
Citation: Xu, W.; Zhao, S.; Zhang, W.;

Zhao, X. Numerical Simulation of

Crack Propagation and Branching

Behaviors in Heterogeneous Rock-like

Materials. Buildings 2024, 14, 158.

https://doi.org/10.3390/

buildings14010158

Academic Editors: Eugeniusz Koda,

Qingbiao Wang and Bin Gong

Received: 20 December 2023

Revised: 3 January 2024

Accepted: 7 January 2024

Published: 8 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Numerical Simulation of Crack Propagation and Branching
Behaviors in Heterogeneous Rock-like Materials
Wei Xu 1, Shijun Zhao 1,*, Weizhao Zhang 2 and Xinbo Zhao 1

1 School of Science, Qingdao University of Technology, Qingdao 266525, China; weixu@qut.edu.cn (W.X.);
xinbo.zhao@qut.edu.cn (X.Z.)

2 Xibei Mining Co., Ltd., Shandong Energy Group, Xi’an 710018, China; tkmkfcbzwz@163.com
* Correspondence: zhaoshijun@qut.edu.cn

Abstract: The characterization and understanding of crack evolution in non-uniform geological
structures are crucial for predicting the mechanical response of rock-like materials or structures
under varying loading conditions. In this study, an improved Peridynamic model with a degree of
heterogeneity characterized by random pre-breaking “bonds” coefficients is introduced to capture
the intricacies of crack initiation, propagation, and branching behaviors in heterogeneous rock-
like materials. MATLAB discrete programs for heterogeneous material models and PD simulation
programs based on the FORTRAN language were developed. The effectiveness of the heterogeneous
PD model in simulating crack propagation and branching patterns in heterogeneous materials
has been verified through dynamic and static (quasi-static) loading cases with pre-notch. The
different levels of heterogeneity not only affect the direction of crack propagation but also determine
the crack deflection direction and branching patterns. The crack propagation path appears to
possess obvious asymmetry in the crack propagation direction. As the load applied continues to
increase, the asymmetric multi-crack branching phenomenon will occur. The higher the level of
heterogeneity, the more complex the behaviors of crack propagation and branching become. This
research provides valuable insights into the interplay of material heterogeneity and crack evolution,
offering a foundation for improved numerical simulations and contributing to the broader field
of geomechanics.

Keywords: heterogeneous materials; crack propagation; crack branching; brittle fracture;
non-local model

1. Introduction

Crack propagation and branching behaviors of rock-like materials, such as rock mass,
cement, concrete, and other brittle materials, significantly affect the stability and safety of
explorations of deep resources, building structures, and underground space. In addition,
they are involved in various deep geotechnical engineering applications such as hydrogen
storage, shale gas extraction, and coal mining [1–4]. A good understanding of crack
propagation and the branching of brittle materials with pre-existing defects, such as rock
mass or rock-like material, is significant for preventing the catastrophic failure of deep
geotechnical engineering. The numerical simulation of fracture and failure in rock-like
materials stands as a cornerstone in geomechanics, offering invaluable insights into the
behavior of rock-like material formations under diverse loading conditions [5–7]. As the
integrity and stability of geological structures profoundly impact engineering endeavors,
understanding the mechanisms of fracture in rock-like materials becomes paramount.

Rock-like materials, such as rock mass or concrete, have complex physical and me-
chanical properties that differ from metal materials, such as heterogeneity, discontinuity,
and anisotropy [8–11]. In engineering, on-site experiments, physical laboratory simula-
tions, and numerical simulations are generally used to analyze the laws of material or
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structure movement, providing economic and safe suggestions and measures for engi-
neering. However, using on-site and laboratory physical simulation experiments, only a
limited amount of strain data can be measured, and the dynamic failure characteristics
and microscopic evolution characteristics of the material or structure cannot be accurately
observed. Existing mechanics experimental instruments, such as MTS, can load specimens
with quasi-static or static loads, but there are certain difficulties in applying dynamic and
static loads. Model experiments have varying degrees of conditional limitations in terms of
cost, duration, and operating conditions. The state of destruction cannot be reproduced and
preserved for a long time. On-site experiments are costly and greatly affected by terrain,
construction conditions, geological conditions, and other factors [12–14]. Numerical ex-
periments have significant advantages in terms of cost, dynamics, and microscopic failure,
making numerical simulation an important means of studying the mechanical properties of
rock-like materials.

Crack propagation and branching behavior have important significance in brittle
materials. Many computational methods have been helpful in simulating the propagation
and branching of cracks in brittle materials. The numerical simulation of crack propaga-
tion is a crucial area of research in geomechanics and has profound implications for the
understanding of material behavior under various loading conditions. Various numerical
methods have been developed to model crack propagation in rock-like materials, each with
its own set of assumptions, advantages, and limitations. Finite Element Method (FEM),
Discrete Element Method (DEM), Extended Finite Element Method (XFEM), and Messfree
Methods (MF) are among the widely employed techniques [15–19]. These methods enable
researchers to simulate the initiation, propagation, and interaction of cracks under different
loading conditions. FEM has been extensively used in simulating crack propagation by
discretizing the rock mass into finite elements and solving for the stress and strain fields.
In FEM analyses, the material constitutive model assumption plays an important role for
the correct estimation of the response. For continuum mechanics, the most prominent
material laws for the analysis of geomaterials are the modified Cam-Clay, Hoek–Brown,
and Barton models [20–22]. However, FEM may face challenges in accurately capturing
crack paths and complexities associated with multiple interacting cracks [23]. On the other
hand, DEM focuses on the discrete representation of individual particles, providing a
more granular understanding of crack initiation and propagation. Nevertheless, DEM
may encounter challenges in representing the continuum behavior of material at smaller
scales [24]. The XFEM is designed to address some of the limitations of traditional FEM
by allowing cracks to be modeled independently of the underlying mesh. While XFEM
enhances crack representation, challenges remain in its application, particularly in han-
dling complex geological structures and material interfaces [25]. As an integral non-local
continuum mechanics method, Peridynamics (PD) discretizes the material or structure
into a series of points, uses the integral equation to describe the motion, and obtains the
position, velocity, and force of the points by solving the non-local integral equation of
motion, so as to obtain the motion trajectory and material response of structures subject
to external force [26,27]. The PD equation of motion contains the differential of time and
the integral of space, does not contain the spatial derivative of any displacement field, and
is defined in both continuous and discontinuous regions. It overcomes the difficulty of
analyzing discontinuous problems by continuum mechanics and realizes the solution of
multi-scale problems according to a unified framework. The PD method does not need to
preset the crack initiation position and crack propagation path when dealing with fracture
and failure problems. In PD, using spatial integral equations instead of PDEs to describe the
force distribution on objects avoids the singularity of differential simulations in traditional
continuum mechanics when solving discontinuous problems. It has shown great potential
in dealing with discontinuity, fracture and damage, interactions between multi-cracks,
spontaneous nucleation, and propagation and branching of cracks [28,29].

The numerical modeling of heterogeneous geomaterials is a critical domain within
geomechanics, essential for comprehending the intricate behavior of geological forma-
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tions characterized by non-uniform material properties [30]. The inherent complexity
arising from heterogeneity in materials or structures necessitates sophisticated numerical
approaches to accurately capture their mechanical response under diverse loading con-
ditions. The key to conducting mechanical analysis of heterogeneous geomaterial is to
establish a computational mechanical model that reflects the heterogeneity characteristics.
Currently, numerical modeling methods for describing the heterogeneity of geomaterials
include probability statistics [31,32], spatial variation [33], digital image technology [34,35],
and machine learning [36,37]. To some extent, the modeling method of probability statis-
tics can characterize the heterogeneity of geomaterials but the dual characteristics of the
overall structural and local randomness of geomaterial parameters are not reflected in
this method. In the spatial variation-based modeling method, the purpose of reducing
estimation variance is achieved by smoothing the discreteness of measured data, although
sometimes there may be some outliers that are smoothed out. Therefore, this method
can only ensure the local optimal estimate rather than the overall optimal estimate. The
modeling method based on digital image technology relies on the processing of digital
images of geomaterials, which can accurately and objectively reflect the micro-structure
of geomaterials when analyzing relatively small specimens or structures. For engineering
projects, digital image technology needs to be processed and analyzed, which also limits the
application of digital image technology in large-scale geotechnical engineering projects [38],
along with the enormous amount of image information.

This study aims to explore a spectrum of numerical modeling methods employed for
simulating the behavior of heterogeneous rock-like materials, providing an encompassing
view of both their strengths and limitations. To overcome the cumbersome modeling,
computational complexity, and limitations of traditional numerical simulation methods
in dealing with discontinuous problems, the sub-heterogeneous PD model is employed
in this paper, which is based on the random pre-breaking “bonds” [39]. In this model,
only the degree of heterogeneity represented by the pre-breaking “bonds” coefficient needs
to be set to establish a heterogeneous model of materials or structures, without the need
for an additional model pre-process, and the model is able to reflect the characteristics of
the random distribution of material heterogeneity. The size of the simulation model has
no effect on the efficiency of heterogeneous modeling. The sub-homogeneous PD model
is particularly suitable for applications in large-scale discontinuous and heterogeneous
geotechnical engineering. The accurate simulation of fractures is pivotal for assessing the
safety and performance of infrastructures such as tunnels, dams, and slopes.

2. Theory of Bone-Based Peridynamics

2.1. Basic Theory

As shown in Figure 1, at a certain time t, the PD equation of motion at a point x is [26]:

ρ
..
u(x, t) =

∫
Hx

f
(
u
(

x′, t
)
− u(x, t), x′ − x

)
dVx′ + b(x, t) (1)

where u is the displacement vector field, b is the body face vector, and f is a pairwise force
vector function in a PD bond that connects material point x′ with point x.

The radius δ is called the horizon range, Hx is the collection of all the material points
within the range δ, specifically:

Hx = H(x, δ) =
{

x′ ∈ R :
∥∥x′ − x

∥∥ ≤ δ
}

(2)

By introducing the relative distance ξ in reference to the configuration and relative
displacement η, it can help to discretize Equation (1). ξ = x′ − x is the relative position
vector and η = u′ − u is the relative displacement vector.
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Figure 1. Schematic diagram of the interaction between material points in PD theory.

The mechanical properties of the material are related to the micro-modulus c and
critical elongation s0. The deformation energy density of the material point x in its
horizon δ is:

W =
1
2

∫
Hx

w(η, ξ)dVξ =
1
2

∫ δ

0

(
cs2ξ

2

)
4πξ2dξ (3)

where W is deformation energy density, w(η, ξ) is the scalar micro-potential function,
and 1/2 indicates that each point occupies half of that of the related two material points’
deformation energy density.

The pairwise force magnitude for micro-elastic materials with damage is derivable
from the scalar micro-potential w(η, ξ):

f (η, ξ) =
∂w(η, ξ)

∂η
=

{
ξ+η

∥ξ+η∥ g(s)µ(t, ξ) ∥ξ∥ ≤ δ

0 ∥ξ∥ > δ
(4)

g(s) = cs, ∀s (5)

µ(t, ξ) =

{
1 i f s(ξ) < s0
0 otherwise

(6)

s =
∥ξ + η∥ − ∥ξ∥

∥ξ∥ (7)

where µ(t, ξ) is a time-related scalar function, s is the value of “bond” elongation between
two material points, and s0 is the critical value of “bond elongation” for breakage.

In PD, the local damage value ranges from 0 to 1 and is represented by the ratio of the
number of bonds broken to the total number of bonds in the horizon of point x.

φ(x, t) = 1 −
∫

Hx
µ(x′ − x, t)dV′∫

Hx
dV′

(8)

Considering the variation in the spatial decline of long-range force, in the improved
model, the constitutive force function f (η, ξ) is given as:

f (ξ, η) =

{
ξ+η

∥ξ+η∥ c0κ(ξ, δ)s ∥ξ∥ ≤ δ

0 ∥ξ∥ > δ
(9)
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where κ(ξ, δ) is the kernel function that can reflect the characteristics of the long-range force
spatial decline between points. In the present study, kernel function κ(ξ, δ) is as follows:

κ(ξ, δ) =

(
1 − ∥ξ∥

δ

)2
(10)

With the classical elastic energy density theory c(ξ, δ) equal to:

c(ξ, δ) =



10E
πδ4(1−2ν)

(
1 − ∥ξ∥

δ

)2
3D

60E
πδ3(1−ν)

(
1 − ∥ξ∥

δ

)2
plane stress

60E
πδ3(1+ν)(1−2ν)

(
1 − ∥ξ∥

δ

)2
plane strain

12E
Aδ2

(
1 − ∥ξ∥

δ

)2
1D

(11)

where E is Young’s modulus and ν is Poisson’s ratio.
For 2D problems as shown in Figure 2, the fracture energy G0 in PD is given by:

G0 = 2
∫ δ

0

∫ δ

z

∫ cos−1 (z/ξ)

0

[
c0κ(ξ, δ)s2

0ξ

2

]
ξdφdξdz (12)

where z is the distance from material point x to the fracture surface and θ is the
rotation angle.
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Substituting Equation (12) into Equation (13), the approximate expression of energy
release rate G0 in PD can be obtained as:

G0 =
(π − 1)δ4c0s2

0
120

(13)

Approximate expression of energy release rate G0 and critical elongation s0 can be
obtained. For 2D problems, the critical elongation s0 can be obtained as:

s0 =


√

4πG0
3(π−1)Eδ

plane stress√
5πG0

4(π−1)Eδ
plane strain

(14)

2.2. Numerical Simulation Method

Solving the motion equation of the PD computing model involves time integration,
spatial discretization, and integration. The unit volume force generated by the point x in
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the reference configuration can be obtained by summing, and the spatial integral equation
can be discretized as follows:

ρi
..
un

i + C
.
un

i =
N

∑
j=1

f
(

un
j − un

i , xj − xi

)
V j + b(xn

i ) (15)

where ρi is the material density,
..
un

i is the acceleration,
N
∑

j=1
is the combined internal force

of all other points in the horizon δ of point x, C is the artificial damping coefficient, C = 0
in dynamic analysis, un

j = u
(

xj, t
)
, n is the time-step number, and subscripts denote the

point number.
During simulations, material point xj located in the horizon range of point xi may

not be fully contained, as shown in Figure 3. The green points represent that they have
complete integrated volume, but the red points are not within the horizon size of point xi.
The blue points mean they are out of the horizon of point xi. In order to ensure the accuracy
of the integration, the integral volume needs to be corrected; for example, the red points.
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By introducing a volume correction factor vc
j , the integral volume of each point can be

expressed as [40]:

Vj =

{
|∆x|2 ξ <

(
δ − rj

)
vc

j |∆x|2
(
δ − rj

)
< ξ < δ

(16)

where rj is half the length of the discretized subdomain, rj =
|∆x|

2 , and volume correction
factor vc

j can be determined as:

vc
j =

{
1 ξij <

(
δ − rj

)
δ + rj − ξij

2rj

(
δ − rj

)
< ξij < δ

(17)

When
(
δ − rj

)
< ξij < δ, the volume correction factor vc

j varies linearly between(
1
2 , 1

)
. After introducing the volume correction factor vc

j , Equation (15) can be rewritten as:

ρ
..
un

i + C
.
un

i =
N

∑
j=1

f
(

un
j − un

i , xj − xi

)(
vc

j Vj

)
+ b(xn

i ) (18)
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The numerical integration of time can be obtained by the velocity Verlet difference
scheme. The displacement u(x, t) and velocity

.
u(x, t) of the material point are:

.
umid

= ρ − 0.5C∆t
ρ

.
un

i +
∆t
2ρ (Lu + b)n

.
un+1

i = ρ
ρ + 0.5C∆t

.
umid

+ ∆t
2(ρ + 0.5C∆t) (Lu + b)n+1

un+1
i = un

i +
ρ − 0.5C∆t

ρ

.
un

i ∆t + (∆t)2

2ρ (Lu + b)n

(19)

where ∆t is the time step, which is far less than the critical time step ∆tc and needs to meet
∆t ≪ ∆tc =

∆χ
CL

, ∆χ is the minimum length of the “bond”, and CL is the longitudinal wave
velocity in the material.

3. Heterogeneity Characterization in the PD Model

3.1. PD Modeling of Heterogeneous Materials

When defects in materials or structures have obvious geometric shapes, the following
two methods can usually be used in PD simulation models to process the points within
the defect range. One is to uniformly discretize points within the entire PD simulation
model, delete the points within the defect range, and renumber them. Similarly, in the other
method, points in the entire PD simulation model are uniformly discretized, without the
need to delete points within the defect range. Only the “bonds” that pass through the defect
range need to be cut down in advance. To determine whether the “bonds” are broken, the
method shown in Figure 4 can be used. AB represents defects and CD represents “bonds”
that pass through the defect range.
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For pre-breaking criterion Figure 4a, the following equation needs to be met:

(CA × AB) · (DA × AB) < 0 (20)

For pre-breaking criterion Figure 4b, the following equation needs to be met:

(AC × AB) · (BC × AB) < 0 (21)

In existing homogeneous PD models, it is generally believed that the physical and
mechanical parameters related to the mechanical response of materials, such as elastic
modulus, density, and fracture energy, are uniform and constant. Due to the varying
number of natural defects in materials or structures, they do not match the actual situation.
When the defect size in a heterogeneous material is much smaller than the size of the com-
putational model, it can be considered a locally homogeneous material [41,42]. However,
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when there are a large number of micro defects in the material that cannot be ignored
and have no specific geometric shape, existing PD models cannot accurately describe the
mechanical response of the material or structure. As shown in Figure 5, by introducing a
random pre-breaking “bond” coefficient into a uniform discrete computational model to
characterize the heterogeneity of rock-like materials, the details of our work are present in
the literature [39].
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Figure 6 shows the degree of material heterogeneity and the corresponding damage
index represented by the random pre-breaking of “bonds”. It should be pointed out that
the damage index shown in the nephogram is not the damage caused by the external
load on the material, but represents the proportion of random pre-breaking “bonds” and
the level of material heterogeneity [43,44] as the initial condition of the model in the
simulation process.
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random pre-breaking: material heterogeneity degree M = 5%.

3.2. Numerical Solution Process

Based on the above theories and simulation methods, this paper uses the FORTRAN
language to compile the simulation program of the heterogeneous PD model, and the flow
chart of the PD model simulation program is shown in Figure 7. In the pre-processing
module, the discrete model program is compiled based on MATLAB 2018a, which can
obtain the required information such as the coordinates of material points. In the post-
processing module, the simulation file information is read with the help of Ensight, which
also outputs the simulation results.
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4. Numerical Examples of Specimens with Pre-Notch

4.1. Load Case 1: Quasi-Static Loading

In order to study the influence of material heterogeneity on crack growth under quasi-
static loading, numerical simulation of crack growth is carried out for three-point bending
beams with pre-notch. Considering the three-point bending beam shown in Figure 8, a pre-
notch with length h = 0.04 m and width w = 0.004 m is set in the middle of the beam bottom,
and the geometric dimensions of the beam are L = 0.6 m, H = 0.1 m, l = 0.5 m. The three-point
bending beam model is orthogonally uniformly dispersed to a 600 × 100 × 1 lattice, and the
distance between material points is |∆x| = 0.001 m. The heterogeneity represented by the
pre-breaking “bond” coefficient is also considered in order to avoid premature failure at the
loading boundary, and the horizon size is selected as δ = 6|∆x|. The 160 material points at the
pre-notch are deleted. The total number of material points in the simulation model is 59,840.
Table 1 presents the physical and mechanical parameters of the tested cement three-point
bending beam with pre-notch.
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Table 1. Physical and mechanical parameters of the three-point bending beam.

Density Young’s Modulus Fracture Energy Density Poisson’s Ratio

2483 kg/m3 7.2 GPa 23 N/m 1/3
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Figure 9 shows the crack growth process of the homogeneous three-point bending
beam model with pre-notch. From the simulation results, it can be seen that the micro cracks
start to aggregate at the tip of the pre-notch and form macro cracks, which propagate along
a straight line in the direction of the applied concentrated load until the beam is completely
fractured. The cracks generated in this model are typical I-open cracks. However, most
materials in nature have typical heterogeneous characteristics. For the heterogeneous three-
point bending beam model with pre-notch under quasi-static loading, the crack growth
path will be significantly different from that of the homogeneous model.
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Figure 9. Crack propagation process of the homogeneous three-point bending beam with pre-notch
(time unit: ∆t). (a) Damage nephogram during crack propagation; (b) Horizontal displacement
nephogram during crack propagation.

The fracture and failure of naturally heterogeneous materials have strong nonlinear
characteristics and are gradual accumulation processes. When the external load reaches
a certain critical value, the crack will develop in a chain method, and the damage will
evolve from a random distribution to the crack surface. Figure 10 shows the PD simulation
results of the crack growth and fracture failure of the three-point bending beam with pre-
notch when heterogeneity is M = 2.5%. Similar to the homogeneous model, micro cracks
aggregate from the tip of the pre-notch and form macroscopic cracks. It can be seen from
the damage nephogram and horizontal displacement nephogram during crack growth that
the crack develops along the direction of the applied concentrated load but deflects about
7◦ to the right.

The degree of heterogeneity of the material has a significant impact on its mechanical
response behaviors such as fracture failure. Figure 11 shows the PD simulation results of
the crack propagation path and fracture patterns of the three-point bending beam with
pre-notch when the degree of heterogeneity M = 5%. Similar to the two previous simulation
models, micro cracks start to aggregate at the tip of the pre-notch and form macro cracks. It
can be seen from the damage nephogram and horizontal displacement nephogram during
crack growth that the crack develops along the direction of the applied concentrated load
but deflects approximately 10◦ to the left.
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4.2. Load Case 2: Dynamic Loading

In order to study the influence of material heterogeneity on crack growth under dynamic
loading, numerical simulation of crack growth is carried out for a rectangular plate with pre-
existing notch, as shown in Figure 12. The rectangular plate has a side length of L = 0.1 m and
width of 2H = 0.05 m, as well as pre-notch with a length of L/2. The physical and mechanical
parameters of the tested concrete rectangular plate with pre-existing notch are shown in Table 2.
The model adopts an orthogonal uniform dispersion of a 400 × 200 × 1 lattice, the distance
between material points is |∆x| = 0.00025 m, and the total number of discrete material points
is 80,000. Because the heterogeneity represented by the pre-breaking “bond” coefficient is
considered, in order to avoid premature failure at the loading boundary, a large horizon size is
selected, with δ = 6|∆x|. For the model, the boundary condition of force loading is adopted.
The instantaneous force load is, respectively, applied to the three-layer material points at the
upper and lower ends of the rectangular plate. The left and right sides of the rectangular plate
are free boundaries without any constraint.
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Table 2. Physical and mechanical parameters of the rectangular plate simulation model.

Density Young’s Modulus Fracture Energy
Density Poisson’s Ratio

2460 kg/m3 13.3 GPa 85 N/m 1/3

Figures 13–15 show the crack growth process of the homogeneous rectangular plate
model with pre-notch under different transient loads. From the numerical simulation
results, it can be seen that under the action of an external load, micro cracks all initiate,
expand, and form macro cracks from the tip of the pre-notch, and different external load
sizes have an important impact on the crack growth path: when the load is small, the
crack grows along a straight line in the direction of the pre-notch. With the increase in
the external load, the crack propagates along a straight line as a pre-notch, and at the
same time, the crack branches. When the external load continues to increase, the crack
branching behaviors will occur earlier. Because the simulation model is uniformly discrete
and completely homogeneous, the crack growth path is completely symmetrical in the
direction of crack growth under different instantaneous loads.
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The heterogeneity of the material has an important influence on their mechanical re-
sponse mechanism under an external load. Figures 16 and 17 show the crack growth process
of rectangular plates with pre-notch under different levels of heterogeneity when the instanta-
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neous load is 1.0 MPa and 2.0 MPa, respectively. At this time, the micro crack will still initiate
from the tip of the pre-notch and propagate along the pre-notch direction. Different from the
homogeneous model, the crack no longer propagates along a straight line, and different levels
of heterogeneity will have a greater impact on the crack growth path. The crack propagation
path appears to have obvious asymmetry in the crack propagation direction. As the load
applied continues to increase, the asymmetric multi-crack branching phenomenon will occur.
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5. Discussion

Rock-like materials are naturally generated porous media, composed of mineral
particles of different scales and discontinuous structures such as pores and micro-cracks
of various scales, exhibiting the typical characteristics of heterogeneous materials. Due
to the presence of micro defects such as pores and voids, the complexity of rock-like
materials is greatly increased. The material properties of porous media are one of the
important sources of heterogeneity in rock-like materials and have a significant impact on
physical and mechanical properties such as density and strength, as well as mechanical
response mechanisms such as damage accumulation and progressive failure under external
loads. By constructing an improved PD model that reflects heterogeneity, the mechanical
mechanisms of damage accumulation and progressive failure in rock-like materials can be
better explained.

Case studies are conducted to analyze the crack propagation and fracture processes
of three-point bending beams with pre-notch under quasi-static loading. The different
levels of heterogeneity not only affect the crack propagation direction but also determine
the crack deflection direction and deflection angle. It can be seen from the simulation
results of the above example based on the heterogeneous PD model that the degree of
material heterogeneity has an important influence on fracture and failure characteristics.
The different degrees of heterogeneity not only affect the crack propagation direction but
also determine the crack deflection direction and deflection angle. The higher the degree of
material heterogeneity, the larger the deflection angle.

The heterogeneity of materials has an important influence on their mechanical response
mechanisms under external loads. The crack propagation and branching behaviors in
heterogeneous rock-like materials have been investigated by improved PD simulation,
through the PD simulation analysis of rectangular plates with pre-notch under dynamic
loading. The greater the applied instantaneous load, the earlier the crack branching
behaviors will appear. The higher the level of material heterogeneity, the more complex the
crack branching phenomenon will appear in the process of crack growth. Sufficient loading
magnitude is an essential factor for crack propagation, specifically for crack branching.

6. Conclusions

The study presented in this paper focuses on the influence of material heterogene-
ity on its mechanical response. The improved PD model with degrees of heterogeneity
characterized by random pre-breaking “bonds” coefficients is introduced to capture the
intricacies of crack initiation, propagation, and branching in heterogeneous rock-like mate-
rials, which are helpful to directly investigate the internal microscopic failure process of
rock-like materials in various geotechnical engineering applications.

(1) In the improved PD model, uniform discretization is also performed, and the physical
and mechanical parameters of the material are uniformly valued based on the hetero-
geneity coefficient. During simulation, only the heterogeneity coefficient represented
by pre-breaking “bonds” is needed to establish the heterogeneous PD model, with-
out additional pre-processing of the model, and can reflect the random distribution
characteristics of the heterogeneity of rock-like materials. The size of the computa-
tional model and the number of material points have no effect on the efficiency of
heterogeneous modeling, making it particularly suitable for applications in large-scale
discontinuous and heterogeneous geotechnical engineering.

(2) For heterogeneous materials, the crack propagation path appears to have obvious
asymmetry in the crack propagation direction. As the load applied continues to
increase, the asymmetric multi-crack branching phenomenon will occur. The higher
the level of heterogeneity, the more complex the behaviors of crack propagation and
branching become. The simulation results verify the effectiveness of the heterogeneous
PD model in simulating the fracture and failure of heterogeneous materials, in which
the heterogeneity of microscopic materials can be well matched, providing a high-
precision model with realistic heterogeneity for numerical investigations.
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(3) The results indicate that the non-uniform characteristics of the material have a signif-
icant impact on its mechanical response mechanism under external loading. These
findings further validate the effectiveness of the sub-homogeneous PD model in
addressing fracture and failure issues in heterogeneous brittle rock-like materials.
This research provides valuable insights into the interplay of material heterogeneity
and crack evolution, offering a foundation for improved numerical simulations and
contributing to the broader field of geomechanics.
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