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Abstract: Community and household vulnerability to natural hazards, e.g., earthquakes, hurricanes,
and floods, is a concern that transcends geographic and economic boundaries. Despite the abundance
of research in this field, most existing methods remain inefficient and face the challenge of data
scarcity. By formulating and investigating the correlation between the household vulnerability
and street view images of buildings, this research seeks to bridge the knowledge gap to enable an
efficient assessment. Especially in developing countries, the widespread prevalence of outdated or
inadequately enforced building codes poses a significant challenge. Consequently, a considerable
portion of the housing stock in these regions fails to meet acceptable standards, rendering it highly
vulnerable to natural hazards and climate-related events. Evaluating housing quality is crucial for
informing public policies and private investments. However, current assessment methods are often
time-consuming and costly. To address this issue, we propose the development of a rapid and reliable
evaluation framework that is also cost-efficient. The framework employs a low-cost street view
imagery procedure combined with deep learning to automatically extract building information to
assist in identifying housing characteristics. We then test its potential for scalability and higher-level
reliability. More importantly, we aim to quantify household vulnerability based on street view
imagery. Household vulnerability is typically assessed through traditional means like surveys or
census data; however, these sources can be costly and may not reflect the most current information.
We have developed an index that effectively captures the most detailed data available at both the
housing unit and household level. This index serves as a comprehensive representation, enabling us
to evaluate the feasibility of utilizing our model’s predictions to estimate vulnerability conditions in
specific areas while optimizing costs. Through latent class clustering and ANOVA analysis, we have
discovered a strong correlation between the predictions derived from the images and the household
vulnerability index. This correlation will potentially enable large-scale, cost-effective evaluation of
household vulnerability using only street view images.

Keywords: street view image; building vulnerability; household vulnerability; deep learning

1. Introduction

Decades of climate change projections are now being observed worldwide as signifi-
cant impacts are becoming increasingly evident [1]. Disastrous consequences of natural
hazards may significantly impact a region on several levels [2]. Community vulnerability
is a critical variable that helps shape strategies in disaster preparedness, urban planning,
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and socio-economic studies. Understanding the level of community vulnerability is vital
for mitigating risks and optimizing resource allocation during natural disaster events [3,4].

However, the process of assessing this vulnerability traditionally hinges on the col-
lection of extensive demographic and socio-economic data. Such information is typically
gathered through survey work, in-person interviews, and the collection of other statistical
data. These conventional methods, while thorough, can be resource-intensive, necessitating
significant time, financial investment, and personnel. Furthermore, the collection of these
data often requires direct interaction with the community, which can sometimes be seen as
invasive or burdensome by the very communities under study.

To address these challenges, there is a growing interest in developing innovative
methodologies that can provide valuable insights about community and, specifically, house-
hold vulnerability, while being more accessible, time-efficient, and non-invasive. The ubiq-
uity and increasing quality of visual data, particularly street view imagery, offers an inter-
esting opportunity in this regard. This type of imagery, made widely available through plat-
forms like Google Street View, contains a wealth of visual details about houses and neigh-
borhoods that could potentially be leveraged to infer aspects of household vulnerability.

Inspired by the conventional visual screening methodology, such as FEMA 154 [5], our
research applies cutting-edge technology to advance the field of household vulnerability
assessment. We propose a novel method, using deep learning (DL) techniques applied to street
view imagery, to identify potentially vulnerable households based on visible details of houses.
This approach aims to reduce the need for traditional, more invasive data collection methods,
thereby making the process more efficient, less costly, and respectful of household privacy.

The main objective of this study is to establish a correlation between street view
imagery and socio-economic conditions (e.g., household vulnerability). Demonstrating
this correlation could enable predictions of socio-economic status based on these images
alone. Firstly, we employ DL models to extract relevant features from street view images,
including construction quality, materials used, overall condition, and usage type. Following
that, we define household vulnerability using a new metric, the ‘K3 index’, derived from
census data. Specifically, K represents the K-means method used to classify Gower’s
similarity of census data into three clusters. Finally, we examine the correlation between the
features identified in the images and the socio-economic data encapsulated by the K3 index.
This correlation demonstrates the potential for automatic quantification of household
vulnerability at scale, with improved reliability. The innovation here lies not just in the
automated visual inspection of physical structures, but also in the correlation we establish
between these building details and household vulnerability. By linking these two data
sources, our research offers an innovative way to approximate vulnerability conditions
more efficiently, which is particularly beneficial for constrained budgets and targeted areas.
In this way, our work could revolutionize the approach to vulnerability assessments, setting
a new standard for both scalability and respect for household privacy.

2. Methodology: Vision-Based Vulnerability Evaluation

This research is inspired by the conventional visual screening methodology, which is used
for assessing building performance by employing a scoring scheme mainly based on the visual
clues manifested at the exterior of buildings, without the need to access the inner space of
buildings. An example of this type of method is FEMA 154 [5–7]. The rationale under this type
of visual-based assessment method is that the structure’s performance largely depends on its
construction type, material, maintenance, etc. This paper focuses on household vulnerability,
which is different from building performance. However, they share a similar rationale.

Although the visual screening method has been broadly adopted, such screening can
be expensive and prone to errors because it is extremely labor-intensive when gathering
a vast amount of data (i.e., images) of the buildings being investigated. Additionally, the
subjectiveness in human decisions can potentially lead to diverging interpretations and
erroneous results. To address this issue, this research presents an alternative procedure,
which first collects street images from the region of interest using a ground vehicle and
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then employs a DL approach to recognize structures from these images. The recognized
properties can then be used for determining the household vulnerability.

Street view imagery is an inexpensive data source. The collection of street view images
requires minimum equipment—images can be captured using cameras mounted on moving
objects, such as vehicles and pedestrians. Yet, street view imagery can provide rich visual
information of the road and buildings. Recent works have proved that street view images
are applicable to a variety of different studies. For example, the degree of urban public
security can be calculated from visual cues perceived from numerous street view images [8,9].
Ref. [8] found the machine-extracted visual presence of the urban environment can be used
to measure the life quality of inhabitants in a neighborhood. Similarly, Ref. [10] found the
correlation between the street visual cues of cars and the demographic makeup by analyzing
millions of street view images collected from multiple cities in the United States. In another
study, Refs. [11–13] discovered strong links between the housing price and the visual cues
of building facades from the street. Refs. [14–18] employed street view imagery to identify
specific building features that may lead to severe damage under major natural hazard events,
such as earthquakes and hurricanes. A wide range of applications can also be found in the
literature: neighborhood environment auditing [19], urban greenery assessment [20,21], and
many other aspects in urban planning [22–24]. Street view images can also be combined with
data to provide more information about the built environment; for example, Ref. [25] utilized
satellite and street view images to infer the function and occupancy type of buildings.

All the aforementioned examples use DL-based methods to extract information from
images. This paper develops a DL-based system in which the risk-related building attributes
are automatically perceived from street view images and then, more importantly, are correlated
with household vulnerability (e.g., two-stages, as shown in Figure 1, firstly infers from the
image then uses the inferred information for a vulnerability assessment). The proposed system
possesses many advantages when compared to traditional screening approaches in terms of
the consistency in evaluation, cost efficiency, and scalability. Consistency means one model
for the prediction of the whole investigated region, compared to many evaluators hired for
different streets in traditional in-person assessments; Cost efficiency and scalability mean
that during the deployment period, it takes only several thousand dollars to collect data in
several hours and run the model to make the prediction, comparing to expensive in-person
and invasive data collection, which would take months or years.

60o
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DL Inference
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Figure 1. Rapid vulnerability evaluation workflow.

3. Explicit Visual Inference from Images

The objective of this research is to develop and validate an integrated workflow for
automatic large-scale screening of building and household vulnerabilities at the city level.
The first part of this workflow is inferring information from the images, which is based on
DL instance segmentation. The procedure can be divided into 1. Collection of Data Street
level images are first collected. Each image has its camera parameters and GPS coordinates
recorded. 2. Image Annotation For training the model, we created an annotated dataset,
where the building objects in the collected street view images are annotated with bounding
boxes. Each annotated building object is also labelled with the attributes, such as the use
type, facade material, construction type, and the condition. In Section 3.2, we describe the
details of the image collection and annotation procedures. 3. Model Training Once the
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images are annotated, the next step is to train multiple models for instance segmentation.
The details of the model can be found in Section 3.1. 4. Inference Once models are trained,
they are then used for detecting buildings from other images collected from the streets and
predict the attributes of each detected building. 5. Geocoding In this step, the detected
building attributes will be linked with building footprints. This step is not the focus of this
paper and is detailed in [16]. The core of this procedure is to successfully train instance
segmentation models that are capable of identifying building instances and attributes from
street view images. It is a challenging task because of the complex contexts in street view
images. The model needs to be trained on a dataset that captures the variations in building
facades so that the model can learn to identify building objects from images and further
classify the objects according to their different attributes.

3.1. Inference Model

An image classification model takes a given picture as input and returns a classification
determining whether the object of a specific class is displayed in the picture or not. In
contrast, instance segmentation is about categorizing and grouping pixels in an image into
predefined classes. In this study, we implement the instance segmentation technique in the
workflow for information extraction from street view images because it classifies the images
at the pixel level and identifies the locations of building objects of specific categories.

There are various DL-based instance segmentation models that have been developed in
recent years. It should be noted that the proposed vulnerability evaluation workflow can use
information inferred by any similar model. The choice of models is out of the scope of this
paper. We only demonstrate the workflow using one model. The exact model we used for this
task is based on the Mask R-CNN approach originally developed by [26]. This approach is an
extension of the Faster R-CNN algorithm [27]. Besides the original classification branch with
bounding box regression, a new branch that can predict the segmentation masks is added to
the head. Details of the architecture can be found in its original paper.

The backbone of the neural network is a ResNet, which is pretrained on the COCO
dataset. A street view image is first fed into the backbone to generate a feature map,
based on which a Region Proposal Network (RPN) can propose regions of interest (RoIs).
Each RoI will enter head two branches for mask generation and bounding box predic-
tion/classification. The branch responsible for mask generation is a fully convolutional
network that can predict the segmentation mask for each RoI at the pixel level. The other
branch responsible for the bounding box consists of a set of fully-connected layers, which
performs the bounding box regression and softmax classification. The loss will be back-
propagated to the network to update the weights. For each RoI, the loss can be calculated
like this: L = Lcls + Lbox + Lmask, in which L represents the total loss; Lcls represents the
classification loss and Lbox represents the bounding box loss; and Lmask represents the
segmentation loss. The detailed definitions of Lcls, Lbox, and Lmask are referred to in [26,27].

3.2. Data Preparation

During 2018–2021, we collected all street view images in eight cities in both Latin America
and Asia (as shown in Figure 2) using a 360◦ camera mounted on a ground vehicle. As
illustrated in Figure 1, the vehicle drives through the streets with the cameras taking images
at a constant speed, resulting in spaces of 5–10 m between two images. The GPS coordinates
and camera parameters are recorded for each image at the moment the image was taken. The
images selected for this research are those perpendicular to the travel direction.

From all the street view images, a random subset (about 100,000 images) is selected for
annotation. The cities are selected because they are populated cities in developing countries,
and they are subject to natural hazards including earthquakes, hurricanes, and floods. The
same buildings appear at different angles in different images, which are annotated by different
annotators who are trained in advance. Building objects are annotated on the selected images
using bounding boxes. The bounding boxes are labelled with four tags: construction type,
material, use, and condition. For each tag, the values are listed in Table 1, where we also show
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the number of annotated objects for each label class. We use the Computer Vision Annotation
Tool (CVAT) for annotation. Regarding the accuracy of the annotation, we implemented
quality control to ensure the reliability of the data. Firstly, the annotation was performed by
trained annotators who were familiar with building construction and material types. They
were given a comprehensive annotation guide to ensure the labels applied were consistent
across different annotators and images. We also performed regular inter-rater reliability
checks to assess the level of agreement among different annotators. A subset of 80% of these
annotations are used for training the model, the rest for validation.

Figure 2. Data source distribution.

Table 1. Annotation tags.

Tag Name Value Counts

Construction type confined 8839
unconfined 1642

Material plaster 76,584
mix_other_unclear 19,446
brick_or_concrete_block 16,613
wood_crude_plank 2303
wood_polished 1097
corrugated_metal 566
adobe 207
stone_with_mud_ashlar_with_lime_or_cement 164
container_trailer 72
plant_material 46

Use residential 87,872
non_residential 16,765
mixed 12,461

Condition fair 71,927
poor 28,768
good 16,403

3.3. Inference Performance

The aforementioned annotation dataset is used for training the Mask R-CNN model.
This section shows the performance of the trained model. A subset of annotated images
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that was not seen by the model during the training is used for calculating the performance.
We estimate the performance based on Intersection over Union (IoU) greater than 75%. IoU
is calculated as the intersection of the prediction region and ground truth region divided
by the union of prediction and ground truth regions. For all IoU > 75% predictions, we
show the accuracy and F1-score (a measure of a test’s accuracy, which is calculated from
the precision and recall of the test) in Table 2.

Table 2. Accuracy and F1-score.

Attribute Accuracy (%) F1-Score (%)

Construction type 98.97 98.97
Material 97.08 93.30
Use 94.62 88.31
Condition 78.85 69.68

A few prediction examples are presented in Figure 3, which shows the segmentation
results compared with ground truth annotations. Figure 3a,c,e,g are the original images
annotated by humans. Correspondingly, Figure 3b,d,f,h are the same images segmented
by the model. In these examples, the model can accurately predict the construction type,
material, use, and condition. It should be noted that these images are collected from
different locations in the world: Latin America and Southeast Asia. These two regions
share similar geographical and social–economic characteristics. To demonstrate this, we
show in Figure 4 some examples of street view images collected from these two regions.

(a) Construction annotation (b) Construction segmentation (c) Material annotation (d) Material segmentation

(e) Use annotation (f) Use segmentation (g) Condition annotation (h) Condition segmentation

Figure 3. Segmentation results compared with ground truth annotations: (a) construction annotation;
(b) construction segmentation; (c) material annotation; (d) material segmentation; (e) use annotation;
(f) use segmentation; (g) condition annotation; (h) condition segmentation.
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(a) Latin America (b) Latin America (c) Southeast Asia (d) Southeast Asia

Figure 4. Images from different regions: (a) Latin America; (b) Latin America; (c) Southeast Asia;
(d) Southeast Asia.

Some examples of false predictions are shown in Figure 5. It should be noted that
a limitation of street view images is that some buildings are not visually accessible from
streets, for example, in slums or in regions with heavy vegetation. This is a common
issue. Potential solutions would be capturing the facade images from multiple angles or
even from drones, or using other methods to predict the occluded features based on other
information, such as the method stated in this paper [17], which uses statistical models [28].

(a) The left is an annotation (building B is missing in the annotation); the right figure shows building
B is detected but the classification is false.

(b) The left is the annotation; the right figure shows that the model failed to detect the building.

Figure 5. Examples of false predictions (a) Left is annotation (building B is missing in the annotation);
right figure shows building B is detected but the classification is false. (b) Left is annotation; right
figure shows that the model failed to detect the building
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4. Household Vulnerability

A household is typically defined as an individual or group of people (e.g., a family)
who live together in one residence and share living arrangements. Vulnerability refers
to the degree to which a system, individual, or group is likely to experience harm due to
exposure to hazards, stresses, and risks. It also encompasses the inability to withstand or
recover from these adverse effects. Vulnerability is a function of the character, magnitude,
and rate of climate variation to which a system is exposed, its sensitivity, and its adaptive
capacity. In the context of social and economic systems, vulnerability is often a measure
of how external stresses (such as economic downturns, natural disasters, or health crises)
affect individuals or groups, often influenced by factors like economic stability, health
status, social networks, and access to resources or services.

Household vulnerability refers to the susceptibility of a household to potential losses
or adversities due to a combination of factors, such as socioeconomic status, physical health,
access to resources, and social networks. It typically considers various aspects including the
household’s capacity to anticipate, cope with, resist and recover from the impact of a natural
or anthropogenic hazard. Importantly, household vulnerability is not a fixed characteristic but
is dynamic and can change over time due to shifting circumstances and interventions.

In the second part of this paper, we develop the K3 index for quantifying the household
vulnerability. K3 is a proxy for a ground-truth testing. It incorporates granular data that are
generally unavailable. The index is calculated based on 27 variables that we obtained from
census data (Table 3). The dataset is provided by the local governments. The data contain
two categories: housing unit data and household members data. The housing unit data are
categorical data, which contain questions with Yes/No answers. The household members data
are quantitative data, which contain questions with numerical answers. Based on the data, the
calculation of K3 is shown in Figure 6. First, for each household, all 27 variables are normalized
in values from 0 to 1. The normalization follows a Gower style. For Yes/No questions (e.g.,
walls made of industrial materials), 1 represents Yes and 0 for No. For numerical variables
(e.g., household members between the ages of 15 and 64 that are working), a value from 0–1 is
used to indicate the percentage of members with that characteristic. For each household, the
values are added up: k = ∑27

i=1 vi, where v is the normalized value for each variable. Then,
Gower’s similarity index is calculated, based on which we performed the K-means clustering
analysis to group the households into three classes. (The details of Gower’s similarity can be
found in [29].) So, every household is classified and assigned a value k′ according to its group

(1, 2, or 3). For each neighborhood block, the averaged value is then calculated K =
∑n

j=1 k′j
n ,

where n is the total counts of households in this block. To ensure that all the clusters are
actually distinctive, an ANOVA analysis is conducted. The final value for each block is called
the K3 index, ranging from 1 to 3. A lower K3 value means the household is more vulnerable
from the socio-economic point of view.

The K3 index is based fully on census data that are heavily validated in the field by
the local governments who collaborate with us. To cross validate, we compared the K3
Index geographic data layer that identifies the highly vulnerable areas with another layer
that the city planning department has been using to prioritize and target highly vulnerable
areas. This government layer was made independently and unpublished. The result of
our prediction was employed by the governments to cross validate—the results show
they agree with each other. It should be noted that because the built environment is a
manifestation of geography and social–economic situation of a region, the K3 should be
calibrated when applying the method to a different region or distinctive built environment.

Single building attribute–household vulnerability relationship
To explore the relationship between the visual inference of housing characteristics and

the socio-economic status of those living in them, two neighborhoods were viewed with
distinct qualities. The first is El Pozón (2.4 sq km), an informally established neighborhood of
low-income residents living on the periphery of Cartagena, Colombia. In contrast, the second
is Breña, a densely-populated neighborhood near the historical city center of Lima, Peru.
Breña (3.2 sq km) is a middle- to low-income neighborhood that was formally established in
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the mid-twentieth century. Their K3 map and the histogram are plotted in Figure 7. From
the figures, we can see most households in El Pozón have a K3 value less than 1.5 (more
vulnerable), while most households in Breña are greater than 1.5 (less vulnerable). This means
our K3 index is capable of capturing the distinctions between households.

Table 3. Household variables for calculating K3.

Category Variable

Housing unit (Yes/No) More than one household per housing unit?
Walls made of industrial materials?
Floor made of industrial materials?
Access to electricity?
Access to water?
Access to sewerage?
Access to natural gas?
Access to waste collection services?
Waste collection more than 3 times a week?
Access to internet connection (fixed or mobile)?
WC connected to sewage network?
At least one room in the house is a bedroom?
Independent room for the kitchen?
Kitchen connected to the water network?
Less than 3 persons per bedroom?

Household Members (Percentages) Members that are men.
Members under the age of 20.
Members older than 64.
Households without members of indigenous origin.
Members that live in the municipality they were born.
Members that did not get sick.
Members without any disability.
Members that are not illiterate.
Members above 24 years old with college or higher education.
Members between the ages of 15 and 64 that are working.
Members that are married or in another partnership arrangement.
Women that have children.

Figure 6. Derivation of K from census data.

We then combined the K3 data for two neighborhoods. The histogram of the combined
K3 data is presented in Figure 8. The results show that most of the households in these two
areas are considered to be vulnerable since more households have a K3 value less than 2. For
each household, we use the segmentation model to infer the building’s attributes (construction
type, material, use, and condition) from the street view images. We inferred 16,725 street view
images of houses using the combined dataset of Breña and El Pozón. Table 4 shows the results
of the building attributes inferred from our DL-based model. Our results show that most of
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the buildings (95.7%) in these two areas are confined structures; the majority of the house
conditions are predicted to be fair (83.0%), while poor-condition houses (14%) outweighed
good-condition houses. Most of the houses are made by plaster (66.3%); mix, other, or unclear
material (21.9%); and brick or cement concrete block (11.2%). The majority of the houses are
residential (89.9%), followed by mixed-use houses (5.9%) and non-residential houses (4.1%).
The results indicate houses in these areas are rather consistent in construction type, conditions,
and use, while they show more variation in materials.

(a) El Pozón K3 map (b) El Pozón K3 histogram

(c) Breña K3 map (d) Breña K3 histogram

Figure 7. K3 distributions: (a) El Pozón K3 map; (b) El Pozón K3 histogram; (c) Breña K3 map;
(d) Breña K3 histogram.

In order to examine the relationship between each building attribute and their corre-
sponding K3 values, we drew scatter plots accompanied by trend lines to visually represent
their correlations. Figure 9 show that the predictions are correlated with the K3 index.
Regarding the construction type, it shows that unconfined buildings have lower K3 values,
indicating more vulnerable. For building materials, mix, plaster, brick or concrete block
have the highest K3 values, while wood and corrugated metal buildings are found with
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lower K3 values. Regarding the use of the building, non-residential buildings have higher
K3 values than residential, while mixed building type has the highest. For the condition
prediction, the correlation is also very clear and reasonable: poor < fair < good. Based
on these observations, we believe that the prediction from street view images and the K3
derived from census data agree with each other very well. Thus, it could be possible to
quantify the vulnerability of the household using deep learning and street view images.

Figure 8. Histogram of K3 (El Pozon and Brena).

Table 4. Descriptive information of building attributes (n = 16,725).

Category Attributes Label Counts (Percentage)

Construction type confined 1 16,014 (95.7%)
unconfined 2 711 (4.3%)

Condition good 1 490 (2.9%)
fair 2 13,886 (83.0%)
poor 3 2349 (14.0%)

Material corrugated_metal 1 38 (0.2%)
brick_or_cement_concrete_block 2 1869 (11.2%)
plaster 3 11,082 (66.3%)
mix_other_unclear 4 3661 (21.9%)
wood_crude_plank or wood_polished 5 75 (0.4%)

Use residential 1 15,044 (89.9%)
mixed 2 987 (5.9%)
non_residential 3 694 (4.1%)

Mapping visual inference to household vulnerability
Visual inference can tell the susceptibility of the physical built environment, as in-

fluenced by factors like construction materials and design. On the other hand, social
vulnerability is shaped by the socio-economic and demographic characteristics of the
households residing in those buildings. Previous literature has indeed shown that physical
susceptibility and social vulnerability often interact to exacerbate the impacts of hazards
on communities, e.g., households in physically vulnerable buildings might also have fewer
resources to recover from disasters due to their socio-economic conditions. There is plenty
of research that has demonstrated the likelihood of a relationship between the two aspects.
The article entitled “Social vulnerability to environmental hazards” discussed how social
vulnerability interacts with the physical characteristics of locations to enhance the risk
posed by environmental hazards [3]. The study entitled “Vulnerability” discussed how
household vulnerability to environmental hazards has the contribution from the physical
attributes of the built environment [30].

As shown in the previous section, the correlation between single household attributes
and household vulnerability provides a foundation for predicting household vulnerability
based on their visual attributes. Furthermore, the overall character of one household can
be identified as a combination of several visual attributes generated from our DL-based
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model. To identify the potential types of households, we applied a Latent Class Clustering
(LCA) method to categorize the household according to the visual attributes, including
construction type, condition, material, and use. LCA is a probability-based clustering
approach that can divide the households into homogenous groups that maximizes the
similarity within each group and minimizes the similarity across groups. The number of
clusters is determined by the value of Bayesian Information Criteria (BIC). A lower BIC
value indicates the LCA model has better goodness-of-fit.

(a) Construction type
= wood (polished), Mat2 = wood (crude plank),

Mat3 = corrugated metal, Mat4 = brick or
concrete block, Mat5 = plaster, Mat6 = mix, Mat5

= plaster, Mat6 = mix

(b) Material: Mat1 = wood (polished), Mat2 =
wood (crude plank), Mat3 = corrugated metal,
Mat4 = brick or concrete block, Mat5 = plaster,

Mat6 = mix

(c) Use (d) Condition

Figure 9. Predictions versus K3 Index: (a) construction type; (b) material: Mat1 = wood (polished),
Mat2 = wood (crude plank), Mat3 = corrugated metal, Mat4 = brick or concrete block, Mat5 = plaster,
Mat6 = mix; (c) use; (d) condition.

According to Figure 10, when the number of clusters is three, the LCA model achieves
the lowest BIC value. The LCA results for three clusters are shown in Table 5. According to
the probability of each building attribute in each household type, type 1 households can be
characterized as living in “confined, fair-condition residential or mixed-use houses made
of plaster or mixed material”; type 2 households can be identified as living in “confined,
fair-condition residential houses made of plaster, brick, cement concrete block, or mixed
material”; type 3 households can be labeled as living in “unconfined, poor-condition
residential houses made of brick, cement concrete block, or plaster”. Type 2 households
constitute more than half of all households (67.7%). Type 1 households represent 25.4% of all
the households and differ from type 2 households with more mixed-use and mixed material.
Type 3 households make up 6.9% of all the households and show larger differences, for
they contain most of the unconfined houses with poor conditions.
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To further compare the household vulnerability of the three household types, we drew a
boxplot and ran a Welch’s ANOVA test, as illustrated in Figure 11. The p-value of the ANOVA
test is less than 0.01 (FWelch(23, 129.87) = 611.41, p ≤ 0.01), which indicates there are significant
differences between the three household types in terms of their K3 value. The average K3 values
of type 1, 2, and 3 are 1.64, 1.56, and 1.33, respectively, and they are significantly different from
each other (p-value less than 0.01 for each pair in Figure 11). This means type 1 households are
the least vulnerable, while type 3 households are the most vulnerable. The results demonstrated
the potential for predicting household vulnerability based on visual building attributes, as the
visually unconfined and poor-conditioned type 3 households have a lower average K3 value,
thus are more vulnerable, and the mixed-use and mixed-material-made type 2 households
have a higher average K3 value, thus are less vulnerable.

Figure 10. The number of clusters and corresponding BIC value.

Table 5. Latent class clustering results.

Category Label Type 1 Type 2 Type 3

Count (Percentage) of total households 4252 (25.4%) 11,320 (67.7%) 1153 (6.9%)
Construction type 1 100% 98.1% 61.5%

2 0% 1.9% 38.5%
Condition 1 2.3% 3.7% 0%

2 90.6% 88.3% 14.4%
3 7.1% 8.1% 85.6%

Material 1 0% 0% 2.3%
2 0.6% 9% 68.3%
3 62.9% 74.4% 19.2%
4 36.5% 16.5% 4.7%
5 0% 0% 5.5%

Use 1 77.1% 95.4% 99.6%
2 18.6% 0% 0.1%
3 4.3% 4.6% 0.3%
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Figure 11. Boxplot with ANOVA test results.

5. Discussion

The increased frequency and severity of natural hazards cause disastrous consequences
that significantly impact the built environment. It is essential to evaluate the characteristics
of building stock and the vulnerability of households, especially in developing countries,
because assessing household vulnerability is key to informing public policies (e.g., housing
subsidies, urban upgrading, social cash transfers, etc.) and private investments (e.g.,
real estate, credit, insurance, education, health and entertainment services, etc.). This
study demonstrates that deep learning-based image segmentation can be used to help
identify building attributes from street view imagery, which leads to the rapid assessment
of household vulnerability. The performance of the trained model is promising: the
construction type accuracy is 98.97%, the material type accuracy is 97.08%, the use class
accuracy is 94.62%, while the condition classification accuracy is 78.85%.

It is important to note that the annotation dataset used for training is imbalanced. For ex-
ample, in the material labels, there are three major classes (plaster/mix_other_unclear/brick_
or_concrete_block) that are dominant, while the remaining minor classes have much fewer
labels ranging from only 46 to 2000. Such imbalances could cause difficulties for the model
to recognize the minor classes. It is possible to use re-sampling or similar techniques to
enhance the minor classes, but this might not work well for such extreme imbalance, i.e.,
46:76,584. Future improvements are possible with more labels in those classes. However, it
should also be noted that these minor classes are not common; therefore, they are always
hard to find.

Among the four building attributes, the condition prediction has the lowest perfor-
mance. There are two possible reasons. First, the training dataset is imbalanced. There are
far fewer labels for the ‘good’ class. Second, it is hard to distinguish “good” and “fair”,
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even for trained labelers. Despite the training and inter-rater reliability checks, when we
investigated the annotated images further, we found bias in the labels regarding the two
classes. The bias and noise could possibly be one of the causes; therefore, the model might
be improved by eliminating those in future studies.

The K3 index has the potential to be used for quantifying the vulnerability of a
household. As we found clear correlation between the street view predictions and the
K3 index. This implies that it is possible to evaluate the household vulnerability directly
from street view images. With the deep learning model, the evaluation procedure has the
potential to be scalable.

This study advances the theoretical understanding of household vulnerability by
introducing a novel framework that integrates the correlations between the household
vulnerability and the street view images. By applying this framework to two selected cities,
it not only tests its applicability across diverse geographic regions but also enriches the
current discourse with new examples. The findings challenge the conventional approach to
household vulnerability assessment, particularly in how a vulnerability index is conceptual-
ized and how it can be predicted by street view images. This contributes to a more nuanced
understanding of household vulnerability, offering a platform for future research to build
upon. Such theoretical advancements are crucial for developing robust, context-sensitive
strategies that resonate with global efforts to mitigate household vulnerability.

There are several limitations or untouched questions in this study, which can be poten-
tially answered in future studies, including the uncertainty in the data and estimations, and
the generalization to other regions. For example, one home can have several construction
materials, which requires more detailed classification beyond the approach stated in this
paper. Another challenge is that occlusions can often cause difficulties to accurately infer
the building information. This is a common issue when using street view images, which
is also beyond the scope of this paper. While our method helps in identifying physical
attributes of buildings that might suggest physical weakness, we acknowledge that it does
not directly measure social vulnerability. However, the correlation we observed between
the K3 index and the physical attributes derived from the street view images suggests that
our method could serve as a valuable preliminary screening tool to identify areas that might
be particularly vulnerable to hazards due to both their physical and social characteristics.
We perceive the relationship between building characteristics and household vulnerability
as intrinsically linked, given that the physical condition of a home can directly impact the
livelihood and wellbeing of its inhabitants. However, we also acknowledge that house-
hold vulnerability is influenced by a myriad of social, economic, and demographic factors
that are not directly tied to the physical state of the housing structure. Though there is a
significant correlation between poor building conditions and lower socio-economic status,
exceptions do exist, such as in condominium situations, where individual family conditions
may not directly reflect the overall building’s appearance. Our machine learning models are
adept at identifying patterns and trends within large datasets, yet they are not infallible and
do not claim absolute certainty. The premise that poor building conditions unequivocally
imply poor family conditions would overlook the nuanced reality of urban socio-economic
landscapes. As such, while a strong likelihood exists that poor building conditions correlate
with lower socio-economic status, this is not a universal rule. In future developments,
we aim to refine our models to account for such discrepancies and explore additional
data sources that could provide more insight into individual household conditions. This
may include cross-referencing building conditions with other socio-economic indicators or
integrating more granular data to enhance the accuracy of our socio-economic assessments.

6. Conclusions

This study presents an automated method to assess household vulnerability at a
large scale. Building attributes are firstly characterized from street view images with a
deep learning-based instance segmentation method. The model can detect four building
attributes with high accuracy: construction type (98.97%), material (97.08%), use (94.62%),
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and condition (78.85%). The model is broadly applicable to regions that have similar
geographical street views, indicating the similar construction types, development, and
economy levels.

We then demonstrated that a census data-based index, K3, can be used for quantifying
the vulnerability of a household: financially robust households have higher K3 values,
while households with lower K3 values are more vulnerable. Applying the developed
segmentation model and K3 model to two neighborhoods, Breña, Peru, and El Pozón,
Colombia, we found a clear correlation between these two sources. Therefore, we believe
it is possible to develop a deep learning-based automatic system to rapidly evaluate
household vulnerabilities from street view images.

When applying this framework to regions significantly different from those studied
in this paper, calibration is essential. For instance, the DL model may require retraining
with new data to accommodate diverse building types and designs, and the K3 parameter
should be adjusted based on updated census data.

This work appears to be among the first studies that uses a deep learning-based image
analysis for a household vulnerability study. The present approach aims at scalability
and higher level reliability—it provides an automated and inexpensive method for large-
scale regional examinations of vulnerability at the household level. The method requires
minimum interactions, providing flexibility that enables implementations even during
a period like COVID-19. It overcomes the difficulties in traditional assessments that are
expensive or dependent on either slowly-developed datasets, such as a census, or third-
party datasets inaccessible to most users with the level of detail needed to make key
policy or business decisions. The major innovation of this study is that we established
a correlation between machine-inferred explicit facade characteristics with household
vulnerability, which paves the way to a rapid and large-scale assessment.
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