations. In addition, the precision, reproducibility, and F1 scores were all almost perfect,
suggesting that the model has effectively learned different patterns of the data. The model
demonstrated the ability to effectively detect not only single defects but also multiple
defects. This is an important characteristic that allows us to respond quickly to complex
problems that may arise in building network systems. In particular, with a detailed analysis
by each class, the model showed excellent performance in distinguishing between different
types of defects. According to the study results, the model maintained high performance
even in the presence of noise added to the data, indicating that it could prevent overfitting
and improve generalization capabilities in real-world environments.

However, since all results were limited to specific experimental conditions and datasets,
further validation of the model’s performance in various real-world environments is needed.
This study represents an important advance in the field of mechanical defect detection using
deep learning, laying the foundation for a wider range of applications and performance
improvements in the future.

6. Conclusions and Future Work
6.1. Conclusions

This study developed and evaluated a deep learning model to detect mechanical
failures quickly and accurately in building network systems. Our model demonstrates the
effectiveness of real-time defect detection with a high accuracy of 96.59% and an excellent
F1 score, and in particular, it reduced the proposed ‘Cool-Down’ time by 50% compared
to 2 h in the dataset provided by NREL, enabling anomaly detection within 1 h. This
is a breakthrough that can significantly improve the efficiency of building management
systems and quickly address potential risks. These results will be useful information for
building managers. This means that shortening the failure detection process from 2 h to 1 h
by applying the proposal in the dataset provided by NREL.

6.2. Future Work

Considerations for future research directions include the following. Model general-
ization and data extension considering data diversity are needed. The robustness of the
model should be checked by verifying its performance in the real world as well as its
performance in the experimental environment. In addition, the applicability of the model
in other fields should be explored and the applicability in smart cities, manufacturing, etc.,
should be investigated. We expect that these studies will increase the practicality and field
applicability of the model.
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