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Abstract: In this paper, the loading mechanism of steel-fiber-reinforced concrete (SFRC) shear wall
(SW) under low-cycle repeated loading is analyzed, and the softened strut-and-tie model (SSTM) of
SFRC SW composed of horizontal and vertical resistant members and diagonal strut is proposed, in
which the contributions of distributed web reinforcement, concrete, and steel fiber (SF) to the shear
bearing capacity (SBC) of SFRC SW is identified. Furthermore, a new algorithm to obtain the SBC
of SFRC SW is established, and then it is validated by using the test results of steel-fiber-reinforced
high-strength concrete (SFHSC) SW and SFRC SW under low-cycle repeated loading. The results
show that the calculated values are in good agreement with the experimental values for the 11 SFRC
SWs, and the average strength ratio between calculated and experimental values (Vjh,t/Vjh,c) is 0.958.
Therefore, the proposed calculation method is scientific and accurate for analyzing and predicting
the SBC of SFRC SW. In addition, the proposed calculation method can scientifically and accurately
analyze and predict the SBC of SFRC SW.

Keywords: steel fiber; shear wall; softened strut-and-tie model; shear bearing capacity

1. Introduction

Reinforced concrete (RC) shear wall (SW) is a common anti-lateral force compo-
nent in high-rise buildings that has been widely used in high-frequent earthquake-prone
areas [1–5]. The observation from recent earthquake reconnaissance indicated that the main
reason why the RC SW was seriously damaged and even collapsed was its inadequate duc-
tility and energy dissipation [6–8]. There are many problems that need to be solved urgently
in the existing ordinary reinforced concrete SW located in high-intensity earthquake areas.
In the existing design code, it is imperative to tightly control the axial compression ratio
of RC SW at the base of high-rise buildings. This strict limitation is essential for adhering
to ductility requirements and preventing brittle failure. Consequently, the wall web is
frequently designed to be excessively thick. This not only diminishes the available area and
space within the building but also leads to increased structural self-weight and construction
expenses. On the other hand, ordinary RC SWs necessitate a substantial number of stirrups
in the restrained edge members. These stirrups are essential to effectively confine the
concrete and prevent the longitudinal reinforcement from buckling when subjected to
compression. However, intensive reinforcement of RC SWs not only increases construction
cost, but also affects construction quality.

The research shows that there are two main reasons for the insufficient ductility and
energy dissipation performance of ordinary RC SWs. First, the longitudinal reinforcements
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in the restrained edge members of RC SWs yield prematurely, which leads to rapid degrada-
tion of the flexural capacity of RC SWs. Second, the SBC of the wall degrades rapidly after
the concrete at the bottom of the RC SW is crushed and peeled off, which reduces the energy
dissipation capacity of the RC SW [9,10]. In order to improve the ductility and energy
dissipation performance of ordinary RC SWs, some new improvement measures have been
put forward one after another, such as improving the reinforcement ratio and increasing the
numbers of wall reinforcements, SWs with vertical joins, SWs with horizontal joints, SWs
with concealed bracing, steel-reinforced concrete SWs, and reinforcements with different
fibers, or even changing the composition of concrete [11–19]. However, the improvement
of ductility and energy dissipation capacity of RC SWs cannot simply rely on increasing
the distribution reinforcement ratio, which will increase the construction difficulty. Ad-
ditionally, the joints in the wall web easily weaken the SW section, and the addition of
concealed bracing in the wall web easily leads to complexity of the wall reinforcement
mode. Furthermore, the wall cracks cannot be effectively controlled by profiled steel set
up in both ends of the RC wall as embedded columns or a steel plate brace precasted in
the SW.

In particular, as high-strength concrete (HSC) has become more commonly used,
it allows for a reduction in the cross-sectional size of the SW. However, this reduction
in size comes with an inevitable increase in the brittleness of reinforced high-strength
concrete (RHSC) SWs. Correspondingly, the seismic behavior of RHSC SWs needs to be
improved to meet the higher requirements [20,21]. The latest research results of scholars at
home and abroad showed that adding SF into concrete can effectively improve the seismic
performance of RC members, including the RHSC SW [22–24]. The seismic behavior of
SFRC SW subjected to reversed cyclic loading had been tested by several scholars [3,25–27].
Just as anticipated, because the randomly distributed SF can effectively improve anti-
cracking properties, tensile strength, shearing property, toughness, durability, and seismic
performance of matrix concrete, then they can greatly improve the seismic performance
of RC SWs, reduce the degree of reinforcement aggregation, and increase construction
efficiency [28]. With the increase in the volume ratio of SF, the bearing capacity, ductility,
and energy dissipation capacity of SFRC SWs increase. Hitherto, extensive research results
have been obtained from experimental studies on the seismic performance of RC SWs and
SFRC SWs, but the research results on the mechanical mechanism and calculating method
for SBC of SFRC SWs were relatively few since the mechanical mechanism of SWs subjected
to the combined action of bending, compression, and shear is very complicated. What is
more, how to consider the role of SF in concrete is also a complicated problem. Additionally,
the calculating methods for SBC of SFRC SWs proposed in the existing literature are almost
universally half-empirical formulas based on test results, and there is no scientific and
reasonable theoretical model. Furthermore, ultimately, the calculation results for SBC
of SFRC SWs were not accurate enough. Therefore, there is an urgent need to propose
scientifically sound theoretical models. Some scholars have proposed models and theories
for calculating the SBC of SWs, such as Panatchai et al. [29], who predicted the peak shear
strength of squatting SWs with and without boundary elements by developing a strut-and-
tie model (STM); and Oudah et al. [30], who proposed the theory of two-discrete-elements
(TDE) shear deformation for evaluating the deformability of RC SWs under lateral loads in
earthquake-resistant design applications.

The SSTM for calculating the SBC of RC elements damaged by inclined compression
bar was established by S.J. Hwang and H.J. Lee, which derived from the concept of the
strut and tie of RC elements, introducing a softening coefficient of concrete. Furthermore,
the equations satisfying the equilibrium, constitutive relation, and coordination of cracked
RC were put forward. The SBC prediction of different types of RC members has been
calculated by using the SSTM, and the accuracy of these calculations has been confirmed
through a comparison of the calculated SBC with test results reported in the previous
literature [31–34].
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In this paper, the loading mechanism of SFRC SWs was analyzed; the randomly dis-
tributed SF in the SW web could be equivalent to horizontal and vertical finely distributed
steel bars. Then the SSTM to calculate the SFRC SW composed of diagonal strut, horizontal,
and vertical resistant members was proposed, in which the contributions of SF, concrete,
and distributed web reinforcement to the SBC of SFRC SW was identified. Furthermore,
a new algorithm based on the SSTM to obtain the SBC of SFRC SWs was established,
and then it was validated by using the test results of 11 low-rise SFHSC and SFRC SWs
under low-cycle repeated loading. The results indicated a favorable agreement between
the calculated values and experimental data for the 11 low-rise SWs, and the SSTM may be
used to calculate the SBC of SFHSC and SFRC SWs. Based on the analysis of the loading
mechanism of SFRC SWs, a well-established calculation method for the SBC of SFRC
SWs was proposed. It has a better theoretical basis and a more scientific and reasonable
theoretical model than the previous calculation method. Finally, the calculation results for
the SBC of SFRC SWs will be accurate enough.

2. Loading Mechanism of SFRC SW

While the loading mechanism of SFRC SWs under the combined forces of bending,
compression, and shear is highly intricate, the random distribution of SF within the SW web
can be deemed an equivalent alternative to the placement of finely distributed horizontal
and vertical steel bars. Notably, SF do not alter the SW’s loading mechanism, thereby
making it akin to that of RC SWs. The wall forms intersecting oblique pressure and tension
flow along the diagonal direction, as shown in Figure 1. The diagonal compressive struts are
formed by the wall web matrix concrete under pressure flow. The diagonal tension flow in
the wall web is mainly supported by SFRC due to its good tensile and crack resistance prior
to the wall web cracking, and during this stage, the reinforcement stress can be negligible.
As the load increases, SFRC will develop initial oblique cracks when the diagonal tension
flow in the wall web exceeds the crack strength of SFRC. Once SFRC displays the first crack,
the diagonal tension flow in the wall web is carried by the strut and tie. The horizontal
tie rod contains SF and horizontally distributed reinforcements, as depicted in Figure 1b,
while the vertical tie comprises SF and vertically distributed reinforcements, as shown in
Figure 1c. To summarize, when the initial crack occurred in the wall web, the randomly
dispersed steel fibers and the distributed reinforcements primarily withstood the tensile
forces, while the concrete experienced oblique compressive stresses. This combination of
forces resulted in the development of a strut-and-tie action. Therefore, the SSTM of SFRC
SWs also involved diagonal struts, as well as horizontal and vertical resisting components.
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Figure 1. Shear resisting mechanisms of shear wall.

In Figure 1a, the diagonal force mechanism in SFRC is established by a single diagonal
compression strut. The inclination angle θ of this SFRC diagonal compression strut can be
determined by [35]:

θ =
1

tan
(

H
l

) (1)
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where H is the height of the SFRC SW; l is internal force arm of vertical couple of the SFRC
SW and l is equal to 0.9h; and h is the section height of the SFRC SW.

The cross-sectional area of the diagonal strut, Astr, can be determined as [36]:

Astr = αstr × bstr (2)

where αstr is the section height of the diagonal strut; and bstr is the section width of the
diagonal strut, which is consistent with the wall section width b.

The section height of diagonal strut αstr can be roughly defined as [37]:

αstr = (0.25 + 0.85
N

bh fc
′ )h (3)

where N is the axial force borne by the SFRC SW specimen; and f c
′ is the axial compressive

strength of the concrete cylinder (MPa).
Figure 1b depicts a horizontal force mechanism incorporating a single tie rod and two

flat struts. The presence of SF improved the tensile, crack, and toughness properties of
concrete. Accordingly, SFRC SWs performed better than RC SWs. Thus, the horizontal tie
rod of the SFRC SW web comprised randomly distributed SF and horizontally distributed
reinforcements, and can be defined as [37]:

Fh = Fh,s f + Fh,s (4)

where Fh is the horizontal tie rod value, Fh,s is the tension force value of the horizontally
distributed reinforcement tie rod. Numerous test results indicated that the horizontally
distributed reinforcements in the wall web did not undergo full yielding when the SW
specimen experienced failure. Therefore, η1 is suggested as the effective coefficient in
the background. Thus, Fh,s = η1 × Ah,s, η1 is the effective shear resistance coefficient of
horizontally distributed reinforcement and can be approximated as 0.75, as reported in the
literature [34]; Ah,s is the cross-sectional area of the horizontally distributed reinforcement
tie rod; fh,s is the tension strength of horizontally distributed reinforcement; Fh,sf is the
tension force value of the horizontally distributed SF tie rod; in Fh, s f = Ah, s f × fs f , Ah,sf
is the cross-sectional area of the horizontally distributed SF tie rod; and f sf is the tension
strength of horizontally distributed SF.

In order to reduce the cost of computation, the random distribution of SF within the
three dimensions of the SFRC SW web can be considered equivalent to the arrangement of
horizontally and vertically finely distributed steel bars in the SBC analysis of SFRC SWs.
Consequently, the cross-sectional area of the horizontally distributed SF tie rod, Ah,sf , can
be determined by [38]:

Ah,s f = ns f As f (5)

where Asf is the cross-sectional area of a single SF; and nsf is the number of equivalent
horizontal SFs, which can be determined by [38]:

ns f = η2ρ f
bH

As f sin θ
(6)

where ρf is the volume ratio of SF; the equivalent reduction coefficient, denoted as η2, can
be approximately considered as 0.41, as inferred from the analysis of experimental results
reported in the literature [38].

The cross-sectional area of the horizontally distributed SF tie rod, Ah,sf , can be calcu-
lated by:

Ah,s f = 0.41ρ f bH/ sin θ (7)

In Figure 1c, a vertical tie rod and two steep struts form the vertical force mechanism.
Moreover, like the horizontal tie rod, the vertical tie rod of the SFRC SW web includes
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randomly distributed SFs and vertically distributed reinforcements, and can be defined as
the following [37]:

Fv = Fv,s f + Fv,s (8)

where Fv is the tension force value of the vertical tie rod value; Fv,s is the tension force value
of the vertically distributed reinforcement tie rod. Numerous test results indicated that the
vertically distributed reinforcements in the wall web did not undergo full yielding when
the SW specimen experienced failure, so η3 is suggested as the effective coefficient in the
background, thus in Fv, s = η3 × Av, s × fv, s, η3 is the effective shear resistance coefficient
of vertically distributed reinforcement and it can be approximated as 0.80, as reported in
the literature [34]; Av, s is the cross-sectional area of the vertically distributed reinforcement
tie rod, fv,s is the tension strength of vertically distributed reinforcement; and Fv,sf is the
tension force value of the vertically distributed SF tie rod. In Fv, s f = Av, s f × fs f , Av,sf is the
cross-sectional area of the vertically distributed SF tie rod and for Av, s f = 0.41ρ f bh/cosθ,
fsf is the tension strength of vertically distributed SF.

3. Computation Method for SBC of SFRC SW
3.1. Equilibrium Equations

Figure 2 shows the calculation diagram of the strut-and-tie model for the SFRC SW
specimen. The horizontal and vertical shear forces of the SFRC SW specimen on the basis
of the above strut-and-tie model can be defined as the following [37]:

Vjh = D cos θ + Fh + Fv cot θ

Vjv = D sin θ + Fv + Fh tan θ
(9)

where D is the pressure value of the SFRC diagonal compression strut; Vjh is the horizontal
shear resistance capacity value of the SFRC SW web; and Vjv is the vertical shear resistance
capacity value of the SFRC SW web.
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The horizontal shear resistance capacity value of the SFRC SW web, Vjh, is distributed
to the three resistance mechanisms in a certain proportion [37]:

D cos θ : Fh : Fv cot θ = Rd : Rh : Rv (10)

where Rd, Rh, and Rv are the horizontal shear resistance capacity ratios borne by the diagonal,
horizontal, and vertical resistance mechanisms, respectively, which can be calculated by [37]:

Rd = (1−γh)(1−γv)
1−γhγv

Rh = γh(1−γv)
1−γhγv

Rv = γv(1−γh)
1−γhγv

(11)

where γh is the ratio of the horizontal shear resistance capacity value borne by the horizontal
tie rod when the vertical resistance mechanism does not participate in shear resistance
capacity distribution; γv is the ratio of the vertical shear resistance capacity value borne by
the vertical tie rod when the horizontal resistance mechanism does not participate in shear
resistance capacity distribution. The values of γh and γv can be calculated by [39]:

γh = 2 tan θ−1
3 , 0 ≤ γh ≤ 1

γv = 2 cot θ−1
3 , 0 ≤ γv ≤ 1

(12)

The values of D, Fh, and Fv can be calculated through Equations (9) and (10) as:

D = 1
cos θ ×

(
Rd

Rd+Rh+Rv

)
×Vjh

Fh =
(

Rh
Rd+Rh+Rv

)
×Vjh

Fv = tan θ ×
(

Rv
Rd+Rh+Rv

)
×Vjh

(13)

The failure criterion of SSTM for the SFRC SW specimen is that the resultant force of
the diagonal compression strut, flat compression strut, and steep compression strut at the
joint region reaches the concrete compression strength, as shown in Figure 1. In order to
judge whether the SFRC SW specimen is damaged, the resultant force at the joint region
must be checked as shown in Figure 2. The maximum compressive stress σd,max generated
by the three compression struts at the joint region can be defined as [37]:

σd,max =
1

Astr

[
D +

Fh
cos θ

(
1− sin2 θ

2

)
+

Fv

sin θ

(
1− cos2 θ

2

)]
(14)

3.2. Constitutive Equations

The compressive softened stress–strain relationship of cracked SFRC can be expressed
as [40]:

σd = ζ fc
′
[

2
(

εd
ζε0

)
−
(

εd
ζε0

)2
]

,
εd

ζε0
≤ 1 (15)

where σd is the average principal compressive stress of SFRC in the d-direction; ζ is the
softened coefficient of SFRC; εd is the average principal compressive strain corresponding
to stress σd; and ε0 is the strain of the SFRC cylinder when the stress of that reaches fc′,
which can be calculated approximately by [41]:
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ε0 = −0.002− 0.001(
fc
′ − 20
80

), 20 MPa ≤ fc
′ ≤ 100 MPa (16)

The softened coefficient of SFRC, ζ, can be determined by the following [40]:

ζ =
5.8√

fc
′

1√
1 + 400εr

≤ 0.9√
1 + 400εr

(17)

where εr is the average principal tensile strain corresponding to the average principal
tensile stress (σr) of the SFRC in the r-direction.

The stress σd and the strain εd need to meet the following conditions when the SFRC
SW reaches the maximum SBC [40]:

σd = ζ fc
′ (18)

εd = ζε0 (19)

The stress–strain relationship of the distributed reinforcement in the SFRC SW can be
expressed as [36]: {

fs = Esεs εs < εy
fs = fy εs ≥ εy

(20)

where Es is the elastic modulus of the distributed reinforcements; f y and εy are the yield
strength and yield strain of the distributed reinforcements, respectively; and f s and εs
are the actual stress and strain of the distributed reinforcements, respectively; the only
caveat here is that when the calculation Equation (20) above is applied to the horizontally
distributed reinforcements and the vertically distributed reinforcements respectively, f s is
taken as fh,s or fv,s, Es is taken as Eh,s or Ev,s, εs is taken as εh,s or εv,s, and fy is taken as fyh
or fyv.

The stress–strain relationship of the randomly distributed SF in the three dimensions
of the SFRC SW web can be described as [36]:

fs f = Es f εs f (21)

where Esf and εsf represent the elastic modulus and actual strain of the randomly distributed
SF in the three dimensions of the SFRC SW web, respectively.

Existing test results have indicated that, in the wall web, most of the randomly dis-
tributed steel fibers are pulled out from the matrix concrete rather than being damaged
due to their good mechanical properties. Therefore, the tension strength of the randomly
distributed SF in the wall web, fsf, is primarily influenced by the bonding strength between
the SF and matrix concrete, and the following functional relationship needs to be satisfied
as [42]:

As f fs f ≤ λs f Asp f τs f ,max (22)

where λsf is the effective coefficient of SF type, and the values of λsf for the type of long
straight, wave-shaped, and hooked SF are 0.5, 0.75, and 1.0, respectively; τsf,max is the
maximum bonding strength between SF and matrix concrete according to the existing
research results in the literature [42]; τsf,max can be considered equal to 2.5 times f ct, where
f ct represents the matrix tension strength of SFRC; Aspf represents the surface area of SF; in
Aspf = πdflsfo, df and lsfo are the equivalent diameter and the effective bounding length of SF
respectively; and in lsfo = 0.25 lf, lf is the length of SFs.
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Thus, the tension strength of the randomly distributed SF in the wall web, f sf, can be
described as the following according to Equation (22):

fs f ≤ λs f

(
l f

d f

)
τs f ,max (23)

In summary, the relationship between tension force values and strains of the tie rod
can be expressed as:

Fh = Fh,s + Fh,s f = 0.75Ah,sEh,sεh,s + 0.41ρ f bHEs f εh,s f / sin θ ≤ Fyh (24)

Fv = Fv,s + Fv,s f = 0.8Av,sEv,sεv,s + 0.41ρ f bhEs f εv,s f / cos θ ≤ Fyv (25)

εh,s = εh,s f = εh
εv,s = εv,s f = εv

(26)

where εh, s and εh,sf are the strains of the horizontally distributed reinforcements and SF,
respectively; εv,s and εv,sf are the strains of the vertically distributed reinforcements and SF,
respectively; εh and εv are the average horizontal strain and the average vertical strain of
the SFRC wall web, respectively; and Fyh and Fyv are the yield force values of the horizontal
and vertical tie rods, respectively.

3.3. Compatibility Equations

The strain compatibility equations used in this research are shown as follows [43]:

εr = εh + (εh − εd) cot2 θ (27)

εr = εv + (εv − εd) tan2 θ (28)

3.4. Solution Steps

The proposed solution steps for the SBC of SFRC SWs are shown in Figures 3 and 4,
and the main solving steps are as follows: at first, the horizontal shear resistance capacity
value of the SFRC SW, Vjh, is assumed, and the values of D, Fh, Fv, and σd,max can be
derived by solving the Equations (9)–(14). Subsequently, the softened coefficient of the
SFRC, ξ, is initially determined using Equation (18), assuming that the concrete diagonal
strut reaches its compressive strength. Next, the strains of the tension and compression
struts are obtained by using the corresponding constitutive equations. At last, the average
principal tensile strain in the r-direction, εr, is determined using compatibility equations.
Then, a new value of ξ is obtained through the Equation (17). If the initial value of the
softened coefficient of SFRC, ξ, closely approximates the new value, ξ, then the assumed
value, Vjh, represents the SBC of the SFRC SW. Otherwise, back to the iterations.

However, it is important to realize that the solution flow in Figure 3 is categorized into
five calculation types based on different yield conditions of the tie rods [34], as illustrated
in Table 1. Figure 4 depicts the stress redistribution of shears of the SFRC SW web after the
horizontal tie rod has yielded.
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Table 1. Calculation type.

Type Type E Type YH Type YV Type YHV Type YVH

Condition Fh < Fyh
and Fv < Fyv

Fh = Fyh
and Fv < Fyv

Fh < Fyh
and Fv = Fyv

Fh = Fyh
and then Fv = Fyv

Fv = Fyv
and then Fh = Fyh
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4. Test Verification

In order to verify the SBC calculation model of SFRC SWs described above in this
study, two SW specimens with 1/4 scale and a shear–span ratio of 1.0 were subjected to
low-cycle repeated loading. This included one RHSC SW specimen and one SFHSC SW
specimen. Table 2 shows the detailed properties of the SF. Table 3 shows the concrete
mix proportion of the two test specimens. The test specimens considered herein have
three major common features: (1) all walls showed a wall web shear-dominant failure
mode; (2) they were one-story isolated walls; (3) all contained both horizontal and vertical
reinforcement uniformly distributed basically throughout the wall web. The dimensions
and reinforcement configurations of the two SW specimens designed and manufactured are
shown in Figure 5. The reinforcement strength grade and the concrete strength grade of the
SW specimen were HRB400 and C60, respectively. The SF was provided by Bekaert, Shang-
hai, China. Table 3 also presents the remaining design parameters of the SW specimens,
including the volume ratio of SF, axial compression ratio, and concrete strength. After
loading completely, the two SW specimens exhibited distinct shear failure characteristics,
as illustrated in Figure 6, which depicts the failure patterns of the two SW specimens after
the test. The test results indicated that the inclusion of SF significantly improved the crack
formation and seismic behavior of the HRB400 level high-strength reinforced concrete SW
specimen. As the volume ratio of SF increases, the cracks in the SW specimen become
thinner and denser. The crack distribution area significantly increases, and the amount of
concrete crushing and spalling of the wall web is reduced significantly in the final failure
of the SW specimen. The test data of nine other SFRC SW specimens from the existing
literature are also collected and utilized to validate the proposed method in this paper,
as shown in Table 4. The SW specimens examined in this study encompass various test
parameters, including the volume ratio of SF, reinforcement ratio, shear–span ratio, and
concrete strength. All the tested SW specimens showed a shear failure mode.

The research in [44] gives the functional relationship between f c and f c
′. The last

column of Table 4 provides the Vjh,t/Vjh,c ratios, illustrating the computational accuracy
of the proposed calculation method. The average strength ratio (Vjh,t/Vjh,c) is 0.958 with
a coefficient of variation (COV) of 0.18 (refer to Table 2), and the results indicate that the
calculated values are in excellent agreement with the experimental values for the 11 SFRC
SW specimens mentioned above. The proposed calculation method is both scientific and
accurate in analyzing and predicting the SBC of SFRC SWs. The SSTM can be applied to
calculate the SBC of SFHSC and SFRC SWs.

Table 2. Properties of SF.

SF Type
Equivalent
Diameter

(mm)
Length (mm) Aspect Ratio

Tension
Strength

(MPa)

Elastic
Modulus

(GPa)

Hooked 0.55 35 65 1345 200
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Table 3. The concrete mix proportion of the test specimens.

Specimen Strength
Grade

Material Consumption/(kg·m−3)
ρf

Cement Water Steel
Fiber Sand Crushed

Stone
Water-Reducing

Agent

RC-1.0-00-C60 C60 529 164 0 646 1110 5.819 0
RC-1.0-10(H)-CF60 CF60 529 164 78 646 1110 5.819 1.0%

SW-05-40 [45] CF40 454 168 39 676 1152 —— 0.5%
SW-10-40 [45] CF40 476 176 78 719 1079 —— 1.0%
SW-15-40 [45] CF40 503 186 117 740 1021 —— 1.5%
SW-20-40 [45] CF40 524 194 156 779 953 —— 2.0%
SW-10-30 [45] CF30 436 196 78 763 1054 —— 1.0%

FSW1 [46] CF60-CF70 550 165 78 374 1326 5.5 1.0%
FSW2 [46] CF60-CF70 550 165 117 369 1309 5.5 1.5%
FSW3 [46] CF60-CF70 550 165 156 366 1299 5.5 2.0%
FSW4 [46] CF60-CF70 550 165 78 374 1326 5.5 1.0%

Table 4. Experimental verification.

Specimen fc/
MPa

H/
mm

b × h/
mm

n

Horizontal
Reinforcement

Vertical
Reinforcement Steel Fiber

Vjh ,t
/kN

Vjh ,c/
kN

Vjh ,t/
Vjh ,cReinforce-

ment fyh/MPa Reinforce-
ment fyv/MPa lf/df ρf/%

RC-1.0-00-C60 55.4 750 120 × 750 0.2 φ6@100 369.17 12φ6 369.17 — — 546 552 0.989
RC-1.0-10(H)-CF60 55.6 750 120 × 750 0.2 φ6@100 369.17 12φ6 369.17 64 1.0 630 629 1.002

SW-05-40 [45] 21.2 900 200 × 900 0.1 φ8@150 340 6φ14 373.5 57 0.5 730 608 1.201
SW-10-40 [45] 26.8 900 200 × 900 0.1 φ8@150 340 6φ14 373.5 57 1.0 745 730 1.021
SW-15-40 [45] 25.1 900 200 × 900 0.1 φ8@150 340 6φ14 373.5 57 1.5 770 748 1.029
SW-20-40 [45] 26.9 900 200 × 900 0.1 φ8@150 340 6φ14 373.5 57 2.0 808 792 1.020
SW-10-30 [45] 17.8 900 200 × 900 0.1 φ8@150 340 6φ14 373.5 57 1.0 730 586 1.246

FSW1 [46] 36.0 600 70 × 1000 0.09 6φ6.5 310 6φ6.5 310 64 1.0 335 431 0.777
FSW2 [46] 33.5 600 70 × 1000 0.09 6φ6.5 310 6φ6.5 310 64 1.5 330 436 0.757
FSW3 [46] 35.0 600 70 × 1000 0.09 6φ6.5 310 6φ6.5 310 64 2.0 340 465 0.731
FSW4 [46] 34.5 600 70 × 1000 0.09 6φ6.5 310 8φ6.5 310 64 1.0 330 430 0.767

5. Conclusions

In this paper, a scientific and accurate calculation method for determining the SBC of
the SFRC SW is established. The proposed SSTM is based on the principles of struts and
ties, and it satisfies the equilibrium, constitutive, and compatibility equations of cracked
SFRC. Drawing from the test results of 11 low-rise SFRC SWs under low-cycle repeated
loading in this study, along with data from the existing literature and a comparison with
the established calculation method, the following conclusions can be made:

1. The two SFRC SW specimens in this paper exhibited obvious shear failure characteris-
tics, and all SFRC SW specimens primarily showed a typical diagonal cracking pattern
after the test. The inclusion of SF notably improved the crack formation and seismic
behavior of the HRB400 level high-strength reinforced concrete SW specimen. With an
increase in the volume ratio of SF, the cracks of the SW specimen became thinner and
denser. The crack distribution area significantly increased, and the amount of concrete
crushing and spalling of the wall web was significantly reduced in the final failure of
the SW specimen.

2. The loading mechanism of SFRC SWs can be described by the SSTM. The SSTM
of SFRC SWs, which consists of diagonal struts, horizontal, and vertical resistance
members, has been established. This model distinguishes the contributions of SF,
concrete, and distributed web reinforcement to the SBC of SFRC SWs.

3. The randomly distributed SF in the SW web can be equivalent to horizontal and verti-
cal finely distributed steel bars in the SBC analysis of SFRC SWs, and the contributions
of SF to the wall SBC are accurately predicted and identified.

4. After the experiments, the shear capacities of the two SFRC SW specimens in this
paper are 546 kN and 630 kN, respectively, while the shear capacities calculated by the
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SSTM model are 552 kN and 629 kN, respectively. The difference between the former
and the experimental results is only 1.10%, and the latter differs from the experimental
results by only 0.15%. This shows that the calculation results of the SSTM model
proposed in this paper differ very little from the actual results, and the method can
accurately calculate the shear bearing capacity of the specimen.

5. In addition to the above experimental verification, we collected the shear capacity
results of nine specimens from the literature for comparison with the calculated results.
By using the proposed methodology, we obtained the calculated bearing capacity of
these nine specimens and compared them with the known test results. The average
strength ratio (Vjh,t/Vjh,c) is 0.95 with a COV of 0.18. The results show that the
proposed calculation method is scientific and accurate for analyzing and predicting
the SBC of SFRC SWs for diagonal compression failures.

The research on SFRC SWs based on SSTM still requires more simulation and exper-
imental verification. Future studies can use more realistic structural models and more
accurate experimental methods to further verify and improve the applicability and accu-
racy of the model. The ultimate goal is to apply the research results on the SBC of SFRC
SWs under low-cycle repeated loading based on SSTM to practical engineering. Future
research needs to strengthen communication and cooperation with engineering practices to
transform research results into actual design specifications and construction guidelines.
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Nomenclature

SFRC Steel-fiber-reinforced concrete
SW shear wall
SSTM softened strut-and-tie model
SF steel fiber
SBC shear bearing capacity
SFHSC steel fiber reinforced high-strength concrete
RC reinforced concrete
HSC high-strength concrete
RHSC reinforced high-strength concrete
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