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Abstract: Bridges are built to last more than 100 years, spanning many human generations. Through-
out their lifetime, their service requirements may change, or they age and often suffer a material
degradation process that can lead to the need of retrofitting. In bridge engineering, retrofitting refers
to the strengthening of existing structures to make them more resistant and to increase the lifespan of
bridges. Retrofitting normally increases the stiffness of bridge components, which can cause signifi-
cant changes in the global modal properties. In the context of structural health monitoring, a classifier
trained with datasets before retrofitting will most likely output many outliers after retrofitting, based
on the premise that the new observations do not share the same underlying distribution. Therefore,
how can long-term monitoring data from one bridge (labeled source domain) be reused to create
a classifier that generalizes to the same bridge after retrofitting (unlabeled target domain)? This
paper presents a novel approach based on transfer learning in the context of domain adaptation
on datasets from two real bridges subjected to retrofit and under-monitoring programs. Based on
the assumption that both bridges are undamaged before retrofitting, the results show that transfer
learning can support the long-term damage detection process based on a classification using an
outlier detection strategy.

Keywords: transfer learning; structural health monitoring; joint distribution adaptation; domain
adaptation; bridges

1. Introduction

The construction of bridges aims to meet the socioeconomic needs of several human
generations, as these structures are engineered to last more than 100 years. However, the
service requirements of bridges are prone to change over their lifetime, and the effects of
accumulated degradation over the years may result in the need for a retrofit process. In
the context of bridge engineering, retrofitting refers to strengthening components after
an evaluation structural strength and stiffness of bridge elements to extend their lifespan,
ensuring a safe operation as a result of restoring its structural integrity [1].

The retrofit process is often associated with variations in the modal parameters of the
bridge due to the structure’s stiffness increase, mainly noticed in the natural frequencies.
For instance, a highway bridge in Singapore underwent a retrofit process in 2003, and
some components were replaced, leading to a variation in natural frequencies up to 50%
while their vibration modes did not show significant changes [2]. The rehabilitation of
a concrete bridge located in Italy by replacing the external layer of the pillars with a
fiber-reinforced concrete material and steel rebars represents another example of a retrofit
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process, which restored the material properties of the bridge’s component while preserving
its cross-sectional dimensions [3].

In the last decades, structural health monitoring (SHM) has been proposed to support
decision-making by bridge owners and authorities [4,5]. The long-term damage detection
process often relies on machine learning algorithms to build unsupervised classifiers.
An analysis based on unsupervised learning has been the priority as it is not feasible
to introduce real damage to bridges due to their high cost and potential safety risks of
operating the structures under a damaged condition.

The practical application of machine learning algorithms is not always feasible, as
training and test datasets may not share similar underlying distributions due to several
reasons [6]. This assumption limits the application of these algorithms to the specific
structure they were trained for. For instance, a classifier trained with datasets before retrofit
may not be accurate as the new observations obtained after retrofitting may not share the
same underlying distribution due to structural changes. Therefore, how can the knowledge
contained in the long-term monitoring data of a bridge be generalized to the same bridge
after retrofitting? Transfer learning in the context of domain adaptation represents a promis-
ing solution in the SHM of bridges, including those bridges that underwent retrofitting. In
recent years, the application of transfer learning has received significant attention in bridge
SHM [7]. The main idea is to benefit from the existing knowledge of a monitored structure
to evaluate another without estimating a new model or classifier.

The traditional analysis assumes the existence of two bridges with unbalanced datasets,
i.e., the historical data of the source bridge is well-known, and the target bridge has a
reduced amount of datasets. Then, feature-based transfer learning aims to find a new
subspace where observations from two bridges in the undamaged condition are properly
aligned, as changes in the structural framework of the target bridge often shift the observa-
tions. Thus, classifiers trained on a known structure (source) can be generalized to other
bridges (target) where there is not enough knowledge about their structural condition [8].

Poole et al. [9] proposed a study on the structural behavior of several bridges, using a
normal-correlation alignment method to evaluate features during undamaged conditions.
Their approach succeeded in generalizing a classifier for structural evaluation. Specifically,
under comparable structural conditions, outliers were highlighted when the features
indicated different structural states. Meanwhile, Pan et al. [10] introduced a deep learning
model to address the structural damage detection by transferring knowledge between two
distinct bridges. A convolutional neural network, which was pretrained using the data of a
previously studied bridge, was repurposed to evaluate another bridge’s structural integrity.
This strategy reduced the need for extensive labeled data during the training phase and
avoided re-estimating the model’s hyperparameters.

This paper proposes transfer learning as a domain adaptation to mitigate the data
divergences for the same bridge before and after retrofit, allowing one to reuse previously
existing knowledge in a long-term damage detection process. The joint distribution adapta-
tion (JDA) method is carried out using datasets from two railway bridges: the PK 075+317
Bridge in France [11] and the KW51 Bridge in Leuven, Belgium [12]. The authors believe
that the retrofit process is one of the most effective uses of SHM and the knowledge con-
tained in the datasets can be reused for the structural assessment of bridges. It is important
to note that our aim in this paper is distinct from Poole et al. [9], as knowledge transfer is
performed between different moments in time of the same structure.

The structure of this paper is as follows; besides Section 1, the concept of transfer
learning is introduced, and a long-term damage detection strategy using domain adaptation
in retrofitting is summarize in Section 2. The subsequent Sections 3 and 4—highlight the
application of our proposed methodology in two distinct real bridges as case studies.
Section 5 gives a summary of our findings, providing a conclusion and pertinent remarks
on our study.
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2. Transfer Learning for Long-Term Outlier Detection in the Context of
Bridge Retrofitting
2.1. Overview of Transfer Learning for SHM

Transfer learning (or knowledge transfer) can described by the relationship between
domains and tasks [13]. Each domain (D) is represented by a feature space (X ) comprising
damage-sensitive features grouped in the form of observations (x) obtained from the
structures with their corresponding probability distributions (P(x)). The predictive function
f (·) applied for the assessment of the structure along with the label space (Y) composed of
information about the structural condition represents the task (T ) [14].

The definition of transfer learning leverages the knowledge contained in measured
datasets despite the inconsistencies between domains (Ds 6= Dt) and tasks (Ts 6= Tt). This
assumption allow us to use prior knowledge about the source domain (Ds) and source task
(Ts) to aid in the evaluation of the target domain (Dt), improving the performance of the
target predictive function ( ft(·)) consequently [15]. Meanwhile, domain adaptation is a
subfield of transfer learning that mainly addresses the differences between the probability
distributions (P(xs) 6= P(xt)), while their domains and tasks are equivalent (Ds = Dt and
Ts = Tt) [16].

In the context of bridge SHM, the knowledge about structural conditions present
in datasets of a known bridge is applied for long-term damage detection in a different
bridge. For a successful knowledge transfer between different structures, the bridges should
present similarities that motivate the realization of the transfer, an equivalent structural
dynamic behavior, for instance.

2.2. Proposed Methodology for Domain Adaptation and Feature Classification

A novel application of transfer learning through domain adaptation is proposed to
reuse the knowledge from a bridge before its retrofit to evaluate its structural condition
after the retrofit process, assuming the existence of no damage before retrofitting.

As the modal parameters are sensitive to changes in stiffness, the natural frequencies
are herein used as damage-sensitive features. The idea is that despite the consequent
variations in natural frequencies caused by retrofitting, the historical monitoring data of a
given bridge measured before retrofitting can be reused to aid in analyzing its structural
integrity after retrofitting.

Figure 1 presents an overview of the methodology proposed in this paper. A bridge
in its initial condition (source domain) and after retrofitting (target domain) have their
natural frequencies estimated through a monitoring system. In the original feature space,
it is assumed the existence of an evident change in the frequencies caused by changes in
stiffness after the retrofit is assumed, which directly correlated with changes in the structural
dynamic behavior. Afterwards, transfer learning via a domain adaptation method is applied
to map features to a subspace where their divergences are mitigated (latent feature space).
In this case, the JDA method is applied to estimate a transformation matrix that maps the
observations to the latent space.

An outlier damage detection process is performed based on the Mahalanobis squared
distance (MSD) [17,18], which is estimated in the original and latent spaces using the
source knowledge only and assuming an underlying multivariate Gaussian distribution.
The classifier’s performance is evaluated through its accuracy before and after the JDA
application. The main idea is to build a classifier capable of correctly evaluating the
structural condition through an outlier detection classification despite completing the
retrofit process.
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Figure 1. Proposed methodology based on a feature-based transfer learning approach.

2.3. Joint Distribution Adaptation (JDA)

The JDA method [19] proposes a mapping function (φ(·)) to project the features
to a reproducing kernel Hilbert space, where the differences between the joint distribu-
tions are mitigated. This often nonlinear mapping function adapts the marginal distri-
butions (P(φ(X)) and the class-conditional distributions (P(φ(X)|Y = c)) with classes
c = {0, 1, . . . , C}), allowing the generalization of model/classifier to different structures as
a consequence.

Note that the class-conditional distribution is analyzed instead of the conditional
distribution. This is a consequence of the lack of knowledge about the labels in the target
domain. To address this issue, a base classifier trained with the source knowledge is applied
iteratively for the determination of the target pseudo-labels, providing the optimization
of the mapping function for the projection of the features as the classifier’s performance
improves [20].

A kernel-based distance metric, called maximum mean discrepancy, is applied to evaluate
the divergences between the source and target domains. This statistical distance metric
measures the average distance between the probability distributions of the features after
their embedding through a kernel matrix (K), which avoids the explicit determination of the
mapping function [21]. The squared maximum mean discrepancy (M) can be written as:

M(P(φ(Xs)), P(φ(Xt))) +M((φ(Xs)|Ys), (φ(Xt)|Yt)) = tr(WTKLcKW) (1)

whereW matrix contains the weights applied to perform the feature transformation into a
latent space, and tr(·) is the trace function. In addition, the Lc matrix can be described as:

(Lc)ij =



1
n(c)

s n(c)
s

, xi, xj ∈ D
(c)
s

1
n(c)

t n(c)
t

, xi, xj ∈ D
(c)
t

−1
n(c)

s n(c)
t

,

{
xi ∈ D

(c)
s , xj ∈ D

(c)
t

xj ∈ D
(c)
s , xi ∈ D

(c)
t

0, otherwise.

(2)

where D(c)
s = {xi : xi ∈ Ds ∧ y(xi) = c} refers to source features of class c based on their

corresponding labels, and D(c)
t =

{
xj : xj ∈ Dt ∧ ŷ(xj) = c

}
refers to target features given

the class c determined according to their respective pseudo-labels.
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It is important to preserve the underlying properties of the features after their map-
ping to the shared latent space. This constraint can be described by the data variance
(WTKHKW), where H is the centering matrix. Hence, this minimization problem with
one constraint to be satisfied can be written as:

min
WTKHKW=I

C

∑
c=0

tr(WTKLcKW) + µ tr(WTW) (3)

where I is the identity matrix and µ is the trade-off parameter. Note that the first term corre-
sponds to the objective function that measures the distance between the joint distributions,
and the regularization term described by the second term avoids a possible overfitting. The
Lagrange multipliers can be applied to address this minimization problem, resulting into
an eigenproblem defined by:(

K
C

∑
c=0
LcK+ µI

)
W = KHKWλ (4)

whereW represents the transformation matrix defined by the m smallest eigenvectors, and
it is applied with the kernel matrix for the features mapping to the latent space through
Z = KW .

2.4. Classifier: Mahalanobis Squared Distance (MSD)

The MSD is a distance metric for multivariate statistics often applied for outlier
detection in SHM analysis [22–24]. The traditional methodology estimate the multivariate
mean vector (µ) and the covariance matrix (Σ) of the training data from the source domain
(Xs). The evaluation of the test data composed by the new observations from the target
domain (Xt) investigates whether their patterns differ significantly, indicating structural
damage by the presence of outliers. By definition, the MSD or damage index (DI) can be
written as [17]:

DI(xt) = (xt − µ)Σ−1(xt − µ)> (5)

In this analysis, a hypothesis test is proposed to ensure the statistical reliability of the
structural integrity assessment. Thus, the probability density function of the DIs is investigated
if the null or alternative hypotheses are met according to an established threshold value.
Formally, the null hypothesis (H0) is assumed when the structure is in a healthy condition,
while the alternative hypothesis (H1) indicates the presence of structural damage.

In the healthy condition, it is assumed that each observation belongs to a Chi-squared
distribution (χ2) by definition, i.e., DI ∼ χ2 [25,26]. Then, it becomes possible to set a thresh-
old value (c) in agreement with a level of significance (α) in the form of c = invFχ2(1− α).
Therefore, an observation is defined as damaged when its DI equals or exceeds the threshold
value, consequently rejecting the null hypothesis. The level of significance is often set to 5%,
and this value is assumed herein during the analysis.

The transfer learning performance can be evaluated using the overall accuracy of the
distance-based classifier estimated. A binary classification is applied in this case, assuming
the damaged structural condition is positive while the undamaged condition is negative.
Therefore, the accuracy of the classifier can be defined as:

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

where TP and TN represent the number of true positive and true negative when damaged
and undamaged conditions are correctly addressed by the classifier, respectively. Mean-
while, FP is the number of false positive and FN is the number of false negative, which are
also known as Type I (FP) and Type II (FN) errors.
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3. PK 075+317 Bridge
3.1. Structural Description and Monitoring Datasets

The PK 075+317 Bridge (Figure 2) is a reinforced concrete railway bridge built in the
early 1980s in the southeastern region of France. To avoid possible structural problems due
to resonance effects, a retrofit process was developed to shift the first natural frequency of
the bridge from the excitation frequency resulting from the passage of high-speed trains.
Thus, a system composed of bearings and rods was embedded to reinforce the structure
and increase the structural stiffness of the bridge consequently [27,28].

The railway bridge’s dynamic monitoring encompassed a comprehensive assessment
aimed at evaluating the influence of environmental fluctuations on its modal characteristics.
An attempt to determine and quantify the operational improvements made by tightening
the rods on the structure’s dynamic behavior (as illustrated in Figure 2) was proposed. It
was observed that the frequency of excitation related to the passage of high-speed trains
was very close to the first natural frequency of the bridge (4 Hz and 5.85 Hz, respectively).
Therefore, the risk of resonance was increased, especially when ballast recharging occurred.
To address that concern, the French National Railway Corporation (SNCF) set up a system
of rods and bearings (as also seen in Figure 2), which were tightened by torque wrench;
that solution added stiffness to increase the frequency and avoid resonance effects. That
procedure was carried out in four stages, monitoring each side of the bridge separately.
Initially, four rods were tightened, followed by three rods on one side (Lyon). Subsequently,
four then three rods on the opposing side (Paris).

Paris Lyon

17.5 m

4
.8

4
 m

1
2

3

4
5

6

7
8

9

1
0

1
1

1
2

1
3

1
4

1
5

Figure 2. PK 075+317 bridge with indication of the eight accelerometers (gray circles) at defined
positions attached to the deck. Source: [29].

A comprehensive monitoring plan was conducted from 23rd to 26th of June 2003,
to investigate the behavior of the bridge before and after the retrofit process. The data
acquisition regarding the dynamic behavior of the bridge and local temperature data were
obtained using eight accelerometers positioned on the bridge deck (lower face) and an array
of temperature gauges, respectively. Note that the PK 075+317 Bridge was only subject to
positive temperatures during the monitoring period.

Feature extraction from the collected datasets was performed, and the first four natural
frequencies were estimated. Figure 3 illustrates the observations during the monitoring
period, with the first 150 observations representing the frequencies before the retrofit and
the remaining ones representing the period following the retrofit process. One can observe
an evident shift in the first frequency, imposed by the tightening of the system of rods and
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bearings. From Table 1, it is possible to highlight an average increase of 10.43% in the first
natural frequency before and after retrofitting.

Table 1. Average natural frequencies estimated before and after retrofitting of the PK 075+317 bridge.

No.
Before Retrofit After Retrofit

Variation [%]
f [Hz] f [Hz]

1 5.85 6.46 +10.43
2 8.73 8.98 +2.86
3 13.10 13.05 −0.38
4 16.81 16.94 +0.77
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Observations

4

6

8

10

12

14

16

18

20

f i
[H

z]

Before retrofit
After retrofit

Figure 3. Observations composed by the first four natural frequencies of the PK 075+317 bridge.

Figure 4 shows all observations in the original feature space and their histograms on
the main diagonal. The retrofit process primarily affects the first natural frequency as the
histograms present a minor overlapping. Additionally, it is possible to notice a variation
in the other natural frequencies, potentially due to the challenges addressed during the
bridge monitoring process and feature extraction method proposed in the analysis.
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Figure 4. Observations of the PK 075+317 bridge in the original feature space, where � and �
represent the natural frequencies before and after the retrofit, respectively.

3.2. Outlier Detection and Structural Assessment

Figure 5 shows the observations after the JDA method application using a linear kernel
to correlate the observations and a trade-off parameter (µ) defined as 1× 10−3. In this
case, the observations from the bridge before and after the retrofit were projected from a
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four-dimensional original space to a two-dimensional latent space (m = 2). Overall, the
divergences between the joint distributions were adequately mitigated, as highlighted by
the overlapping histograms of the two latent features. The classifier with a superimposed
Gaussian distribution with a level significance equals to 5% indicates the presence of some
outliers, resulting from the dispersion of features in the original space due to the natural
frequency estimation process.

Figure 6 indicates the outlier detection (or damage detection) in both feature spaces,
in which each observation from target domain (after retrofit) is assigned with a DI. The
classifiers in both spaces were defined with training data from the source domain only
(before retrofit). The two classifiers in the original and latent feature spaces output an
overall accuracy of 3.08% and 94.62%, which indicates the advantage of applying transfer
learning to mitigate the retrofit effects in the modal parameters. Note there is no indication
of damage, so the changes in stiffness should be regarded as normal.
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Figure 5. Observations of the PK 075+317 bridge in the latent feature space, along with a superim-
posed Gaussian distribution for classification and structural assessment.
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Figure 6. Outlier detection for the PK 075+317 bridge in the original (left) and latent (right) fea-
ture spaces.

4. The KW51 Bridge
4.1. Structural Description and Monitoring Datasets

The KW51 Bridge (Figure 7) is a steel bowstring bridge in Leuven, Belgium, with a
single span of 115 m that includes two ballasted railway tracks that connect the stations of
Herent and Leuven [12].

The bridge underwent an inspection that indicated the necessity for a retrofit plan
to address a problem related to its construction. The bolted joints that connected the
bridge deck and arches were strengthened by welding a steel box between the structural
components to ensure the bridge’s safety and stability.
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Retrofit

Figure 7. The KW51 bridge in Belgium [12].

A long-term monitoring plan was carried out from 2 October 2018, to 15 January 2020,
to follow the entire bridge retrofit process. A monitoring system with 12 accelerometers
was installed along the bridge to measure its dynamic behavior, as well as other sensors
were positioned to collect environmental parameters, including temperature and relative
humidity. The datasets were collected in three periods: (i) before the bridge retrofit from
2 October 2018, to 15 May 2019; (ii) while conducting the retrofit from 15 May 2019, to
27 September 2019; and (iii) after completing the retrofit from 27 September 2019, to
15 January 2020.

An operational modal analysis was carried out to follow the evolution of the struc-
ture’s modal parameters over the monitoring process for the bridge structural assessment.
Figure 8 illustrates the 14 natural frequencies estimated in this period. Note that some
frequencies are unavailable for some days due to measurement problems. Overall, it can
be observed an increase in natural frequencies: (i) before retrofitting due to the effects of
negative temperatures as suggested by some peaks in specific frequencies and (ii) after
performing the retrofit process due to the increase of permanent stiffness.

Oct 2018 Jan 2019 Apr 2019 Jul 2019 Oct 2019 Jan 2020
0
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2

3

4

5
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7

f
[H

z]

-10 -5 0 5 10 15 20 25 30

Temperature [oC]

Retro-t

Figure 8. Evolution of the natural frequencies estimated under environmental effects during the
monitoring of the KW51 bridge.

In this study, only the bending modes of the bridge are investigated, as the most
significant variations in frequencies are present in these modes. Therefore, Table 2 provides
an overview of the average of five natural frequencies before and after the retrofit process.
A slight yet important variation in some frequencies (maximum of 2.1%) can impact the
performance of machine learning algorithms, which are often sensitive to changes in the
datasets used in the training phase.



Buildings 2023, 13, 2323 10 of 13

Table 2. Average natural frequencies estimated before and after the KW51 bridge retrofit.

No.
Before Retrofit After Retrofit

Variation [%]
f [Hz] f [Hz]

1 2.58 2.57 −0.4
2 2.92 2.98 +2.1
3 4.30 4.39 +2.1
4 5.33 5.44 +2.1
5 6.33 6.42 +1.4

Figure 9 illustrates the natural frequencies in the original space and their corresponding
histograms of the bridge before and after its retrofit. On the main diagonal, the histograms
highlight the differences between the features extracted from the bridge datasets. In a
two-dimensional perspective, the features are not aligned due to frequency variations, and
some apparent outliers are present, indicating possible impacts caused by the temperature
and by the bridge structural condition that motivated the retrofit.
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Figure 9. Observations from the KW51 bridge and their corresponding histograms in the origi-
nal feature space, where � and � represent the natural frequencies before and after the retrofit,
respectively.

4.2. Outlier Detection and Structural Assessment

The general concept of transfer learning that preserves a higher proportion of observa-
tions from the source domain compared to the target domain is ensured in this analysis,
despite the measurement problems that prevented the use of all estimated modes. There-
fore, the datasets collected before the retrofit (source domain) have 2582 observations, while
the datasets after the retrofit (target domain) have 428 observations.

The JDA method is applied for domain adaptation assuming a linear kernel and the
regularization parameter (µ) is set to be 1× 10−4. Figure 10 shows the observations in the
latent feature space and the decision boundary (threshold) defined by a superimposed
Gaussian distribution estimated using the source knowledge only. It is possible to observe
that the divergences between the observations from the source and target domains were
mitigated in the latent space. The overlap of their histograms indicates the same behavior.
The source observations present some outliers in the latent space, evidencing the JDA
method preserved the data properties after the features mapping to the latent space.
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Figure 10. Observations of the KW51 bridge as a function of temperature and their corresponding
histograms in the latent space.

By assuming the presence of outliers could be associated with the presence of damage,
Figure 11 presents the DIs estimated by the classifier and its performance in the original
and latent feature spaces using the observations from the target domain (after retrofit). Both
classifiers were defined with observations from the source domain only (before retrofit).
In the original space, the divergences between the observations do not allow a correct
evaluation performed by the classifier, which is highlighted by higher values of DIs than
the threshold defined for a level of significance of 5%. In contrast, the distance-based
classifier presents a significant improvement in its performance in the latent feature space,
as it could assess the bridge’s structural condition with an accuracy equal to 98.13%,
which proves the classifier’s ability to be applied in future decision-making on the bridge
condition.
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Figure 11. Outlier detection in the original (left) and latent (right) feature spaces.

5. Conclusions

The shifts in the damage-sensitive features induced by the retrofit process may chal-
lenge the application of long-term damage detection strategies in bridges, as machine
learning algorithms may not properly describe structural-related changes in the features
occur after the training phase. In a traditional bridge evaluation, the structural knowledge
contained in the datasets before retrofitting would not be leveraged in future decision-
making on the bridge’s condition, and identifying a new classifier to describe the behavior
of the bridge would be necessary.

The possibility of applying transfer learning to assess the structural condition of the PK
075+317 Bridge and KW51 Bridge after the retrofit process was highlighted in this paper. In
both cases, possible structural problems justified the retrofitting of the bridge components.
The classification in the PK 075+317 Bridge shows an overall accuracy gain from 3.08% to
94.62% after the JDA application. Meanwhile, transfre learning significantly improved the
overall classifier accuracy from 0.00% to 98.13% in the KW51 Bridge in Leuven .

Even though the data mapping onto the latent feature space may be challenging to
interpret the physical phenomena, the proposed methodology rooted in transfer learning
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and domain adaptation has the advantage of aligning the monitoring datasets measured
before and after retrofitting while keeping their statistical properties. Thus, transfer learning
can also be applied to describe the dynamics behavior of structures under retrofit conditions
in a lower dimensional space, offering a novel perspective for overcoming monitoring data
mismatch in the damage detection process when a bridge is retrofitted.
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