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Abstract: Scaffolding is an integral temporary structural system in the field of construction engineer-
ing. However, the current scaffolding commonly has the shortcomings of low construction efficiency
and high risk. This paper proposes a novel socket-type keyway steel pipe scaffolding, which can
well solve the shortcomings of the existing scaffolding. Due to less research related to scaffolding
in the past decades, it has resulted in a high number of scaffolding accidents. In order to avoid the
occurrence of scaffolding accidents, it is necessary to systematize the study of this novel type of
scaffolding. This study is an extremely important reference for the use and design of this novel type of
scaffolding. To explore the ultimate load capacity and destabilization mode of the novel socket-type
keyway steel pipe scaffolding, full-scale tests were conducted on the socket-type keyway steel pipe
scaffolding with cantilever heights of 1.2 m and 0.5 m. The test results indicate that the ultimate load
capacity of the scaffolding with a cantilever height of 1.2 m is 196 kN, and the destabilization mode
is local instability. The ultimate load capacity with a cantilever height of 0.6 m is 276 kN, and the
destabilization mode is half-wave buckling. This phenomenon shows that the different cantilever
heights of the scaffolding have a significant effect on the load capacity and destabilization mode.
Moreover, the load capacity decreases significantly with increasing cantilever length. The finite
element model was established using SAP2000 v21 and compared with the test results. The error
between the ultimate load capacity in the finite element linear elastic buckling analysis and the test
results is 25%. The error between the calculated ultimate load capacity in the nonlinear buckling
analysis considering the initial geometrical defects and the test results is 4%. Therefore, the nonlinear
buckling analysis considering the initial geometrical defects is more in line with the force situation of
the structure in the real situation.

Keywords: socket-type keyway; ultimate load capacity; finite element analysis; buckling analysis;
failure mechanism

1. Introduction

Beginning in the mid-1980s, infrastructure development has been taking place through-
out China, necessitating the use of modern construction techniques. Traditional scaffolding
has proven inadequate in meeting the demands of this rapid development. As a result,
many types of steel pipe scaffolding have begun to appear [1]. These include fastener-type
steel pipe scaffolding [2], portal-type steel pipe scaffolding [3], bowl buckle-type steel pipe
scaffolding [4], disc-type steel pipe scaffolding [5], and many other types of scaffolding [6].
After the 1990s, the building structure gradually developed in the direction of a large span,
high tower, and heavy load. The existing scaffolding cannot be adapted to the needs of
building construction. Therefore, based on the traditional scaffolding, improved novel scaf-
folding gradually emerged. The socket-type keyway steel pipe scaffolding is one of them.
As a novel type of scaffolding, it has been gradually used in various projects due to its advan-
tages of safe and reliable construction, fast dismantling speed, and good economic returns.
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The uniqueness of the novel type of socket-type keyway steel pipe scaffolding is reflected in
the upright rod welded with a keyway socket that can be connected in four directions. The
horizontal rod ends are machined directly into keyway plugs to be vertically inserted into
the sockets of the upright rod. The upright rods are connected by a trocar. Horizontal rods
and diagonal rods are quickly connected using rod-end keyed plugs that snap into keyway
sockets to form a stable structural geometrically invariant system, as shown in Figure 1. The
nodes of the rack are self-locked by the friction of the contact surfaces between the plug and
the socket, and the reliability of the connection is ensured. Compared with other steel pipe
scaffoldings, this kind of steel pipe scaffolding has a simple erection process. The upright
rods and horizontal rods are connected by sockets and plugs, which makes the installation
and dismantling of the scaffolding quick and easy. The center axes of the horizontal rods and
upright rods coincide so that the node force transmission is not affected by the eccentric force.
In addition, the socket of the bracket is directly welded to the upright rod, which provides
good stability, high load-bearing capacity, and fittings that are not easily lost.
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The scaffolding market and technology are growing by leaps and bounds. The lack of
corresponding research and the imperfections of relevant specifications have led to a series
of engineering accidents [7–10]. Scholars have gradually emphasized the systematic study
of various types of scaffolding. Regarding fastener-type steel pipe scaffolding. Jia [11]
analyzed the destabilization mechanism and damage mode of an ultra-high full room of a
fastener steel pipe scaffold under uniform loads through static tests of seven models and
analyzed the effect of multiple parameters on the ultimate load of a full scaffold. According
to the finite element analysis, the suggested value of the coefficient of unevenness for the
calculation of the slip-resistant bearing capacity of the fasteners at the top level of the
full scaffold is 1.51. In Ji [12], according to the joint stiffness value determined by the
experimental study and the theory of semirigid connection frame with lateral displacement,
the calculation formulas of the stiffness correction coefficient of the transverse rod and the
constraint coefficient at the end of the vertical rod are derived, and the effective length
coefficient of the vertical rod and the theoretical value of the stable bearing capacity of
the vertical rod under different working conditions are given. Liu [13] compared the tests
with the ANSYS model by connecting fastener-type scaffolds with different nodes. He
analyzed the strength and damage forms of wheel-buckle scaffolds with different nodes and
determined the most favorable node connections. Dong [14] analyzed the structural stability
of a wheel-buckled steel pipe scaffolding. The results indicated that the damage of the
single-layer upright rods is typical with lateral displacement buckling, while the damage of
the double-layer upright rods is without lateral displacement buckling. Yu [15] investigated
the failure mode and stable bearing capacity of a novel type of wheel-buckle scaffolding
through nine full-size test models and established a simplified formula for the stabilizing
load capacity of the scaffolding. For the novel type of scaffolding, Chen [16] developed
a kind of superstrong thin-walled steel pipe fastener scaffold. When the weight of the
superstrong thin-walled steel pipe is reduced by 40%, there is no significant decrease in the
vertical load capacity of the steel pipe joist. Bian [17] performed mechanical test research
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on a new type of wheel buckle-type steel pipe scaffolding. The ultimate load capacities of
pins in eccentric tension and horizontal rods in bending, as well as the damaged forms of
wheel discs in compression, sleeves in shear, and upright rods in instability, were derived
from the tests. In addition, scholars have been more concerned with the connecting nodes
of scaffoldings. Pienko [18] determined the load capacity of a disc-buckled scaffold by
applying loads in different directions of action to the nodes. Zhang [19] used a finite
element model to analyze the rotational stiffness of the connection nodes of disc-buckled
scaffolds under different connection forms and loading modes. Thus, the load-bearing
mechanism of the nodes of the disc-buckled scaffolds was summarized.

As a novel type of scaffolding system, the socket-type keyway steel pipe scaffolding
has been applied in some projects. However, there are fewer theoretical studies on this
novel type of scaffolding. Only a few scholars have studied and analyzed the node force
performance [20,21] and rotational stiffness [22]. Therefore, this paper carries out a full-
frame foot test on two types of socketed keyway steel pipe scaffoldings with different
cantilever heights, which have been used in actual projects. The finite element software
SAP2000 v21 is used to establish the test model and compare it with the test results to study
the ultimate load capacity and damage mode of the novel type of scaffolding.

2. Overview of the Experiment
2.1. Experimental Design

A full-scale test was carried out on two types of socket-type keyway steel pipe scaf-
foldings with different cantilever heights, which were used to study the damage pattern
and ultimate load capacity of this novel type of scaffolding. The overall arrangement of the
two types of steel pipe scaffoldings is shown in Figure 2. The specifications of the component
materials used in the tests are shown in Table 1. The upright rods are connected by a trocar.
Horizontal rods and diagonal rods are connected using rod-end keyed plugs. The detail of the
rod-end connection is shown in Figure 3. In the two test schemes, the spacing of the upright
rod is 1 m, and the step distance of the upright rod is 1.5 m or 1 m. The elongation length of
the top cantilever end of scheme I is 1.2 m, while the elongation length of the top cantilever
end of scheme II is 0.65 m. The test schemes of the whole scaffolding are shown in Table 2.
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Table 1. Specification of component materials.

Component Section Form Norm (mm) Thicknesses (mm) Material

Upright rod Hot-dip galvanized
welded steel pipe Ø 48 3.0 Q235

Horizontal rod Welded steel pipe Ø 48 3.0 Q235
Diagonal rod Round steel tube Ø 32 2.0 Q235
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Table 2. Model parameters of the scaffolding test.

Experiment
Scheme Specifications Horizontal Diagonal

Brace Vertical Brace Length of
Cantilever End

I Three hurdles and six steps Three-layer setup Surrounding facades 1.2 m
II Three hurdles and six steps Three-layer setup Surrounding facades 0.65 m

2.2. Loading Program and Measurement Point Arrangement

The test was carried out by self-balancing loading. Uniform and symmetrical loading
of the whole scaffolding was applied by two 100 t jacks at the bottom, reaction beams, and
a double-layer distribution beam at the top. The loading device for the test is shown in
Figure 4. The applied load is 10 kN per stage for scheme I and 20 kN for scheme II. Each
level of loading lasted for 10 min. Eventually, the entire scaffolding was destroyed.
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The arrangement of the strain measurement points is shown in Figure 5. Measurement
points 1, 3, 5, and 7 are located on the south side of the cantilever end of the upright rod.
Measurement points 2, 4, 6, and 8 are located on the east side of the cantilever end of the
upright rod. Measurement points 9, 10, and 11 are located in the middle of the uppermost
horizontal rod. Measurement points 12 and 13 are located in the middle of the uppermost
diagonal rod.
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3. Experimental Results and Analysis
3.1. Experimental Phenomena

Scheme I: As shown in Figure 6a, due to the failure of the loading equipment, the two
rows of upright rods on the north side of the scaffolding broke down when the load was
130 kN. The two rows of upright rods on the south side of cantilever end buckled when
loaded to 160 kN (Figure 6b). At 180 kN, the bending deformation at the lower end node of
the cantilever end rapidly developed, and the cantilever end tilted northward. The ultimate
load capacity of the final frame damage was 196 kN, and the instability mode was localized
instability (Figure 7a).
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Scheme II: As shown in Figure 8a, there was no significant deformation of the frame
when the load was 140 kN. The middle four upright rods exhibited slight deformation
when loaded to 200 kN (Figure 8b). Eventually, the cantilever end bends to the south when
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loaded to 260 kN. The middle four upright rods bent to the north at the fourth to sixth
(between the horizontal reinforcement layers) levels of the horizontal rods. The whole
frame was destabilized by half-wave drumming (Figure 7b).
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3.2. Load-Strain Curve

The load-strain curves at each measurement point of scheme I and scheme II in the
test are shown in Figures 9 and 10, respectively. The strains of the upright rods were close
to 0.1ε in both schemes when the steel pipe scaffolding suffered destabilizing damage.
The lower end of the cantilever end of the upright rod reached the yield stage when the
scaffolding was damaged, while the strains in the horizontal rod and the vertical diagonal
brace were low. This is because the scaffolding was mainly subjected to vertical loads, and
the rods were mainly subjected to axial forces. Therefore, under the action of a vertical load,
vertical rods were subjected to larger loads, while horizontal rods and vertical diagonal
braces were subjected to smaller forces. Thus, the strains measured in the horizontal rods
and vertical diagonal braces were small compared to the strains in the upright rods.
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Figure 9. Load—strain curves at the measurement point points in scheme I. (a) Upright rod load-
strain diagram 1. (b) Upright rod load-strain diagram 2. (c) Horizontal rod load-strain diagram.
(d) Diagonal rod load-strain diagram.
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The two rows of upright rods on the north side of the scaffolding in scheme I broke
down when the load was 130 kN (Figure 6a). Therefore, the test results do not take into
account the two rows of upright rods on the north side. The final form of damage was a
localized instability damage of the two rows of upright rods on the south side of the top
tilted to the north side (Figures 6b and 8a). The strains at measurement points 1, 3, 5, and 7
are much greater than the strains at measurement points 2, 4, 6, and 8 (Figure 9a,b).

The final form of damage in scheme II is overall destabilization damage. The cantilever
ends of the upright rods deform in both directions (Figure 7a,b). Therefore, the strains
at measurement points 1, 3, 5, and 7 of scheme II are closer to the values of the strains at
measurement points 2, 4, 6, and 8 of scheme II (Figure 10a,b), and the strains in scheme II
are smaller than the strains at measurement points 1, 3, 5, and 7 of scheme I (Figure 9a).

3.3. Analysis of Test Results

The length of the cantilever end of the scaffolding in scheme I is longer. The localized
instability at the cantilever end resulted in the entire scaffolding not being able to continue
loading. The length of the cantilever end of the scaffolding in scheme II is half the length
of the cantilever end of the frame in scheme I. The ultimate load capacity of scheme II is
33% greater than that of scheme I. The final damage form of the scaffolding of scheme II
was overall destabilization with good stability. The elongation length of the cantilever end
determines the load capacity of the two scaffolding schemes as well as the difference in the
modes of instability. Compared with that in Scheme I, the elongation of the cantilever end
in Scheme II is greatly reduced. The final damage form of the scaffolding changes from
local instability to overall instability, and the stability of the formwork improves.

4. Stability Analysis of Socket-Type Keyway Steel Pipe Scaffolding
4.1. Introduction of the Theory of Second-Order Bending Moment Effects

The instability failure of steel structures can be divided into two categories [23,24]:
equilibrium bifurcation instability and limiting point instability. The instability problem of
the steel scaffolding studied in this paper is limiting point instability. The upright rod is
subjected mainly to pressure and bending moments (including initial and second-order
moments). The initial bending moments of the structure are mainly due to the initial
geometric defects of the structure or the bending moments due to lateral loads. Second-
order bending moments are those produced by the P−δ and P−∆ effects. The P−δ effect
refers to the axial force applied by a rod under the action of flexural deformation to
produce an additional bending moment effect. The P−∆ effect is the effect of the additional
bending moment produced by the horizontal deformation of the bar. In the stability
calculation of steel scaffolding, the influence of second-order effects is added to the analyzed
factors [25]. Lateral-free stiffeners are generally considered for the P−δ effect. The influence
of the P−∆ effect also needs to be considered in a rigid frame with lateral displacement.

4.2. Introduction of the Semirigid Node Theory

Connection nodes are generally categorized into three forms: rigid, articulated, and
semirigid connections [26–28]. The upright rods and horizontal rods of the steel scaffolding
will rotate relatively during the force process. The connecting nodes of the scaffolding are
neither rigid nor articulated. Rather, they are typically semirigid nodes [29,30].

Much research has been carried out on semirigid nodes by previous authors [31]. The
rotational stiffness [32] of the semirigid nodes is the most significant factor affecting the
overall stress performance of the structure. The rotational stiffness of a semirigid node is
related to several factors. The rotational stiffness of a semirigid node can be calculated by
the following method:

(1) Experimental methods

The moment-displacement curves of the nodes are obtained by measuring the rota-
tional stiffness of the nodes in the tests. The experimental method allows a more realistic
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determination of the rotational stiffness of the nodes. The experimental method requires
statistical analysis through a large amount of experimental data.

(2) Finite element method

The finite element method is a method applicable to a wide range of problems that
can be solved within the field of engineering. Numerical simulation of the connection
performance of the nodes is carried out using engineering software. The effect of different
factors on the structure can be considered. This approach can be further applied to nonlinear
problems [33,34].

The socket-type keyway steel pipe scaffolding is a type of semirigid connected steel
frame with lateral movement, according to theoretical analysis [35–37]. The rotational
stiffness of this type of semirigid node was derived as K = 12.02 kN · m/rad [22] from
a large number of tests carried out by previous authors using an experimental method.
In contrast, Yu [38] used a computational model of three-story frame columns with coil
springs to simulate the restraining moments of beams on columns and the semi-stiffness
of nodes.

5. Finite Element Analysis
5.1. Selection of Finite Element Software

Finite Element Analysis (FEA) is a modern computational method that has been
rapidly developed for the analysis of structural mechanics. In the field of building struc-
tures, the more commonly used general-purpose finite element software are mainly Ansys,
PKPM, Midas, Abaqus and SAP2000. SAP2000 v21 is used in this article for finite element
modeling and computation.

SAP2000 is a powerful structural analysis software that integrates static-dynamic anal-
ysis, load calculation, linear and nonlinear calculation, and other computational analysis in
a single package. It contains the latest techniques for static, dynamic, linear and nonlinear
analysis, and the calculation process is easy and the results are accurate. The linear elastic
buckling analysis and geometric nonlinear analysis contained in the SAP2000 program
matches very well with the computational analysis required by the analytical model of the
socket-type keyway steel pipe scaffolding. Therefore, SAP2000 is adopted as the analysis
software in this article.

In the finite element modeling of the socket-type keyway steel pipe scaffolding, we
need to use mainly point objects and line objects. Point objects appear in the form of nodes,
which are the most basic units in a structural system. Constraints, springs, loads, connection
properties, etc., can be defined and modified in SAP2000 for specified point objects. In the
line object, it is possible to define section types, end constraints and displacements, stiffness
corrections, connection properties, concentrated and line loads, and even temperature
effects on the line object.

5.2. Modeling

SAP2000 software was used to analyze the modeling formwork for two different
erection schemes. The upright rods, horizontal rods, and horizontal diagonal rods of
the scaffolding are made of round steel pipes with dimensions of Φ48 × 3.0. The vertical
diagonal rods are made of Φ32 × 2.0 round steel pipes. The steels are Q235 carbon structural
steel. The modulus of elasticity of the steel is taken as E = 206 MPa, Poisson’s ratio is V = 0.3,
and the mass density is 7850 kg/m3. The upright rods are assumed to be rigidly connected.
The connection nodes of the upright rods and horizontal rods are considered semirigid
nodes. The rotational stiffness of the node is K = 12.02 kN · m/rad. Both horizontal and
vertical inclined rods are defined as rods articulated at both ends and only axial forces are
considered. The support constraint is assumed to be an articulated support that constrains
displacements in the X, Y, and Z directions.

The finite element models of scheme I and scheme II are shown in Figure 11.
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5.3. Linear Elastic Buckling Analysis

Eigenvalue buckling analysis [39] is also known as linear elastic buckling analy-
sis. Mathematically, this process results in a generalized eigenvalue problem, which
involves the analysis of first-order linear elastic instability without considering second-
order P−δ (additional effects caused by the deflection of the member under axial pressure)
or P−∆ (additional effects of gravity caused by the horizontal deformation of the member).
The eigenvalue equations are solved to determine the ultimate load and damage pattern of
the structure when buckling occurs.

Unit loads were applied to the top cantilever end of each upright rod during linear
elastic buckling analysis. Buckling was selected for the load type. After the number of
flexural modes and the eigenvalue convergence tolerance are defined, the flexural factor is
analyzed. The buckling load is determined from the product of the buckling factor and the
given unit load. The results of the instability modes for the linear elastic buckling analysis
of scheme I and scheme II are shown in Figure 12.
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The structural instability modes obtained from the finite element linear elastic buckling
analysis are consistent with those of the scaffolding tests. The ultimate load capacities of
the single upright rods of the whole scaffolding of scheme I and scheme II calculated in
SAP2000 were 21.22 kN and 43.14 kN, respectively. The ultimate load capacities obtained
from the tests of scheme I and scheme II were 24.50 kN and 34.50 kN, respectively. As
shown in Table 3, the calculated results for scheme I are 15% lower than the experimental
results. The calculated results for scheme II are 25% greater than the experimental results.

Table 3. Ultimate load capacity from test and finite element analysis.

Scheme Test FEA Errors

I 24.50 kN 21.22 kN 15%
II 34.50 kN 43.14 kN 25%

The finite element analysis results reveal that the damage to the scaffolding in scheme
I is a localized instability. The cantilevered end of the top of the upright rod was displaced
significantly, and the upper portion of the upright rod was displaced very little. The
cantilevered end of the top of the upright rod has a greater elongation length. The ultimate
load capacity of the scaffolding is mainly determined by the cantilever end. The damage to
the scaffolding in scheme II is an overall instability. The cantilever end of the top of the
upright rod was displaced, and the upper portion of the upright rod was also significantly
displaced. The ultimate load-carrying capacity does not depend solely on the length of the
cantilevered end at the top of the upright rod. The higher ultimate load capacity calculated
from the finite element analysis of scheme II than that obtained from the test results occurs
because second-order effects and the influence of initial geometric imperfections were not
considered in the linear elastic buckling analysis. Therefore, it is necessary to perform a
buckling analysis of the scaffolding considering the second-order effects and the initial
geometrical defects.

5.4. Geometric Nonlinear Buckling Analysis

The influence of second-order effects should be taken into account when analyzing
with finite element software, which is more in line with the force and deformation of the
structure under actual working conditions. The over-extension of the cantilever end at the
top of the upright rod in scheme I resulted in the ultimate load capacity of the scaffolding
being determined by the cantilever end at the top of the upright rod. Localized instability
at the cantilever end resulted in the scaffolding not being able to continue to carry the load.
The damage to the scaffolding in scheme II is an overall instability. The geometric nonlinear
buckling analysis [40] of scheme II considering initial defects was performed by the finite
element software SAP2000. The modeling requires attention to the following two points:

(1) The load conditions are defined differently. The buckling analysis case is not chosen
for modeling; instead, the static nonlinear loading case is defined. The P−∆ effect
is selected among the geometric nonlinear parameters. The material nonlinear pa-
rameters and nonlinear solution control options are set so that the calculation results
can converge.

(2) There are three general approaches to nonlinear analysis considering initial geometric
defects. The first is the direct simulation of defects, which means that definite initial
defects are introduced directly into the finite element model, taking into account
the influence of factors such as installation errors and machining processes of the
components. The second approach takes into account the effects on the structure due
to initial geometric defects by reducing the tangent modulus of the material. The third
method is to apply a smaller lateral load in the buckling direction of the structure
based on the buckling modal map obtained in the eigenvalue buckling analysis. The
most unfavorable effect is obtained by lateral loading. The magnitude of lateral loads
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is generally taken as 0.5–0.1% of the vertical force. The third method of analysis is
used in this paper; 0.5% of the vertical force is taken as the lateral load value.

As shown in Figure 13, the point at which the maximum displacement occurs is the
top point of the cantilever end according to the geometric nonlinear buckling analysis of
scheme II. The ultimate capacity of a single upright rod of the structure in the second-order
nonlinear buckling analysis is 33.37 kN, which is less than the ultimate capacity in the linear
elastic buckling analysis (43.14 kN) but closer to the test result (34.50 kN). The ultimate
load capacity of a single upright rod in the second-order nonlinear buckling analysis has
only a 4% error from the test results. The nonlinear buckling analysis considering the initial
geometric defects is closer to the real force conditions of the structure.
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6. Conclusions

(1) For the socket-type keyway steel pipe scaffolding mentioned in this paper, local
instability damage occurred at the top of the upright rod when the length of the
upright rod at the cantilever end was long (1.2 m). When the length of the cantilever
end upright rod is short (0.65 m), the scaffolding is damaged by overall destabilization.

(2) The elongation length of the cantilever end at the top of the scaffolding has a significant
effect on the load-bearing capacity. The length of the cantilever end of the scaffolding
upright rod is reduced by about 50%, which can increase the ultimate load- carrying
capacity of the upright rod by 40%.

(3) The error between the ultimate load capacity in the linear elastic buckling analysis and
the experimental results is 25%. In contrast, the error between the calculated ultimate
bearing capacity in the nonlinear buckling analysis and the test results was 4%, which
is much closer to the test results. Therefore, a buckling analysis of socket-type keyway
steel pipes scaffolding was performed. It is recommended to use nonlinear buckling
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analysis that takes into account second-order effects and initial geometric defects.
This is more in line with the forces on the structure in real situations.
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