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Abstract: A substantial body of evidence suggests that indoor mold exposure is a cause of allergic
and respiratory diseases in humans. While models exist for assessing the risk of mold growth
on building materials, few study the characteristics of mold growth after germination. This study
conducted mold growth experiments in a constant temperature chamber, using four temperature
settings of 15, 20, 25 and 30 ◦C, and three relative humidities of 56 to 61%, 75 to 76% and 83 to
86%. A mold growth prediction model was established using temperature and relative humidity.
The accuracy of the model was verified by comparing the sampling and the predicted values in a
laboratory environment. The results indicated that reducing the environmental temperature and
relative humidity could significantly inhibit the growth of mold, although the inhibitory effects
varied. Temperature might play a more critical role. At higher temperatures (25 ◦C and 30 ◦C), the
growth rate and lag time of mold tended to be consistent and there were differences in the maximum
diameter. In the predictive model, the polynomial secondary model for the maximum growth rate
and lag time and the Arrhenius–Davey secondary model for the maximum diameter (A) had good
predictive effects (Adj.R2 > 0.850). It is speculated that temperature is the key factor affecting the
maximum growth diameter of mold. The mold growth prediction model could better predict the
growth of mold in actual environments without wind Adj.R2 > 0.800), but the accuracy of the model
decreased under windy conditions (wind velocity < 1 m/s). The mold growth predictive model we
established could be used to predict the growth characteristics of mold in windless environments. It
also provides control suggestions for the regulation of temperature and relative humidity in indoor
environments, supporting indoor thermal environment management and pollutant control, and
ensuring indoor human health.

Keywords: mold prediction; indoor mold; mold growth model; Gompertz model; air pollution

1. Introduction

Residential environments, one of the primary settings for human activities, are where
people have the most frequent and intimate contact. As living standards improve, a series
of indoor environmental pollution issues have gradually emerged. Among these, mold is a
significant factor contributing to indoor air pollution and has increasingly become a global
problem in residential buildings [1].

Numerous studies have revealed severe mold contamination in a large number of
residences worldwide, posing serious threats to human health [2,3]. Madureira et al. [4]
sampled indoor air from 38 homes of asthmatic children and 30 homes of non-asthmatic chil-
dren in Porto, Portugal. The results showed that the average concentration of indoor fungi
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in the homes of asthmatic children was 1038 ± 1837 cfu/m3, while it was 524 ± 869 cfu/m3

in the homes of non-asthmatic children. Antova et al. [5] analyzed the exposure and health
data of 58,561 children, and demonstrating a significant correlation between indoor mold
exposure and children’s respiratory health. Yuexia Sun et al. [6] investigated the increase
in adverse health symptoms (such as asthma, rhinitis, pneumonia, etc.) in newly built
energy-efficient buildings, identifying mold as one of the main causes. Takigawa et al. [7]
measured the concentrations of aldehydes, volatile organic compounds, airborne fungi and
dust mite allergens in living rooms in Okayama, Japan, which indicated that increases in
benzene and Aspergillus were risk factors for Sick Building Syndrome (SBS) using a logistic
regression model [6]. It was estimated by Kanchongkittiphon et al. [8] that over 10% of
the population is allergic to mold and house dust mite allergens and this allergic reaction
suggests that contact with allergens could lead to allergic symptoms. The most common
allergic symptom in adults [9], children [10–12] and infants is asthma [13]. The CCHH
(China, Children, Home, Health) project conducted a cross-sectional questionnaire survey
on pre-school children’s families in ten cities including Chongqing, Beijing, Shanghai,
Harbin, etc., from 2010 to 2012 [14], and found that the incidence of certain allergens in resi-
dential interiors in the Chongqing area was higher than in other cities. There was a certain
correlation (OR > 1) between damp indicators (such as water damage to walls, damp spots,
window condensation, etc.) and children’s allergic/respiratory diseases [15,16]. Therefore,
the assessment of indoor environmental risk factors caused by air pollution is an important
public health issue.

In indoor environments, mold grows on the surfaces and interiors of walls, furni-
ture, doors and other building materials [17]. This not only affects the aesthetics but it
also corrodes building materials, leading to cracking and hollowing, thereby reducing the
durability and lifespan of these materials. Building materials are susceptible to mold con-
tamination due to two key factors for mold growth: temperature and relative humidity [18].
Compared with other factors (nutritional substances, exposure time, surface roughness,
light and oxygen), mold germinates when the temperature and relative humidity are above
critical values [19–21]. Numerous facts indicate that after a while, mold will reappear and
possibly worsen in the original moldy areas and their surroundings on the wall [22,23].
To reveal the relationship between the germination of mold on building materials and the
indoor environment, various mold growth models have been established. The International
Energy Agency proposed a temperature ratio model in 1990, which uses temperature and
humidity to assess the risk of mold growth [24]. Hukka et al. [25] established an empirical
model (the VTT model) based on laboratory test data of mold growth on pine and spruce
edge materials. Around 2000, Clarke et al. [26] established the isocline model and divided
the fungi in buildings into six categories based on critical relative humidity and temperature
values, which are used to determine whether there is a risk of mildew in building materials.
Nevertheless, most models only reveal the conditions for mold growth and germination,
and there has been little study of the process of mold growth. It is difficult for the indoor
environment to ensure that all building materials are suitable for inhibiting mold growth;
however, some building materials such as wood [27,28] and wallpaper [29,30] are known to
be prone to mold growth under suitable conditions. Therefore, appropriate environmental
control measures based on mold growth characteristics are needed. To clarify the growth
characteristics of indoor mold, it is necessary to apply a mold growth prediction model
suitable for indoor environments.

Most existing mold growth prediction models are primarily used in specific food
environments to protect food safety by inoculating target molds into standard media or
more homogeneous food products. Wawrzyniak et al. [31] used a modified Gompertz
model to predict mold growth at temperatures ranging from 12 to 30 ◦C and water activity
(aw) ranging from 0.8 to 0.9, demonstrating that the modified Gompertz model could predict
the fungal population and grain mold risk in barley grain well at different temperatures
and aw values [32]. Other substrate characteristics (pH, salinity, etc.) are also used in
modeling. Kosegarten et al. [33] established Gompertz and Gibson models for Aspergillus
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flavus on media simulating food systems at different temperatures (15, 25, 35 ◦C), aw values
(0.900, 0.945, 0.990) and pHs. On this basis, secondary models were used to calculate the
relationship between environmental factors and the maximum growth rate (µm) and the
lag time (λ) in the primary model. Pei et al. [34] explored the growth of Aspergillus in rice
under 16 conditions with different combinations of temperatures and aw values, and found
that the primary model of the Gompertz and Baranyi had different applicability, while
the polynomial model was considered the most suitable secondary model for the effect of
temperature and aw. The measurement of mold growth could be achieved through various
methods including observing the colony diameter on solid media, and measurements
of mycelial dry weight, CFUs, and ergocaloric cholesterol concentration. In particular,
for molds, prediction models could be fitted by observing the colony diameter on solid
media, thereby controlling the culture environment based on the mold growth rate, a
common approach in the field of food protection research. Abellana et al. [35] used a
modified Gompertz model to fit the radial growth of Saccharomyces colonies in a flour–
wheat medium at different temperatures (5 ◦C to 30 ◦C) and aw values (0.775 to 0.900).
Yogendrarajah et al. [36] found that the polynomial model best described the growth rates of
mold diameters under the coupled effects of temperature and aw. It was inferred that using
growth diameter rather than mold concentration is more suitable for describing indoor
mold growth. Both aw and relative humidity serve as viable predictors of fungal growth
diameter [37,38]. In indoor environments, studies pay more attention to whether there is a
risk of mildew on building materials, but few studies focus on the growth characteristics
after mildew formation, and traditional research methods might not be sufficient to explore
these issues in depth.

In indoor environments, how to determine the appropriate temperature and relative
humidity range to inhibit mold growth, how to develop a mold growth prediction model
based on temperature and relative humidity, and how environmental parameters affect
model parameters and accuracy are problems that require further exploration and solving.
This study first delineated three key growth parameters in the process of indoor mold
growth. Then, it investigated the influence of temperature and relative humidity on the
growth parameters (µm, λ, A) and proposed a prediction method for the growth parameters
based on indoor environmental parameters. Finally, a mold growth prediction model was
established, which is applicable for predictions in windless environments. The main aims
of this study were as follows:

(1) Investigate the impact of temperature and relative humidity on the growth parameters
of mold, identify the key environmental factors and the control ranges, and provide
recommendations for environmental control to prevent indoor mold growth;

(2) Establish a predictive model for mold growth based on indoor temperature and
relative humidity, develop appropriate modeling methods to fit the mold growth
curve and predict growth parameters, and determine whether relative humidity could
be used for mold growth prediction;

(3) Validate the applicability of the mold growth predictive model in real environments
(unventilated and natural ventilation conditions) and analyze the factors influencing
the accuracy of the predictive model.

This work established a mold growth diameter prediction model using temperature
and relative humidity, clarified the range and direction of inhibiting mold growth through
indoor environmental control measures, and provides a reference for indoor mold growth
risk assessment and antibacterial measures. This will help alleviate indoor mold pollution,
ensuring the health and well-being of residents.

2. Materials and Methods
2.1. Mold Growth Experiments
2.1.1. Mold Strains and Inoculations

According to our previous home investigations and fungal measurements in air and
dust in typical residences in Chongqing, China [39,40], as well as in other studies [41,42],
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Aspergillus niger is a common fungal species that is widely detected in residential environ-
ments, causing some allergic or respiratory diseases due to the emitted allergens [16,43].
Therefore, Aspergillus niger (ATCC 16404, same as AS3.3928, American Type Culture Col-
lection (ATCC)) was chosen as inoculation strain, as shown in Figure 1a.
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Figure 1. (a) Aspergillus niger (ATCC 16404), the Chinese character on the label means Aspergillus
niger; (b) Petri dishes with special control of relative humidity; (c) constant temperature chamber, the
Chinese character on the label of the chamber means constant temperature and humidity incubator;
(d) layout of mold sampling points; (e) HOBO temperature sensor; (f) DELTA OHM anemometer.

The strains we purchased were stored as lyophilized powders in tubes, so they needed
to be activated. Spores suspensions were prepared by washing the cultures with sterile
distilled water containing 0.01% (v/v) Tween® 80 (Merck KGaA, Darmstadt, Germany) [44].
The spore concentration of each suspension was assessed using blood counting plates
under a microscope and adjusted if necessary to 106 spores/mL. To minimize the potential
impact of the aw change between the suspension and the growth medium [45], the final
suspensions were inoculated into Tsa’s agar medium (90 mm, 15 mL per Petri dish, Czapek
Dox Agar, CDA) (medium formulation: sucrose 30.0 g, NaNO3 3.0 g, MgSO4-7H2O 0.5 g,
KCl 0.5 g, FeSO4-4H2O 0.01 g, K2HPO4 1.0 g, agar 15.0 g, distilled water 1.0 L, pH 6.0–6.5)
as quickly as possible (less than a few minutes) for inoculation, and then incubated for 2 to
3 generations to obtain heavily sporulating cultures. The activation, solution preparation
and inoculation of mold was carried out on a clean bench (SJ-CJ-2FDQ, Suzhou Sujie
Purification Equipment Co., Ltd., Suzhou, China).

2.1.2. Experimental Conditions

To study the characteristics of the mold growth model, initial mold cultures were
grown under controlled temperature and humidity conditions. The molds were cultivated
in a laboratory at specific temperatures (15 ◦C, 20 ◦C, 25 ◦C and 30 ◦C) and relative humidity
levels (56 to 61%, 75 to 76%, and 83 to 86%). A constant temperature chamber (Figure 1c)
was used to maintain the incubation temperature, while saturated solutions of NaBr, NaCl
and KCl were used to control the relative humidities at 56 to 61%, 75 to 76% and 83 to
86%. However, they do not have constant saturation relative humidities from 15 ◦C to
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30 ◦C [46]. These controlled conditions were primarily used to enable the initial primary
and secondary modeling.

2.1.3. Experimental Process

In the chamber, all test samples were placed horizontally in an artificial environment.
The chamber had a temperature range of 0 to 55 ◦C with an accuracy of ±2 ◦C and a
relative humidity range of 60% to 95% with an accuracy of ±5% to ±8%. The chamber had
a day–night setting with the regulation of lighting illuminance between 0 and 20,000 lx. To
simulate the dynamic variation in a day, the chamber was regulated dynamically every 2 h
with the designed temperature and relative humidity values. To avoid large changes in
relative humidity in the chamber, before the experiment, we prepared saturated solutions
of NaBr, NaCl and KCl in conical flasks, and sterilized them at 121 ◦C for 20 to 30 min in a
high-pressure steam sterilizer. After inoculating the Aspergillus, we injected an appropriate
amount of the sterilized and cooled saturated salt solution (about 45 mL) into a Petri
dish (φ120 mm, lid outer diameter 128 mm, bottom outer diameter 120 mm, dish height
24.7 mm, wall thickness 2.7 mm), and then placed the inoculated Petri dish (φ90 mm, no
lid, lid outer diameter 98 mm, bottom outer diameter 90 mm, dish height 20 mm, wall
thickness 2.2 mm) inside it, as is shown in Figure 1b, and finally placed this set-up in the
incubator for cultivation. The chamber was examined regularly and adjusted when needed
to ensure correspondence between the set points and actual values. To record the daily
growth of mold, we removed the Petri dish (φ120 mm) from the chamber as quickly as
possible. Simultaneously, we adjusted the air conditioning to match the temperature inside
the chamber. The above process was carried out by trained researchers to minimize the
impact of sudden environmental changes on mold growth. These long-term cyclic changes
continued for 40 days for each experimental condition, ensuring enough time for the mold
to germinate and grow. To monitor the growth, we took photos for each sample every 24 h,
starting from when mold germination began.

2.2. Modeling
2.2.1. Primary Modeling

To elucidate the growth characteristics of mold, we employed biological models to
describe the diameter of the mold growth. There are a multitude of primary models that
describe microbial growth from various perspectives, such as the Baranyi, the Gompertz, the
three-phase linear primary growth model, etc. [47]. These models provide a mathematical
framework that captures the key features of mold growth, allowing us to quantify and
predict it under various conditions. These models typically take the form of exponential
functions; we used the Gompertz model as an example (Equation (1)).

y = a·exp[−exp(b − cx)] (1)

In the context of mold growth, ‘x’ represents the time of growth, while ‘y’ denotes the
degree of growth. As shown in Figure 2, the degree of growth ‘y’ could be expressed as Dt
(colony diameter, mm), ln(Dt), Dt/D0 (colony diameter ratio where D0 is the initial value of
the colony diameter that could be observed with the naked eye) or ln(Dt/D0) (logarithmic
value of colony diameter ratio) on the plate medium. The choice between these parameters
for the degree of growth ‘y’ depends on the specific growth conditions and characteristics
of the mold. In this study, Dt was chosen to represent the colony diameter.

In Equation (1), the parameters ‘a’, ‘b’ and ‘c’ do not have a direct biological inter-
pretation. However, the growth curve of mold could typically be described using three
biologically meaningful parameters: the maximum growth rate (µm), which is the inflection
point of the curve and represents the maximum rate at which the mold population increases;
the lag time (λ), which is the x-axis intercept of the tangent at the inflection point and
represent the duration before the mold begins to grow exponentially; and the maximum
diameter (A), which is the intersection of the asymptote and the y-axis that indicates the
maximum population size that the mold reaches during the stationary phase of their growth.
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These growth parameters (µm, λ, A) could be derived from the mathematical parameters
(a, b, c) through a transformation [47]. As the Gompertz model and the Logistic model
are the two most frequently used models to describe bacterial growth in foods, both the
Gompertz model (Equation (2)) and the Logistic model (Equation (3)) after the transfor-
mation were chosen to describe the relationship between colony diameter Dt (mm) and
growth time (h) of Aspergillus niger, and the fitted plots and model parameters were ob-
tained by nonlinear fitting in OriginPro 2021 (64-bit, Version 2021, OriginLab Corporation,
Northampton, MA, USA).

Dt = A·exp
{
−exp

[µme
A

(λ− t) + 1
]}

(2)

Dt =
A{

1 + exp
[

4µm
A (λ− t) + 2

]} (3)

where t denotes the growth time, h; λ indicates the period of growth retardation, h;
A is the maximum growth diameter, mm; µm is the maximum growth rate, h−1; and
Dt is the average mold diameter at time t (h) [48,49]. By utilizing the aforementioned
model, we obtained growth parameters (µm, λ, A) through nonlinear fitting using the
primary modeling.
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2.2.2. Secondary Modeling

In the primary modeling, we discerned the characteristics of mold growth and com-
puted the key parameters. By investigating the interplay between growth parameters and
pivotal environmental factors, we were able to devise appropriate strategies for environmen-
tal regulation. To gain deeper insights, we leveraged secondary modeling with additional
environmental variables. Common secondary models such as the Gibson model [50],
Arrhenius–Davey model [51], etc., account for a single environmental factor (commonly
temperature) that influences the three biological parameters. In this study, we employed
this model to predict the maximum growth rate (µm) and lag time (λ) (Equations (4) and (5))
using a polynomial model [52], and the maximum diameter (A) (Equation (6)) using the
Arrhenius–Davey model. Within the polynomial model framework, we found the maxi-
mum growth rate (µm) to be relatively small, so we amplified this rate a hundredfold to
enhance the calculation accuracy.

µm × 100 = m0 + m1T + m2RH + m3T2 + m4RH2 + m5T × RH (4)

λ = n0 + n1T + n2RH + n3T2 + n4RH2 + m5T × RH (5)
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A = b(T − Tmin) (6)

where mi and ni are the coefficients of polynomial fitting, T (◦C) is the average temperature,
Tmin (◦C) is the cardinal temperature, and RH (%) is the average relative humidity in the
environment.

2.2.3. Model Accuracy Evaluation

Given that numerous primary models have not been validated for accuracy [53,54],
some models could not accurately predict mold growth in indoor environments [52,55].
The goodness of fit of modeling was determined using the coefficient of determination
(Adj.R2) [49,56], root mean square error (RMSE) [31,57], accuracy factor (A f ) and deviation
factor (B f ) [31,38,52]. The RMSE indicates the average error, while Adj.R2 represents the
proportion of the variance. A f is used to describe the model accuracy while B f is used to
evaluate the average difference between the predicted and experimental values. The lower
the RMSE, the higher the R2 or the closer the A f value is to 1, the better the model is in
predicting mold growth. If B f < 1, the model predictions are underestimated. Otherwise, it
indicates that the predicted value is overestimated. The above coefficients are calculated
using Equations (7)–(10):

Adj.R2 = 1 − ∑n
i (Dt − D′

t)
2

∑n
i
(

Dt − D′
t
)2 × n − 1

n − p − 1
(7)

RMSE =

√
∑n

i=1(Dt − D′
t)

2

n
(8)

A f = 10∑n
i

|lg(Dt)−lg(D′
t)|

n (9)

B f = 10∑n
i

lg(Dt)−lg(D′
t)

n (10)

where Dt (mm) and D′
t (mm) are the predicted and experimental data, n is the total number

of measuring points and p is the number of parameters in the model.

2.3. Laboratory Validation

To evaluate the applicability of the mold growth prediction model in a real environ-
ment, an experimental room (5.81 m × 5.03 m × 2.77 m) was constructed for verification.
In this environment room, we set the condition with windows and doors completely closed
as condition 1, and the condition of windows and doors open for natural ventilation as
condition 2. In conditions 1 and 2, we verified whether the mold growth prediction model
established in the chamber could predict mold growth. To reduce the impact of random
errors during the experiment on the results, we chose 4 points on two diagonals in the room
as sampling points, named points 1, 2, 3 and 4, as shown in Figure 1d. Since mold grows
slowly during the germination period, the beginning of germination was set as 0 h. Then,
mold growth was recorded at 36, 48, 60, 72, 84, 96, 108 and 120 h. A HOBO (UX100-003,
range: 20 to 70 ◦C, ±0.21 ◦C, 1 to 95%, ±3%, 1 min per sampling) (Figure 1e) and DELTA
OHM anemometer (HD103T, range:0 to 5 m/s, ±0.04 m/s, 4 mins per sampling) (Figure 1f)
were placed at the center of the room to monitor indoor temperature, relative humidity
and wind velocity (Figure 1e,f). To ensure the stability of humidity changes, we used a
dehumidifier placed in the center of the room, set the target relative humidity to 75%, and
dynamically control the changes in relative humidity.

Thermal conditions within the experimental room were further analyzed using time-
series data for temperature, relative humidity and wind velocity. After removing outliers
based on the 3σ criteria for the normal distribution test, the average values for temperature,
relative humidity and wind velocity were obtained from the experiments [30]. Then, we
obtained a secondary model that could predict growth parameters and the above primary
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model could fit mold growth characteristics in a actual environment. We calculated the aver-
age values of the temperature and relative humidity and substituted them into the secondary
model to obtain the values of the growth parameters [58] in the laboratory validation.

2.4. Statistics

The mold diameters on the plate medium were measured using the cross-crossing
method and recorded as Dt (mm). As the diameter of the colony was small after inoculation
at the beginning, photos were taken right above the culture vessel, and the photos were
enlarged and measured using ImageJ (64-bit Java 8, Version 1.40, National Institutes of
Health, Bethesda, MD, USA). In the chamber environment, the colony diameter was
recorded every 24 h. When the colonies covered the entire plate (i.e., Dt was close to 90 mm)
or the culturing days exceeded 40 days, cultivation was stopped.

After obtaining the diameter of mold growth, nonlinear fitting was performed using
OriginPro 2021 according to the primary models. This determined the fitting effect of
the model and obtained a primary growth kinetic model that could reflect the growth
changes of mold under different temperatures and humidities over time. Further processing
was performed using OriginPro 2021 according to secondary growth models to obtain
secondary models that could reflect the growth characteristics of mold under temperature
or temperature–humidity coupling effects. During the fitting process, primary mold
growth parameters were obtained. In the secondary models, Equations (4)–(6) were used
to reflect the relationship between growth parameters (µm, λ, A) and environmental factors
(temperature and relative humidity).

In the room environment, due to time and condition constraints, mold could not be
cultured for a long time until its death. Only colony diameter data at 0, 36, 48, 60, 72,
84, 96, 108 and 120 h were used for model verification. Each measurement was repeated
3 times for each set of conditions, and the colony diameter Dt was taken as the average
of the three measurements. IBM SPSS Statistics 25 (64-bit, Version 25, IBM Corporation,
Armonk, NY, USA) was used to calculate the average temperature and relative humidity in
the environment with the 3-sigma rule. During the verification process, Microsoft Office
Excel 2021 (64-bit, Version 2021, Microsoft Inc., Redmond, Washington, DC, USA) was used
to calculate the verification coefficients.

3. Results
3.1. Results of the Primary Modeling

Under the conditions of the chamber, the mold growth sampling data at temperatures
of 15, 20, 25 and 30 ◦C and relative humidities of 56 to 61%, 75 to 76% and 84 to 86% were
compiled into modeling data. Using OriginPro 2021 throughout the Gompertz and Logistic
models for nonlinear fitting and iterating until convergence, we obtained fitting diagrams
and growth parameters. We used Adj.R2 to reflect the goodness of fit, and RMSE, A f and
B f to reflect the error between predicted values and actual values.

In Figure 3, the vertical axis is the growth diameter and the horizontal axis is the
culture time. The higher the temperature, the closer the curve is to the y-axis, the faster
the growth rate of the mold, the smaller the lag time, and the more difficult it is to observe
the maximum diameter (A). At the same time, the growth curves at 25 ◦C and 30 ◦C were
relatively close. The maximum growth rate (µm) underwent a process from slow to fast
and then slow at 15 ◦C and 20 ◦C. However, at a certain temperature, the relative humidity
had little effect on the growth characteristics of the mold, and it was difficult to observe
from the graph. In addition, the Gompertz model’s curve was smoother than the Logistic
model’s curve, which corresponds more to mold growth reproduction theory.

Tables 1 and 2 provide more detailed information on the accuracy of the primary
model. Similar to the results in Figure 3, temperature had a greater influence on the
model parameters than relative humidity. There was an effect of relative humidity on the
model parameters but the validity was small. The temperature had a decisive influence
on the maximum diameter (A), and a secondary model could be established using a
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temperature as a single prediction parameter. The maximum growth rate (µm) and lag
time (λ) could be taken into account by the combined effects of temperature and relative
humidity. From the perspective of the accuracy index, the higher the temperature, the
greater the RMSE, indicating that the average error is larger when the temperature is
higher, and the RMSE of the Logistic primary model reached over 3 at 30 ◦C. Comparing
Tables 1 and 2, it can be observed that the two primary models had good prediction abilities
for the parameters (Adj.R2 is close to 1), but both showed a large average error of fitting
results at a high temperature (30 ◦C). The Gompertz primary model was better than the
Logistic primary model for the fitting of mold growth characteristics, and both were within
the acceptable range.
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Table 1. Parameters and accuracy index of the Gompertz model in mathematical modeling.

Environmental Factors Model Parameters Accuracy Indicators

T (◦C) RH (%) A (mm) µm × 100 (h−1) λ (h) Adj.R2 RMSE Af Bf

15 ◦C
61% 75.99 14.78 122.74 1.00 0.83 1.03 0.99
76% 71.26 14.52 108.27 1.00 0.92 1.03 1.00
86% 71.98 14.13 114.25 1.00 0.63 1.03 1.00

20 ◦C
59% 89.40 21.43 61.03 1.00 1.04 1.04 1.01
76% 102.20 20.47 75.86 1.00 1.36 1.04 1.01
85% 94.89 21.63 76.89 1.00 1.40 1.05 1.03

25 ◦C
58% 131.32 52.33 27.07 0.99 2.65 1.10 1.03
75% 111.37 56.04 24.50 1.00 1.91 1.09 1.05
84% 123.10 54.18 24.23 1.00 1.58 1.05 1.00

30 ◦C
56% 134.67 60.28 27.03 0.99 3.24 1.18 1.09
75% 147.82 61.87 32.73 0.99 2.49 1.14 1.07
84% 122.75 62.96 24.67 0.99 3.09 1.17 1.09
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Table 2. Parameters and accuracy index of the Logistic model in mathematical modeling.

Environmental Factors Model Parameters Accuracy Indicators

T (◦C) RH (%) A (mm) µm × 100 (h−1) λ (h) Adj.R2 RMSE Af Bf

15 ◦C
61% 70.82 15.62 145.85 0.99 1.34 1.05 1.00
76% 67.16 15.15 128.71 0.99 1.41 1.06 1.02
86% 67.27 14.88 136.44 1.00 1.31 1.06 1.02

20 ◦C
59% 81.90 22.59 77.48 0.99 1.94 1.09 1.04
76% 88.83 22.23 98.01 1.00 1.75 1.09 1.04
85% 85.42 23.03 94.89 0.99 2.45 1.12 1.07

25 ◦C
58% 100.26 56.56 34.65 0.98 3.18 1.12 1.06
75% 94.00 60.20 31.65 0.99 2.94 1.13 1.08
84% 97.35 59.21 32.39 1.00 1.56 1.06 1.02

30 ◦C
56% 102.02 65.07 33.67 0.98 3.94 1.21 1.12
75% 105.32 66.45 38.62 0.99 3.34 1.17 1.10
84% 99.12 67.97 31.33 0.98 3.99 1.22 1.12

3.2. Results of the Secondary Modeling

The secondary model was based on the primary model to describe the functional
relationship between the model parameters and environmental variables (temperature and
relative humidity). Firstly, we used OriginPro 2021 to analyze µm and λ using nonlinear
fitting, and then the secondary polynomial coupling on the three-dimensional graph was
used to obtain the fitting results for parameters in the secondary model. The parameters of
the polynomial model are shown in Equations (11) and (12). Secondly, a two-dimensional
prediction diagram using the polynomial model results is presented in Figure 4a,b. More-
over, A in the Gompertz model was substituted into Equation (13) by linear fitting, resulting
in coefficients b and Tmin, as shown in Figure 4c.

µm × 100 = −58.74 + 2.65T + 74.50RH + 0.01T2 − 58.60RH2 + 0.56T × RH (11)

λ = 409.44 − 27.38T + 33.31RH + 0.47T2 − 25.28RH2 + 0.28 × RH (12)

A = 4.25(T + 2.54) (13)

As illustrated in Figure 4a,b, the polynomial prediction model demonstrated that
temperature had a more significant impact on the model parameters than relative humidity,
corroborating the conclusions drawn from Figure 3. As the temperature rose from 15 ◦C to
30 ◦C, the maximum growth rate (µm) escalated from 11.20 × 10−2 h−1 to 65.60 × 10−2 h−1,
while the lag time (λ) decreased from 118.5 h to 24.0 h. This indicates that an increase in
temperature accelerates the growth rate of the mold and reduces the lag time (λ) of mold
growth. However, at the same temperature, the predicted model parameter values between
different relative humidity points showed minor differences. Figure 4c further reveals that
as the temperature increased, the maximum diameter (A) also increased, suggesting that
a temperature rise could increase the maximum diameter of mold growth. The specific
numerical changes are shown in Table S4.

At the same time, we verified the accuracy of the secondary model. As shown in
Table 3, it is evident that the polynomial and Arrhenius–Davey secondary models provide
an acceptable fit for the model parameters. The Adj.R2 for the λ was the highest at
0.923, indicating that the polynomial secondary model could predict the λ well based on
temperature and relative humidity. Simultaneously, the smallest Af for A suggests that
the Arrhenius–Davey secondary model could predict A effectively using temperature.
The accuracy test results reveal that the second-order models could predict the model
parameters well, with a low likelihood of underestimating the parameters. This outcome
demonstrates that the predictions obtained through the secondary models are reliable and
could be applied in real environments.
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Table 3. Accuracy test of growth parameters in secondary modeling.

Equation Model Model
Parameter Adj.R2 Af Bf

(11) The polynomial model µm 0.850 1.193 1.001
(12) λ 0.923 1.154 1.023

(13) The Arrhenius–Davey
model A 0.894 1.042 1.003

3.3. Results of the Laboratory Verification

Figure 5 represents the average changes in temperature, relative humidity and wind
velocity under conditions 1 and 2. The temperature, humidity and wind speed data from the
experiments were processed according to the 3-sigma rule to exclude outliers. In condition
1, out of the 7200 data points for temperature (with an average temperature of 24.81 ◦C
and a standard deviation of 0.948 ◦C), 111 data points (approximately 1.54%) were rejected.
In condition 2, out of the 1800 data points for wind speed (with an average wind velocity
of 0.02 m/s and a standard deviation of 0.017 m/s), 13 data points (approximately 0.72%)
were rejected. Unlike the constant temperature chamber, the temperature in condition 1
showed an upward trend in the first 72 h and a downward trend from 72 to 120 h. The
relative humidity also showed dynamic changes between 65% and 80%. After calculation,
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the average temperature in conditions 1 and 2 was 25 ◦C and the average relative humidity
was 75%. Moreover, the average wind velocity in condition 2 was 0.03 ± 0.02 m/s, while
the average wind velocity in condition 1 was 0. The average values of temperature and
relative humidity were substituted into Equations (11)–(13), and the model parameters
were obtained. Finally, we obtained the Gompertz prediction models under conditions 1
and 2, as shown in Equation (14).

Dt = 117.05·exp
{
−exp

[
11.51 × 10−3(29.66 − t) + 1

]}
(14)

Subsequently, we compared the mold growth diameters obtained from the four sam-
pling points with Equation (14), as shown in Figure 6. Due to the discontinuity of the mold
measurements, we could not obtain the actual change in mold growth diameter within
120 h. The overall trend of mold growth during the logarithmic growth period is consistent
with the prediction curve in conditions 1 and 2. The prediction curve could accurately
describe the mold growth changes at the four points in condition 1, while in condition 2,
the prediction curve predicted a smaller diameter at 0 h, and the actual diameter of mold
growth at the four points in the room was significantly lower than the prediction curve
between 96 and 120 h. To further illustrate the deviation between the prediction model
and the actual sampling, we also used four indicators of model accuracy to evaluate the
accuracy of the model predictions. In Table 3, the range of Adj.R2 in condition 1 was 0.717
to 0.935, while the range of Adj.R2 in condition 2 was −0.540 to 0.357, indicating that the
prediction model predicted the mold growth diameter under the unventilated conditions
better. The range of RMSE changes in condition 1 was 3.115 to 5.835, while in condition 2,
it was 7.969 to 11.391. The differences between the predicted and sampling values in
condition 2 were greater than that in condition 1. Although the mold growth predictive
model in both conditions exhibited a certain degree of overestimation, it produced higher
estimation errors (B f > 1.3) and a lower accuracy (A f > 1.3) for condition 2.
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4. Discussion
4.1. Effect of Temperature and Relative Humidity on Mold Growth

Maintaining the indoor temperature at 15 ◦C could significantly reduce the growth
of mold, and temperature might have a greater effect on the growth and reproduction
of mold compared to relative humidity. Temperature had a greater impact on mold than
relative humidity, and relative humidity had little effect on the mold growth rate [59]
(Tables 1 and 2), which lacks consistency with the conclusions drawn in some previ-
ous studies [34,60,61]. Although temperature changes have a significant impact on mold
growth, this effect was not pronounced at higher temperatures (25 ◦C and 30 ◦C) (Figure 3).
Haoxiang Wu et al. [62] maintained a constant relative humidity during the cultivation of
C. cladosporioides and found no significant difference in the growth rate at 19 ◦C and 28 ◦C.
Penggang Pei et al. [52]’s results align with our findings, demonstrating that the impact of
temperature on the growth rate and lag time of mold is limited in high-temperature envi-
ronments. However, it is noteworthy that Wagner Augusto Müller et al. [63] observed that
mold maintains its maximum growth rate (µm) from the outset when in high-temperature
conditions (T > 70 ◦C). Only when the mold reaches its maximum diameter (A) do sig-
nificant differences appear due to varying temperatures (75 ◦C, 80 ◦C, 85 ◦C, 90 ◦C and
94 ◦C).

The influence of relative humidity on mold growth is relatively minor, but this does
not imply a lack of variation. Pavel Kopecký et al. [64] found that relative humidity
significantly affects the concentration of mold in the air, with the mold growth coefficient
approximating a function of relative humidity, temperature and surface material. Tamaryn
Menneer et al. [37] suggested that exceeding a critical level of relative humidity in the
environment may lead to mold growth. Chenqiu Du et al. [30] found that gypsum boards
are more likely to induce mold growth in high-humidity environments. In our study, the
use of Petri dishes for cultivation during the experimental process might have led to a
more pronounced effect of temperature on mold growth, resulting in conclusions that differ
from the aforementioned studies. This suggests that future research should consider the
use of different growth substrates and investigate the impact of varying relative humidity
on airborne mold spores to further explore the influence of relative humidity on mold
growth. For the lag time (λ), a humid environment might increase the likelihood of mold
growth [29,47,56]. At 15 ◦C and 25 ◦C, the λ decreased as relative humidity increased, while
the λ paradoxically increased at 20 ◦C and 30 ◦C. Therefore, it is speculated that the λ might
not serve as a basis for judging the risk of mold growth, but this needs further analysis.
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The experimental results obtained in the chamber indicate that lowering the tempera-
ture and relative humidity could reduce the growth rate, slow down its lag time and result
in smaller diameters. The µm increased with the rise in temperature and relative humidity
(Figure 3), which suggests that we should reduce the temperature and relative humidity as
much as possible to inhibit mold growth, which is consistent with the conclusions obtained
by other studies [37,62,65]. From the perspective of indoor environmental control, based on
the aforementioned experimental results (Figures 3 and 4), we believe that low temperature
is a key factor in preventing mold growth. However, it is not feasible to continuously
reduce the temperature; GB50736-2012 [66] stipulates that the indoor temperature should
be 18 to 22 ◦C with no requirement for relative humidity under winter heating conditions,
and the summer temperature should be 26 to 28 ◦C (RH ≤ 70%). This suggests that the
temperature should be controlled at an acceptable but low level to inhibit mold growth in
winter and summer and reduce the risk of mold occurrence. At the same time, the different
temperature tolerance ranges of the species themselves might lead to differences in the
research results; therefore, further subdivisions of the species should be considered.

4.2. Accuracy of the Predictive Model and Parameter Determination

Comparing the two models, the Gompertz model had an average Adj.R2 of 0.997,
which was slightly higher than the Logistic model’s average Adj.R2 of 0.990 [67]. The
Gompertz model’s average RMSE was 1.762, which is closer to 0 than the Logistic model’s
average RMSE, indicating that the Gompertz model’s fitting effect is better (Tables 1 and 2).
For accuracy of the two primary models, the A f and B f of both models were within the ac-
ceptable range [68] but the Gompertz model values were closer, which means that the Gom-
pertz model has a higher accuracy and smaller deviation. Jolanta Wawrzyniak et al. [31]
evaluated the risk of mold and its toxins in stored seeds based on a mathematical model
of predictive microbiology, and found that the prediction model established based on the
modified Gompertz model had a good predictive ability (Adj.R2 = 0.90, RMSE = 0.547).
In this study, the Adj.R2 under different conditions was above 0.90 (Tables 1 and 2), but
the RMSE was high, which means these two primary models might cause large errors.
Tables 1 and 2 demonstrate the accuracy of primary models in predicting the growth
parameters of mold. Based on the above analysis, we could conclude that the Gompertz
model demonstrated superior predictive accuracy compared to the Logistic model, so the
Gompertz primary model was substituted into the secondary model for the subsequent
analysis. Meanwhile, given that these models are self-validated, both types of primary
models exhibited a high accuracy.

Based on the Gompertz model, we established predictive models for the three growth
parameters. Specifically, we used polynomial models to predict the effects of temperature
and relative humidity on µmand λ. For A, we employed the Arrhenius–Davey secondary
model to predict its relationship with temperature. In these secondary models, the environ-
mental parameters were used to predict the growth parameters. According to the accuracy
test results (Table 3), the secondary models demonstrated high accuracy in predicting the
growth parameters (Adj.R2 > 0.5). We hypothesize that µm and λ are more significantly
influenced by temperature (Figure 3), and the use of polynomial fitting for secondary
modeling might not reduce the impact of relative humidity on the predictive accuracy of
the model. This could be due to the failure to logarithmize the recorded mold growth
diameter during the calculation process, while the RMSE in Vijay K. Juneja et al.’s [57]
study is minimal (RMSE < 0.001), indicating that we did not unify the indicators of the
aforementioned studies during the process of mold growth prediction. At the same time,
secondary models for predicting the µm and λ parameters has been a focal point in this
research field [34,37,52]. In the process of constructing a prediction model for mold growth,
our focus was primarily directed toward the newly introduced growth parameter A and
the environmental parameter of relative humidity. An in-depth analysis and discussion
have been conducted on these two parameters, providing a comprehensive understanding
of their impacts on the mold growth prediction model. This approach not only enhances
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the accuracy of our prediction model but also contributes to the broader understanding of
mold growth dynamics in varying environmental conditions.

Regarding the maximum diameter (A), it continued to increase as the temperature
rose, although the pattern of change was not uniform at the same temperature. By using
temperature as a single environmental factor, the Arrhenius–Davey secondary model could
more accurately predict the maximum growth diameter compared to the predictions for
the maximum growth rate and lag time. In the process of establishing a secondary model
for parameter A, we did not consider the combined effects of temperature and relative
humidity. This is because temperature played a dominant role in parameter A (Figure 3),
and we observed that the effect of temperature on A might show a linear trend, so we
used the Arrhenius–Davey secondary model to predict parameter A. Unlike the indoor
environment field, previous studies have focused more on the maximum growth rate and
lag time, with relatively less mathematical modeling for the maximum growth diameter
A [47,53], except for Penggang Pei et al. [52]’s introduction of A in the Baranyi model,
which was not used in his research. We believe that the maximum growth diameter A is
equally important because, in indoor environments, the area of mold growth might be an
important factor that affects the distribution of indoor mold aerosols [69]. Therefore, we
also conducted secondary modeling for parameter A, and the model was found to have a
good prediction ability (Adj.R2 > 0.800).

Then, an analysis is carried out from the perspective of factors influencing growth
parameters. It could be seen that the temperature, relative humidity and wind speed in
the environment affected the accuracy of the growth prediction model by influencing the
growth parameters of the prediction model. In the process of building this model, the
selection and cultivation of the species [62], the measurement of the mold diameter [34],
the choice of primary and secondary models [63], the range of temperatures [62] and
relative humidities [62] in the chamber and the ratio of the culture medium [54,63] might
have affected the accuracy of the model. It is worth noting that most studies choose aw
as the main factor affecting mold growth in the field of food protection [50,70]. Among
them, Wagner Augusto Müller et al. [63] chose relative humidity and aw as two factors
to describe the physicochemical changes on the surface of the culture medium. Tamaryn
Menneer et al. [37] successfully predicted the mold risk index in living rooms and bedrooms
using relative humidity and temperature. In this study, the selection of water activity (aw)
and relative humidity was based on the specific research questions and objectives. We
considered the impact of two environmental factors, temperature and relative humidity,
on µm and λ, and established a secondary model accordingly. In the context of indoor
environment research, we focused more on the relative humidity in the environment. This is
because we aimed to regulate the relative humidity in the indoor environment by studying
the growth characteristics of mold. There is a strong correlation between relative humidity
and the concentration of airborne mold spores in indoor environments [71]. The higher the
relative humidity, the more severe the indoor mold contamination, which poses a higher
health risk to humans [2,4].

The mold growth prediction model developed in this study is composed of primary
and secondary models. Initially, the Gompertz primary model was used to predict growth
parameters based on sampling data of mold diameter. Subsequently, the Arrhenius–Davey
model was employed to establish a secondary prediction model for the maximum growth
diameter (A) as a function of temperature. Furthermore, a polynomial model was utilized
to construct a secondary prediction model for the maximum growth rate (µm) and lag time
(λ) in response to temperature and relative humidity. Ultimately, by obtaining temperature
and relative humidity from the actual environment, we could calculate the mold growth
prediction curve under specific conditions, thereby achieving the prediction of mold growth
characteristics in indoor environments.
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4.3. Analysis of Laboratory Validation Results

In the laboratory validation, it could be inferred that the prediction model could make
good predictions in condition 1, indicating that the prediction model could be used to
predict mold growth in the logarithmic growth period under unventilated conditions. In
the prediction study of the mold growth model [38,50,53], an Adj.R2 above 0.80 indicates
that the established model has a good prediction ability. Wagner Augusto Müller et al. [63]
analyzed the inactivation of Aspergillus fumigatus in apple juice and suggested that if
A f and B f are between 0.9 and 1.05, the prediction model could be considered accurate.
Martina Koňuchová et al. [38] also conducted secondary modeling and subsequent opti-
mization, resulting in an Adj.R2 exceeding 0.950, indicating a high degree of accuracy of
the model. Prior to the optimization, the model’s Adj.R2 for the lag time ranged from 0.685
to 0.808 without square root transformations. The Adj.R2 coefficient serves as a measure of
the model’s accuracy, allowing for a comparison of the model’s performance before and
after optimization. This significant increase in the Adj.R2 post-optimization demonstrates
the effectiveness of the optimization process in enhancing the model’s accuracy. In our
study, the Adj.R2 values of four points in condition 1 were also above 0.70 and below 0.40
in condition 2 (Table 4), suggesting that the mold growth prediction model established
in this study could be used for mold growth prediction in unventilated environments. It
is noteworthy that in this study, the Adj.R2 for points 2 and 4 in condition 2 were both
less than 0, as the prediction model was used to validate uncertain conditions. The RMSE
represents the average deviation between the predicted values from the model and the
actual measured values. The RMSE in condition 2 was 2 to 3 times that of condition 1,
which is consistent with the conclusion drawn from the Adj.R2. When the prediction model
is applied to windy conditions, significant errors might occur. Therefore, under windy
conditions, the prediction model established in this study is not recommended.

Table 4. Verification results of the prediction model at points 1–4 in laboratory verification.

Condition
Adj.R2 RMSE

Point 1 Point 2 Point 3 Point 4 Point 1 Point 2 Point 3 Point 4

1 0.935 0.717 0.934 0.806 3.208 5.835 3.115 5.106
2 0.357 −0.540 0.022 −0.422 7.969 10.832 9.124 11.391

/ A f B f

1 1.166 1.256 1.151 1.252 1.132 1.256 1.141 1.252
2 1.380 1.561 1.418 1.600 1.380 1.413 1.390 1.600

In the laboratory validation, the average wind speed was observed to be 0 in condi-
tion 1 (Figure 5). This was due to the closure of doors and windows during the experiment,
coupled with the prohibition of any activities within the environment. However, in real
environments, particularly in areas frequently occupied by individuals, minor random
airflows are often generated due to variations in human activity [72], making these areas
more representative of actual environments. Nevertheless, the generation of minor random
airflows is difficult to achieve through human activity in this laboratory. Therefore, we
opened the doors and windows in the laboratory (condition 2), resulting in a minor airflow
distribution within the room, which served to simulate minor airflow variations in real
environments. The prediction model established in condition 2 tended to overestimate the
mold growth (Figure 6). However, under windless conditions, the diameter of mold growth
at the four points varied within an acceptable range. In Table 4, the A f in condition 1 was
significantly smaller than that in condition 2 and is closer to 1. However, the B f in condition
1 is also greater than 1, indicating that the model might overestimate the actual results.
During the construction of this mold growth prediction model, we used the average values
of temperature and relative humidity, as these environmental parameters, including wind
velocity, are continuously changing in real environments. Therefore, in future research, we
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should establish predictions of mold growth diameter within a predictable range based on
the variation range of environmental parameters, centered around the average value. This
approach is acceptable in the field of indoor environments.

On the other hand, this study found that wind speed had an inhibitory effect on mold
growth (Figure 6a). The experimental area in this study is an area with calm winds and
small annual wind speeds [73]. The real-time wind speeds monitored in condition 2 were
all less than 0.1 m/s (0.03 ± 0.02 m/s), which could be ignored, so the impact of wind
speed changes on mold growth was minimal. The slow growth of mold might be due to
the interference of outdoor airflow during the entire experiment (the windows were open
under natural ventilation conditions), and the fresh outdoor air might have the effect of
exhausting waste gas. In future research, we plan to build a corresponding experimental
platform and ventilation system to further study the impact of airflow and introduce new
variables or correction indicators to the prediction model for mold growth.

4.4. Limitations

This study initially employed a specialized humidity-controlled Petri dish for relative
humidity control (Figure 1b), acknowledging that the constant relative humidity might
vary with environmental temperature changes [46]. The Petri dish, used as the growth
substrate during the cultivation process, provided ample nutrients, contrasting with the
nutrient-deficient surfaces of building materials (such as wood, stainless steel, plastic,
etc.) [54,74]. Future research could consider using different growth substrates to cultivate
mold, exploring the impact of different substrates on mold growth characteristics and
refining the constructed mold growth prediction model. This study only used Aspergillus
as the culture strain, and the conclusions drawn are only applicable to this strain. We
should select other types of strains common in indoor environments to carry out cultivation
experiments at different temperatures and relative humidities [17], thereby refining the
research conclusions in the future. Secondly, this study only used a polynomial secondary
model for the maximum growth rate (µm) and lag time (λ), and the Arrhenius–Davey
secondary model for the maximum growth diameter (A) to predict growth parameters,
without a horizontal comparison with other secondary model modeling methods, resulting
in a lack of credibility in the conclusions drawn. Subsequent work could be based on the
data obtained in this study, use other modeling methods, establish different mold growth
prediction models, compare the differences between models horizontally, and conduct
experimental verification in real-world environments. Finally, this study did not delve
into the impact of airflow on mold growth, only verifying the model’s accuracy under
natural ventilation conditions (wind velocity < 1 m/s), where the impact of wind speed
on mold growth could be almost ignored. The lack of wind velocity in the constructed
mold growth model might be the main reason for the model’s inaccurate prediction. The
objective of future studies should consider introducing wind speed as a factor, establish a
prediction model suitable for general indoor ventilation conditions (wind velocity is 0.2 to
0.3 m/s) and verify the model’s accuracy by creating different ventilation volumes in real
environmental conditions.

5. Conclusions

This study first proposed a model for predicting mold diameter growth based on tem-
perature and relative humidity. Then, it clarified the trends of µm and λ with temperature
and relative humidity and obtained control recommendations for the chamber. Finally,
it validated the prediction ability of the model in real environments. The results can be
summarized as follows:

(1) Our research cultivated mold on a medium under constant temperature and relative
humidity conditions. We found that reducing the temperature and relative humidity
could significantly inhibit mold growth, but the inhibitory effects varied. Temperature
might play a more important role; the maximum growth (µm) rate and diameter (A)
of the mold increased as the temperature increased, while the lag time (λ) decreased.
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At higher temperatures (25 ◦C and 30 ◦C), the rate of change in mold growth and
lag time might become consistent, and we speculate that the main difference might
appear in the maximum diameter (A).

(2) We utilized the diameter of mold growth under varying temperatures and relative
humidity levels to derive growth parameters (µm, λ, A) through nonlinear fitting
methods. Our findings indicate that these growth parameters could effectively depict
the growth process of the mold. The primary model was able to accurately calculate
these growth parameters, although it is important to note that temperature and
relative humidity might influence the precision of these parameters. Compared to the
Logistic model (Adj.R2 = 0.990), the Gompertz primary model demonstrated superior
predictive performance for the growth parameters (Adj.R2 = 0.997). Therefore, the
Gompertz primary model is more suitable for calculating growth parameters in
indoor environments.

(3) We developed a secondary model based on environmental parameter changes to
predict growth parameters (µm, λ, A), established a mold growth prediction model
and validated the model under windless and windy conditions. We concluded that
the polynomial secondary model for the maximum growth rate (µm) and lag time
(λ), and the Arrhenius–Davey secondary model for the maximum growth diameter
(A) demonstrated good predictive performances (Adj.R2 > 0.850). Relative humidity
was found to be a useful factor in constructing the mold growth prediction model.
This mold growth prediction model was able to predict mold growth under windless
conditions in real-world environments fairly well (Adj.R2 > 0.700). However, the model’s
accuracy decreased (Adj.R2 < 0.400) under windy conditions (wind velocity < 1 m/s).

This work established a predictive growth model based on temperature and relative
humidity, providing temperature and relative humidity control suggestions for inhibiting
indoor mold growth. Moreover, it offers theoretical data support for source control of mold,
contributing to the thermal environment regulation and pollutant control in buildings,
thereby ensuring people’s well-being.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/buildings14010215/s1, Table S1: Record of mold growth diameter
in the chamber; Table S2: Calculation of accuracy indicators for the Gompertz model in the chamber;
Table S3: Calculation of accuracy indicators for the Logistic model in the chamber; Table S4: Fitting
values of µm and λ at different temperatures and relative humidities.
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