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Abstract: The nonlinear effects exhibited by structures under the action of wind loads have gradually
stepped into the vision of wind-resistant researchers. By summarizing the prominent wind-induced
nonlinear problems of four types of wind-sensitive structures, namely tall buildings, high-rise
structures, flexible bridges, and transmission lines, the occurrence mechanism of their nonlinear
effects is revealed, providing cutting-edge research progress in theoretical studies, experimental
methods and vibration control. Aerodynamic admittance provides insights into the aerodynamic
nonlinearity (AN) between the wind pressure spectrum and wind speed spectrum of tall building
surfaces. The equivalent nonlinear equation method is used to solve nonlinear vibration equations
with generalized van-der-Pol-type aerodynamic damping terms. The elastic–plastic finite element
method and multiscale modeling method are widely employed to analyze the effects of geometric
nonlinearity (GN) and material nonlinearity (MN) at local nodes on the wind-induced response of
latticed tall structures. The AN in blunt sections of bridges arises from the amplitude dependence
of the aerodynamic derivative and the higher-order term of the self-excited force. Volterra series
aerodynamic models are more suitable for the nonlinear aerodynamic modeling of bridges than
the polynomial models studied more in the past. The improved Lindstedt–Poincare perturbation
method, which considers the strong GN in the response of ice-covered transmission lines, offers high
accuracy. The complex numerical calculations and nonlinear analyses involved in wind-induced
nonlinear effects continue to consume significant computational resources and time, especially for
complex wind field conditions and flexible and variable structural forms. It is necessary to further
develop analytical, modeling and identification tools to facilitate the modeling of nonlinear features
in the future.

Keywords: wind-induced nonlinear; tall buildings; high-rise structures; flexible bridges;
transmission lines

1. Introduction

As high-strength materials and new structural types emerge, mechanical systems are
growing increasingly complex. Consequently, the wind-induced nonlinear vibration issues
associated with tall buildings, high-rise structures, flexible bridges, and transmission lines
have become more prominent (to distinguish from tall buildings, high-rise structures here
are those that people cannot use for production or living, such as transmission towers,
cooling towers, TV towers, etc.). These problems no longer align with the linear assump-
tions used in previous theoretical or experimental analyses [1–3]. To this end, there is an
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urgent need to develop calculation theories and test methods for wind-induced nonlinear
effects. This will allow for a deeper understanding of the nonlinear properties, mechanisms,
and evolutionary laws associated with wind-induced phenomena. Ultimately, these ad-
vancements will provide a scientific basis and technical support for future wind-resistant
designs of high slenderness ratio and large-span structures. Wind-induced nonlinear effects
typically encompass three factors: geometric nonlinearity (GN), material nonlinearity (MN),
and aerodynamic nonlinearity (AN) [4].

GN arises from the need to establish the static equilibrium and deformation coordina-
tion equations based on the postdeformation position. This is represented by the nonlinear
variation in the geometric stiffness matrix [5]. MN arises from materials in the structure
that do not follow linear stress–strain relationships, leading to the nonlinear variation in the
elastic stiffness matrix [6]. AN arises from the complex fluid–solid coupling phenomenon
observed in flexible structures subjected to wind loads, resulting in nonlinearity in aerody-
namic damping, aerodynamic stiffness, and aerodynamic mass matrix [7]. Any of these
three nonlinearities will induce a nonlinear effect in the entire system, which can be mathe-
matically expressed as a nonlinear differential vibration equation. Solving this vibration
equation analytically provides an effective means to study the system’s motion patterns
and the relationship between motion characteristics and system parameters for parameter
control. However, analyzing nonlinear effects is more challenging than traditional linear
analysis methods, as it requires considering highly complex nonlinear behaviors such
as significant geometric deformations, nonlinear material stress–strain relationships, and
nonlinear aerodynamics. Consequently, this increases the difficulty of structural analysis.

This paper discusses the analysis of wind-induced nonlinear effects by examining the
vibration characteristics of various structures, including tall buildings, high-rise structures,
flexible bridges, and transmission lines. It identifies key problems in the analysis of these
effects and explores their solutions. Combining nonlinear vibration analysis theory, wind
tunnel tests, numerical simulations, and field measurements, the application of these
methods to the above four types of structural nonlinear effect problems is discussed.

2. Tall Buildings

When studying wind-resistance in tall buildings, wind-induced vibration is typically
categorized into three types: along-wind vibration, crosswind vibration, and torsional
vibration [8]. These classifications are based on the relationship between aerodynamic force
and the direction of incoming airflow, as depicted in Figure 1.
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Figure 1. Wind-induced vibration of tall buildings. 
Figure 1. Wind-induced vibration of tall buildings.

In normal-height buildings, along-wind loads predominantly play a controlling role [9].
Along-wind vibration is caused by the action of mean wind pressure and pulsating wind
pressure. These forces are typically assessed using static methods and random vibration the-
ory. The buffeting frequency domain analysis method establishes the response relationship
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between structure input and output under the assumption of linearity and smooth random
excitation. This approach offers the advantages of simple and efficient calculation [10].
However, the method uses a linearized solution that assumes a quasi-linear relationship
between the building surface wind pressure and the incoming wind speed in the time
domain with simultaneous pulsations. For example, the gust load factor widely used in
codes and standards [11,12] is based on a Gaussian framework, so the term containing the
velocity fluctuation squared is removed from the equation. Extending this quasi-linear rela-
tionship to the frequency domain allows the derivation of the long-period wind pressure
spectrum SP at a point on the building surface from the Van der Hoven wind speed spec-
trum [13]. As shown in Figure 2, the macrometeorological characteristics of wind pressure
align with the incoming wind speed spectrum in the low-frequency range. Nonetheless,
in practical structural wind engineering, greater attention is given to the high-frequency
micrometeorological characteristics of wind pressure. These characteristics are associated
not only with incoming turbulence but also with characteristic turbulence specific to the
airflow near the point of interest. On the windward side of streamlined structures, it is
approximately assumed that only incoming turbulence influences the point, resulting in
a wind pressure spectrum with the same shape as the wind speed spectrum (solid line in
Figure 2). Conversely, for points on the windward side of blunt body structures and in
separated flow regions, there exists mild or strong characteristic turbulence, as indicated
by the dashed line in Figure 2.

Figure 2. Long-period wind pressure spectrum at a point on the building surface [13].

Based on the observations above, it is evident that the relationship between the wind
pressure spectrum and the wind speed spectrum on the building surface is not a simple
linear one. To account for this disparity, the concept of aerodynamic admittance was
introduced, which captures the influence of free-stream turbulence on the range of scales
present in the pressure coefficient spectra [14,15]. To facilitate the direct calculation of
along-wind buffeting response based on wind speed information during the engineering
structure design phase, several researchers have conducted extensive experiments and
derived empirical formulas for aerodynamic admittance. For buffeting response analysis,
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the aerodynamic admittance function proposed by Castro et al. [16] is employed to attenuate
the power spectra of the along-wind loads, as shown in Equation (1).

χ(zj, f )2 =

1 + (
2 f
√

Aj

U(zj)
)

4/3
−2

(1)

where χ(zj, f )2 is the aerodynamic admittance function at height zj, which represents the
relationship between the gust frequency f and its area of influence; Aj is the projected area
of the jth story; and U(zj) is the mean wind speed at height zj.

Subsequently, Castro et al. [12] made a slight modification to Equation (1) by chang-
ing the exponent −2 to −7/6. According to Castro et al. [16], this modified expression
for the aerodynamic admittance function adequately attenuates the power spectrum of
along-wind loads for two extensively studied structures, a 100 m steel tower [17] and the
Commonwealth Advisory Aeronautical Council (CAARC) standard tall building [18,19].
Researchers have utilized this aerodynamic admittance function to analyze and simulate
3D wind-induced vibrations of rectangular tall buildings in the time domain. Their studies
demonstrated the advantages of time-domain simulation through nonlinear time-history
analysis, which considered a bilinear isotropic material hardening model in both transla-
tional directions [20]. Additionally, aerodynamic admittance has been used by scholars to
investigate nonlinear structural response prediction [21,22], gust effect factors in regions
of separated flow [23], and the wind-induced vibration control [24] of tall buildings. Al-
though there is an abundance of qualitative analysis on aerodynamic admittance, there
is a significant lack of quantitative analysis due to the diversity of building shapes and
the complexity of nonlinear effects. As a result, there is no widely accepted model of
aerodynamic admittance.

Crosswind loads often serve as the horizontal control loads for super-high-rise build-
ings [25]. The vibration of tall buildings caused by crosswind is primarily influenced by
several factors, including incoming turbulence, vortex shedding in the wake region, and
structural vibration, as shown in Figure 3.
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The mechanism of crosswind vibration in tall buildings is complex, and to date, there
is no widely accepted computational model for it. Accurately predicting the crosswind
response relies on understanding crosswind aerodynamic damping. The vortex-locked
wind speed region, occurring during vortex-induced resonance, causes the aerodynamic
damping to vary nonlinearly with wind speed and amplitude, resulting in significant
AN. Due to the complex factors contributing to nonlinear aerodynamic damping, such
as the strong instability of the incoming flow caused by vortex shedding and the failure
of the quasi-steady theory, developing theoretical analytical models becomes extremely
challenging. In many cases, aerodynamic damping models express the majority of their
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aerodynamic damping as a function of root mean square response based on the assumption
of a harmonic crosswind response and are generally referred to as equivalent aerodynamic
damping models [26,27]. Currently, wind tunnel tests are commonly used to determine the
equivalent aerodynamic damping, taking into account the AN of crosswind vibration in tall
buildings. The forced vibration test is utilized to separate the self-excited wind loads from
the total wind loads and identify the equivalent aerodynamic damping [28,29]. Steckley
determined the equivalent aerodynamic damping of a tall building with a square section
through forced vibration tests, as shown in Figure 4 [30]. By varying the incoming wind
speed at a specific vertex amplitude γ, the equivalent aerodynamic damping curves were
obtained, showing the nonlinear variation with the reduced wind speed at that amplitude.
Similarly, by changing the structure’s amplitude, the equivalent aerodynamic damping
curve with the reduced wind speed for other amplitudes could be obtained. Figure 4
illustrates the variation in the equivalent pneumatic damping of a tall building with a
square section, showcasing its dependence on the reduced wind speed and the amplitude.
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reduced wind speed and amplitude [30].

Below the vortex-locked critical wind speed (Ucr/ fsB = 10), the equivalent aerody-
namic damping is positive and shows a nonlinear increase with the reduced wind speed.
As the wind speed approaches the vortex-locked critical point, the equivalent aerodynamic
damping undergoes an abrupt transition from positive to negative. As the reduced wind
speed continues to rise, the absolute value of the negative equivalent aerodynamic damping
gradually diminishes. To conveniently determine the crosswind equivalent aerodynamic
damping ξa of tall buildings, Vickery and Basu [31] developed a theoretical basis for aerody-
namic damping modeling, and the aerodynamic damping model proposed by Vickery and
Basu has been adopted by several codes and standards [32–34], in addition to being used
for solving the crosswind response in the framework of stochastic vibrations [35]. However,
it has been shown that the response calculated using this aerodynamic damping model
does not agree with the response measured in wind tunnel tests and may significantly
overestimate the side wind response in most cases, especially for cylinders with small
Scruton numbers [36,37]. Then, Watanabe et al. [27] proposed a nonlinear empirical model.
This model improves the complex transfer function by analyzing the aerodynamic damping
data [38] and is presented as follows:

ξa = −F1 sin β + F2 cos β + Fp (2)
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F1 = AMP
−2HS(Ur/Ucr)

2[
1 − (Ur/Ucr)

2
]2

+ 4HS2(Ur/Ucr)
2

(3)

F2 = AMP
(Ur/Ucr)

2
[
1 − (Ur/Ucr)

2
]2

[
1 − (Ur/Ucr)

2
]2

+ 4HS2(Ur/Ucr)
2

(4)

Fp =
3

8π
(

Ur

Ucr
)(

2 + 2a
3 + a

)(
dCML

dα
+ dCMD)

∣∣∣∣
α=0

(5)

where F1 and F2 are the real and imaginary parts of the complex transfer function, respec-
tively; AMP and HS are model parameters; β is the model parameter, which is introduced
to express the coupling effect of the two functions; Fp is a term introduced from Parkin-
son’s quasi-steady theory [39] and expressed in the form of the mass-damping parameter;
Ur = U/ fsB and Ucr = U/ fvB are the reduced wind speed of the Strouhal frequency and
the reduced wind speed of the oscillating prism, respectively; U is the wind speed at the
reference point; fs and fv is the Strouhal frequency and the frequency of the oscillating
prism, respectively; B is the width of the prism; a is the index number of the power law for
wind velocity profile; CML and CMD are the mean overturning moment coefficient in lift
direction and in drag direction, respectively; and α is the attack angle of wind.

However, the prediction results indicate that the model underestimates the negative
aerodynamic damping near the vortex-locked critical wind speed [27]. Furthermore, since
the nonlinear aerodynamic damping is dependent on the root mean square (amplitude) of
the response, the identified aerodynamic damping can accurately predict the crosswind re-
sponse only if the root mean square of the high-rise building’s crosswind response coincides
with the root mean square of the response corresponding to the nonlinear aerodynamic
damping. However, in practical scenarios, the crosswind response of tall buildings needs
to be determined, making it impossible to directly use the aerodynamic damping identified
from forced vibration tests for response analysis [40]. To effectively calculate the crosswind
response analytically using the aerodynamic damping identified by the forced vibration
method, the aerodynamic damping is expressed as a polynomial function of the structure’s
time-varying vibration velocity [41–43]. Although this method has the advantages of a sim-
ple algorithm and high recognition accuracy, it requires special excitation devices, complex
tests, and high costs, which limits its widespread use. Currently, the forced vibration test is
primarily utilized to study the self-excited wind load characteristics of sectional models or
other two-dimensional column structures, as it is easier to implement for two-dimensional
structural models compared with three-dimensional tall building models [44,45].

Another method to identify the equivalent aerodynamic damping is through a random
vibration test. In the region near the vortex-locked wind speed, the vibration measurement
device can measure the crosswind response components, including buffeting and self-
excited forces [46]. The aerodynamic damping can then be determined from the crosswind
response using either the time series method or the spectral method [47]. This method has
gained popularity for identifying nonlinear aerodynamic damping due to its simple test
setup and high measurement accuracy. Common time series methods include maximum-
entropy estimates [48], autoregressive [49], autoregressive moving averages [50], and the
random decrement technique [51]. Currently, the random decrement technique is frequently
used in studies on equivalent aerodynamic damping of tall buildings. Marukawa et al. [52]
studied the effect of section width–thickness ratio, building height–width ratio, and struc-
tural damping ratio on the crosswind aerodynamic damping of high-rise buildings using
this method. They obtained the variation law of aerodynamic damping with the reduced
wind speed. For a linear system excited by smooth Gaussian white noise, it is feasible to es-
timate the frequency and damping characteristics of the vibrating system using the method
mentioned above [53]. However, when dealing with tall buildings that are relatively long
and thin and are near the vortex-locked wind speed region, along with the narrowing band-
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width of the crosswind excitation, the timing method is not accurate enough to identify the
crosswind nonlinear aerodynamic damping of high-rise buildings.

Aerodynamic damping is calculated by subtracting structural damping from the total
system damping. The system damping can be obtained using various methods, such as
the autocorrelation function method, the half-power bandwidth method, or the wavelet
transform method, which are applied to the crosswind response spectrum [47]. However,
similar to the time series method, most of the aforementioned methods are applicable to
linear systems under broadband excitation and therefore have certain limitations.

Since the crosswind responses of tall slender structures in atmospheric boundary layer
flow do not always follow harmonic processes at different wind speeds, and the character-
istics of the response, such as harmonic, Gaussian, or random processes, exhibit hardening
non-Gaussian distribution in real applications, the use of equivalent aerodynamic damping
models may be restricted. To overcome the limitations of equivalent aerodynamic damping
models, aerodynamic damping is further described as a function of time-variant displace-
ment or velocity for a given wind speed. These time-variant aerodynamic damping models
are capable of describing aerodynamic damping at various wind speeds without assuming
a harmonic response [54,55]. When estimating the crosswind responses of tall buildings
considering wind–structure interaction in atmospheric boundary layer flow, the challenge
lies in solving a nonlinear motion equation that accounts for generalized van-der-Pol-type
aerodynamic damping. Analytical solutions for such nonlinear motion equations under
stochastic excitation are usually not available [56,57]. A method was proposed to transform
the nonlinear motion equation into a solvable Fokker–Planck–Kolmogorov equation using
the equivalent nonlinear equation method [55,58]. The combination of this method with the
generalized van-der-Pol-type aerodynamic damping effectively describes the aero-elastic
effect for elastically mounted circular cylinders and crosswind-excited tall slender struc-
tures in atmospheric boundary layer flow. Furthermore, this method can be extended to
incorporate the influence of GN and MN on the amplitude of crosswind response in tall
buildings under the action of wind loads.

Wind-induced nonlinear torsional vibration in tall buildings is usually caused by the
imbalance in the instantaneous wind pressure distributions on all building surfaces and the
eccentricity between the elastic and mass centers [59,60]. For symmetric tall buildings with
large stiffness, the asymmetric aerodynamic-induced torsion is usually small and generally
negligible. However, for flexible tall buildings, rotating members can generate large shear
forces and bending moments in the members, and the torque loads may have nonlinear
coupling effects with downwind and lateral loads, resulting in a strong wind vibration
response [61]. Especially, slender tall buildings tend to suffer greater rotational damage
under wind loads. Ref. [62] studied the torsional response for symmetric and asymmetric
linear systems, where the relative distance between the center of mass (CM) and the center
of stiffness (CS) varies with time during structural motions and an instantaneous load
eccentricity occurs during horizontal motions of the CM in the plane, which may lead to
additional torsional motions not considered in codes [11,12,63], naming this second-order
nonlinear effect as the A-∆ effect. Some authors [64] solved the nonlinear differential
equations considering the A-∆ second-order nonlinear effect by means of state–space
model assembly and showed that the A-∆ effect has a small effect on the wind-driven
displacements and accelerations, but the correlation coefficients between the wind forces
have the most important influence on the response, suggesting that the different correlation
levels between the wind force and the torque must be taken into account in the evaluation
of the wind-driven response. In addition, nonlinearities may cause the structure to become
more flexible, thereby increasing the dynamic response of the structure [65], and therefore,
further analysis is required to assess the impact of the A-∆ effect on the wind response
of high-rise buildings considering both structural geometric nonlinearities and material
nonlinear behavior.
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3. High-Rise Structures

In the case of complex and slender high-rise structures, it is important to consider
the second-order effects resulting from horizontal wind loads acting on vertical loads [66].
Furthermore, structural deformation causes certain parts of the material to enter the inelastic
phase. MN exhibited by these parts results in a reduction in the stiffness of concrete
members, subsequently leading to increased deformation. The interaction between MN and
GN is complex, making calculations considering these dual nonlinear effects challenging. To
address diverse practical situations, a range of structural wind-induced nonlinear analysis
methods have been developed at different levels. Since the first-order elastic analysis in
Figure 5 is a method within the elastic range, only the other three methods are summarized
as follows:

1. First-order inelastic analysis, which primarily considers MN and does not account for
GN [66];

2. Second-order elastic analysis, which considers structural initial defects as well as
P − ∆ and P − δ effects. This method requires accurate element stiffness matri-
ces, such as cubic interpolation elements [67], stability function elements [68], and
pointwise equilibrating polynomial element [69]. It also relies on stable equilibrium
path iteration methods, including the Newton–Raphson method [70], arc-length
method [71,72], and minimum residual displacement method [73];

3. Second-order inelastic analysis, which considers both stability and plastic effects. This
category can be further divided into the plastic zone method [74] and the plastic hinge
method [75,76].
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Dense high-rise structures, such as cooling towers, chimneys, and heat-absorbing
towers, exhibit noticeable MN due to their predominantly concrete or reinforced concrete
composition. To accurately analyze the structural behavior under wind loads, the elastic–
plastic finite element method that incorporates second-order effects is employed. This
method enables the simulation of overall structural deformation, as well as the deformation
of individual members within the structure. The method takes into account GN and MN
by correcting the stiffness of the structure in the time domain. Remyasree [77] conducted a
study on 30 finite element models of chimneys using this method. The study considered
nodal displacements and maximum shell stresses as output parameters. The results indicate
that the chimney shell stresses decrease as the wall-thickness ratio increases. Additionally,
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the fully conical chimney structure exhibited lower shell stress values compared with the
partially conical chimney. Other scholars used finite element analysis software to investigate
the structural damage process under dynamic wind load for a 220 m high cooling tower,
employing Incremental Dynamic Analysis [78,79]. Both studies considered the tower’s
concrete and steel reinforcement as a plastically adaptable material model, incorporating
MN and failure mechanisms. However, they used different material parameters, which
may contribute to the discrepancy in the critical collapse wind speed predicted for the
cooling tower. To reduce the time-consuming and complex iterative convergence in finite
element analysis, it is common practice to treat steel and concrete as a single material or
consider material nonlinearity using a stiffness discount tactics [80]. However, due to the
existing limitations in finite element modeling techniques, accurately simulating material
nonlinearity after local concrete cracking under the action of wind loads and capturing the
synergy between steel and concrete remains a challenging task.

Lattice high-rise structures, such as transmission towers, TV towers, and communi-
cation towers, exhibit strong GN due to their composition of slender bars. Transmission
towers play a crucial role in the power system. In previous studies on the wind resistance
design of transmission towers, the overall models were established using rod elements
hinged at both ends or beam elements cemented at both ends to simulate angular steel
members [81–83]. However, these models often neglected the nodal effects, including
flexibility, geometry nonlinearity, and bolt slip, which can significantly influence the overall
structure. Knight [84] emphasized the need to consider the influence of connection stiffness
at the nodes, as the space truss method alone may not accurately predict the behavior of
transmission tower structures. The research analysis indicated that the three-dimensional
method with bending moment provided the most accurate stress calculation for the rods,
aligning closely with field test results. However, the modeling process using the three-
dimensional frame method with bending moment can be relatively complex. Additionally,
it has been observed that the traditional rod element models often fail to match the actual
experimental data in complex load situations. This discrepancy can be attributed to intrinsic
factors in the transmission tower structure that led to second-order responses, such as
eccentricity, connection stiffness, and rod continuity. Therefore, some major rods in the
transmission tower should be analyzed using beam elements to better assess the ultimate
load capacity [85]. To analyze the mechanical properties of the nodes, researchers have
employed a small-scale analysis method by separating the local nodes of the transmission
tower and establishing a local fine model using solid elements or shell elements [84,86].

To consider the influence of nodal NG on the overall response of the structure, Rao
et al. [87] proposed an analytical method that considers nodal NG, MN, eccentric connec-
tions, and rotational stiffness. Kurobane et al. [88] compiled 385 test results for steel tube
plane nodes and developed a strength equation specifically for these nodes. However,
traditional methods have limitations in accurately analyzing the effects of nodal effects
(such as geometric nonlinearity and material nonlinearity) on the overall response of trans-
mission tower structures at the overall scale. Furthermore, these methods fail to provide
reasonable boundary conditions for local models, resulting in significant errors in local
nodal analysis. Therefore, a consistent structural multiscale approach is necessary for the
analysis of transmission towers, considering the coupling effect between the two scales.
Banik et al. [89] introduced two methods, nonlinear elastoplastic pushover and incremental
dynamic analysis, commonly used in seismic resistance, with slight modifications to the
structural wind-resistant design to estimate the structural performance of transmission
towers under wind loads, and obtained the wind resistance of a single tower. In recent
years, the development of multiscale modeling has gained prominence and has been widely
applied in various fields, attracting the attention of researchers [90]. Multiscale studies
primarily focus on structural material properties and are commonly employed for simulat-
ing nonlinear processes in concrete and composite materials [91–93]. Voyiadjis et al. [94]
summarized existing multiscale research methods and proposed an approach that connects
multiple models with different degrees of freedom, ensuring energy equivalence at the
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interfaces. This method allows different interfaces to be connected and at the same time
makes the energies equal. Nowadays, the research is mostly based on this method when
considering the nonlinearity of high-rise structures.

4. Flexible Bridges

The influence of nonlinear effects on the wind-resistant performance of large-span
flexible bridges has become more apparent with their increased popularity. Dynamic
wind loads lead to various vibration forms in these bridges, including flutter, galloping,
vortex-induced vibration, and buffeting [95], as shown in Figure 6. The blunt sections
of the bridge’s main girders, towers, arch ribs, and booms exhibit evident AN when
subjected to wind loads [96]. Currently, two methods are employed for analyzing AN of
flexible bridges. The first method involves nonlinear vibration analysis prediction based
on nonlinear aerodynamic derivatives. The second method relies on nonlinear vibration
analysis prediction using a nonlinear self-excited aerodynamic model. The Scanlan linear
self-excited force model assumes that the self-excited force acting on the bridge’s main
girder can be represented as a linear function of the main girder’s state vector, while the
aerodynamic derivative is influenced by the main girder’s section profile and reduced
frequency. The Scanlan linear self-excited force model [97] can be expressed by the following
equation:

Lse = ρU2B

(
KH∗

1

.
h
U

+ KH∗
2

B
.
α

U
+ K2H∗

3 α

)
(6)
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.
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U
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2

B
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(7)

where Lse and Mse are the aerodynamic force and moment, respectively; K is the reduced
frequency, = Bω/U; ω is the circular frequency of motion; ρ is the air density; H∗

i and
A∗

i (i = 1, 2, 3) are the aerodynamic derivatives, respectively; h and α are the vertical dis-

placement and torsion angle of the section, respectively; and
.
h and

.
α are the first-order

derivatives of h and α with respect to time, respectively.
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Figure 6. Wind-induced vibration of flexible bridges.

In the following decades, bridge aerodynamic analysis frameworks based on linear
self-excited force models were developed and widely used [98–100]. These linear frame-
works accurately determine the flutter critical wind speed of bridges. However, such
methods are in the realm of linear theory and are limited to the analysis of flutter criticality
problems, which cannot accurately analyze and evaluate the postflutter characteristics of
flexible bridges. Due to the influence of AN, postflutter behavior exhibits stable amplitude
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limit cycle oscillations [101]. Scholars have conducted sensitivity analyses of aerodynamic
derivative identification and have observed the influence of amplitude on aerodynamic
derivatives, considering it as a component of AN. For instance, Falco et al. [82,102] identi-
fied the aerodynamic derivatives of the main girder of the Humber Bridge under different
torsional amplitudes by forced vibration wind tunnel tests and found that A∗

2 decreased
with increasing torsional amplitude. Noda et al. [83,103] identified the flutter derivatives of
rectangular section segment models with aspect ratio B/D = 13 and B/D = 150 at different
amplitudes by forced vibration wind tunnel tests, and it was found that the torsional ampli-
tude had a significant effect on H∗

2 and A∗
2 , while the vertical amplitude had little effect on

flutter derivatives. However, the amplitude of H∗
1 varies significantly with vertical ampli-

tude during the locking interval of vortex-induced vibration [104]. The work in [105] iden-
tified the flutter derivatives of a bridge main girder section using free decaying vibration
signals and random vibration signals from free vibration wind tunnel tests and attributed
the difference in the identification results between the two methods to the effect of ampli-
tude on the flutter derivatives. Recent studies have employed amplitude-variable harmonic
forced vibration to examine the influence of amplitude on flutter derivatives [106,107].
Although the effect of amplitude on aerodynamic derivatives has been widely reported, the
physical mechanism behind this phenomenon has received limited attention. The winding
patterns of bridge main girders can differ greatly under varying amplitude conditions,
making it challenging to provide a uniform explanation for the amplitude variation in
aerodynamic derivatives. Additionally, for single-degree-of-freedom systems, amplitude
and frequency fully characterize steady-state vibration characteristics, suggesting that aero-
dynamic derivatives should be represented as a two-dimensional function of amplitude
and reduced frequency. However, Matsumoto et al. [108] found that the flutter derivatives
were significantly affected by the vibration mode participation form for the blunt body
rectangular section segment model with relatively small width and height by comparing
the identification results of the flutter derivatives for a single degree of freedom and two
degrees of freedom. Zhang et al. [109] found similar results when analyzing the postflutter
limit cycle oscillation of a bridge deck. This implies that multi-degree-of-freedom systems
may be influenced by parameters such as amplitude ratio, frequency ratio, and phase
difference between modes, indicating that the flutter derivative can be affected by the
participation form of vibrating modes.

Another significant AN characteristic of the bridge’s main girder is that its aerody-
namic force contains a significantly higher-order component. As shown by the dashed line
in Figure 7, by applying forced vibration with vertical frequency fh and torsional frequency
fa to the main beam, Chen [110] found that there may be doubled-frequency (2fh and 2fa, etc.)
and mixed-frequency (fa − fh and fa + fh, etc.) components in the self-excited lift amplitude
spectrum Ssl and in the self-excited torque amplitude spectrum Sst. This result has also
been observed by other researchers when investigating the self-excited forces of bridge
main girders through wind tunnel tests or numerical simulations [102,110,111]. Further-
more, in the case of bridge main girders experiencing vertical or torsional vibrations, the
dominant component of the self-excited force may be a second-order component, rendering
the traditional linear self-excited force model inadequate [112]. The obtuse body structure
of the bridge, coupled with its mode-dense characteristics, has amplified the significance
of aerodynamic higher-order effects. Consequently, the frequency of the higher-order
aerodynamic force for a particular mode may closely align with the natural frequencies of
other modes, leading to significant resonance phenomena.

The hysteresis loop of the aerodynamic force with displacement serves as an important
means to reflect AN. In fact, the aerodynamic hysteresis loop represents another manifes-
tation of AN, which includes variations in aerodynamic derivatives with amplitude and
the presence of higher-order components of the self-excited force. Diana et al. [113,114]
conducted wind tunnel tests on a model of the Messina Strait Bridge main girder section
and measured the aerodynamic hysteresis loops for different discounted wind speeds and
amplitudes. They proposed a polynomial aerodynamic model to fit the hysteresis loops.
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Subsequently, numerous hysteresis loops for different sections were documented in the
literature, revealing various forms [115–117]. The variation in self-excited torque with
torsion angle for the Humen bridge main girder is shown in Figure 8 [118,119]. In the
case of a linear system, the hysteresis loop appears as a standard ellipse, with the elliptical
shape remaining consistent across different amplitudes. When considering the influence
of the aerodynamic derivative’s amplitude variation and ignoring higher-order compo-
nents of the self-excited force, the hysteresis loop also takes on an elliptical shape, but the
specific form of the ellipse varies with amplitude. However, hysteresis loops that account
for the higher-order self-excited force and the amplitude variation in the aerodynamic
derivative closely resemble real hysteresis loops. The disparity between the hysteresis
loops in Figure 8a,d is attributed to the presence of third-order components or higher in
the self-excited force.
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With the advancements in the study of aerodynamic nonlinearity (AN) in bridges,
developing appropriate aerodynamic models that consider AN has become a prominent
focus in the field of bridge wind engineering. A straightforward approach to modeling
the nonlinear components of the self-excited force is to incorporate higher-order nonlinear
terms into the expressions for the force. Diana et al. [114] presented the self-excited force as
a cubic polynomial function of the transient attack angle of wind, but the expressions do not
differentiate the contribution of each component of the transient attack angle of wind (e.g.,

.
h

and
.
α). Therefore, further verification is required to assess its applicability. The widely used

quasi-steady galloping force model and Scanlan vortex-induced force model are essentially
polynomial aerodynamic models [120]. However, the model parameters of the Scanlan
vortex-induced force model can exhibit significant and irregular variations with structural
dynamic parameters, such as mechanical damping ratio. Consequently, many scholars
have adapted the polynomial form of the model for aerodynamic damping [121–123] or
improved parameter identification methods [124] to enhance the stability of the model
parameters. Table 1 provides an overview of several existing polynomial aerodynamic
model forms (without polynomial coefficients). Essentially, the fundamental purpose of
using polynomial aerodynamic models to simulate aerodynamic forces is to simulate the
trend of aerodynamic damping and aerodynamic stiffness with amplitude (for galloping
and vortex-induced vibration, the aerodynamic stiffness effect can usually be neglected).
However, the specific form of the polynomial aerodynamic model is highly sensitive to
the profile of the bridge structure section. It can also vary for different wind angles of
attack, even for the same section. Additionally, when analyzing multi-degree-of-freedom
systems, applying the polynomial aerodynamic model can lead to increased complexity
and difficulty in parameter identification.

Table 1. Polynomial aerodynamic model of aerodynamic force.

Literature Research Subjects Polynomial Aerodynamic Model

Naprstek et al. [124] Flutter Fy : (1 − h2 − α2)(
.
h +

.
α + h + α)

Diana et al. [114] Hysteresis loop Mz : α +
.
α + α2 + α

.
α + α3 + α2 .

αse
Zhang et al. [125] Galloping Mz : α +

.
α + α2 .

α + α3

Andrianne [126] Galloping Fy :
.
h
U +

.
h
∣∣∣ .
h
∣∣∣

U2 +
.
h

3

U3 +

.
h

3∣∣∣ .
h
∣∣∣

U4 +
.
h

5

U5

Zhu et al. [120] Vortex-induced force Fy : (1 +
.
h

2

U2 )
.
h
U

The Volterra series theory is a valuable tool for modeling and analyzing nonlinear dy-
namical systems, playing a pivotal role in research on such systems [127].
Wu et al. [128,129] expanded the application of the Volterra series theory to the aeroelastic
analysis of blunt body structures, including bridge main girders. As per the Volterra series
theory, the output of a nonlinear system, induced by the input x(t), can be approximated as
follows:

y(t) =
N

∑
n=1

yn(t) (8)

yn(t) =
∫ +∞

0
. . .
∫ +∞

0
hn(τ1, . . ., τn)

n

∏
i=1

x(t − τi)dτi (9)

where N is the nonlinear order of the system; y1(t) is the linear component of the output;
and yn(t) is the nth order nonlinear component of the output, where hn represents the nth
order time-domain kernel function of the system. In the simulation of the aerodynamic
forces acting on the structure, x(t) is the state vector of the structure, and y(t) is the state
vector of the structure.

It has been theoretically demonstrated that Equation (4) effectively models various
nonlinear effects [130–132]. For instance, the second-order Volterra series model can
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simulate phenomena such as doubled-frequency and mixed-frequency nonlinearities. The
third-order Volterra series model can capture the dependence of the system transfer function
on the input amplitude, such as the flutter derivative with amplitude. However, the
identification workload of kernel functions and the computational effort required for
multidimensional convolutional integration exponentially increase with N. As a result,
the current application of the Volterra series model in wind engineering for blunt body
structures is limited. Nevertheless, with advancements in computer technology and the
Volterra series theory, there is potential for further promotion and application of the Volterra
series model in nonlinear effects research in bridge wind engineering. Apart from the
polynomial and Volterra series AN models mentioned above, other nonlinear models have
also been explored in the field of flexible bridge nonlinear effects research. Wu et al. [116]
introduced artificial neural network methods for AN simulation of blunt body structures,
such as bridge main girders. Machine learning techniques like fuzzy logic methods [133]
and deep learning methods [134] have also found applications in AN simulation. These AN
models show promise, but their complex forms, numerous aerodynamic parameters, and
the demanding workload of parameter identification make them challenging for engineers
to use and difficult to promote in the engineering field at this stage. Furthermore, the
sensitivity of the model form and parameters to test conditions and identification methods
requires further investigation.

5. Transmission Lines

Transmission lines are subjected to three types of vibrations caused by wind loads:
high-frequency low-amplitude aeolian vibration [135], low-frequency medium-amplitude
subspan oscillation [136], and low-frequency large-amplitude galloping [118,137]. The
aeolian vibration of transmission lines is essentially a form of vortex-induced vibration
characterized by low amplitude and nonlinearity. However, its elongation deformation
is typically considered as a smaller range of linear elastic deformation, and thus, MN is
generally ignored. The energy balance method has been widely employed for aeolian
vibration analysis and calculation for many years [138]. This method is based on the
principle that the energy dissipation of the transmission conductor system equals the wind
energy input, allowing the calculation of the stable amplitude of aeolian vibration [139].
However, the accuracy of wind energy input power, conductor self-damped dissipated
power, and dissipated power of vibration prevention devices directly impacts the accuracy
of the calculated vibration response using this method. Although some scholars have made
improvements to the traditional energy balance method formula [140], there is still a lack
of accuracy for multisplit conductors. Another approach to calculating aeolian vibration
is the dynamic method, primarily used to calculate the steady-state response. Simplified
deterministic semiempirical mathematical models, especially negative damping models
like Scanlan’s empirical nonlinear models [141,142], have been widely adopted. The finite
element equations of motion for transmission line aeolian vibration have been derived
using these models [143]. This analytical method effectively solves the aeolian vibration
equation by considering GN.

The subspan oscillation of a split conductor refers to the unstable vibration of the
leeward side conductor in a multisplit transmission line when it falls into the vortex
aerodynamic wake created by the windward-side conductor. This phenomenon leads
to wake-induced galloping [144]. However, due to the complexity of wake shielding
effects in computer theory, the study of subspan oscillations has not fully met practical
engineering needs. Price [145] developed a nonlinear model based on a quasi-steady
analytical model, considering both in-plane and out-of-plane damping. They solved
the nonlinear equations using the Runge–Kutta numerical integration method [146] to
determine the wake-induced galloping amplitude. Subsequently, Piperni [147] utilized
the nonlinear equations established by Price [145] and the modified Krylov–Bogoliubov
asymptotic method [148] to analyze the stability of an elastically supported cylinder in a
fixed cylindrical wake. The results demonstrate that increasing mechanical damping is not
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effective in reducing the amplitude of wake-induced galloping in the leeward cylindrical
wake when the windward cylinder is fixed. Additionally, the boundary region of wake-
induced galloping obtained through nonlinear theory analysis differs significantly from
that of linear theory.

The galloping of transmission lines is a common natural aerodynamic instability phe-
nomenon, typically characterized by large displacement and small-strain GN features. In
numerical simulations of galloping, research methods have progressed from linearized
mode superposition methods to geometric nonlinear methods that consider large displace-
ments. Desai et al. [149] employed a three-node cable element to simulate ice-covered
transmission lines and investigated galloping under various constraints. However, they
used the mode superposition method to solve the galloping equations, neglecting the GN
induced by large-amplitude motion. In a subsequent study, Desai et al. [150] proposed
an efficient time-integration algorithm based on the Krylov–Bogoliubov method [148],
which significantly reduced the number of calculations. Nevertheless, this method weak-
ened the coupling between the large-amplitude motion of the ice-covered conductor and
aerodynamic forces. The vertical and torsional vibrations of the ice-covered conductor
are not isolated but coupled. Therefore, the equivalent single-mass (or rotational inertia)
system is not a single-degree-of-freedom system but a three-degree-of-freedom system
with simultaneous vertical, horizontal, and torsional vibrations, as depicted in Figure 9.
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Where mi and m are the mass of ice and conductor, and kv, kh and kt are the stiffness
in vertical, horizontal, and torsional.

In addition, the split conductor rotates as a whole around the center of the split circle
due to the influence of the conductor spacer. Its torsional stiffness is significantly greater
than that of a single conductor with the same cross-sectional area. As a result, the aero-
dynamic forces and moments generated by split conductors are much larger compared
with those of single conductors. To account for the torsional stiffness of split conductors,
Wang et al. [151,152] developed a continuous multispan conductor galloping model for
both single and split conductors based on the geometric nonlinear method. They incorpo-
rated second-order coupled nonlinear terms for vertical, horizontal, and torsional modes
into the split conductor torsional stiffness algorithm [153]. Liu et al. [154,155] utilized this
model to simulate the galloping of a four-split transmission line with different file distances,
considering the AN and GN of large-amplitude vibrations. Their findings revealed the
emergence of a new galloping mode when there is an integer multiple relationship between
the natural circular frequencies of vertical and horizontal motions of the conductor. This
phenomenon is interpreted as a saturation phenomenon of the nonlinear dynamical system.
Yan et al. [156] treated the conductor vibration process as a continuous incremental process
of transient vibration. They employed the incremental harmonic balance method to solve
the conductor galloping equation, considering both the nonlinear stiffness term and non-
linear damping term. They also examined the selection of the number of harmonic terms
and the galloping limit loop. However, to reduce the computation of the integration of the
element load vector (which is usually a higher-order function of nodal displacement and
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velocity), the uniform aerodynamic load vector is replaced by the element concentrated
load vector. While the nonlinear finite element method used for studying galloping in
ice-covered transmission lines can consider GN, it cannot provide analytical expressions
for galloping amplitude and frequency, nor can it thoroughly investigate the mechanism of
GN’s influence on the galloping response. In the field of bridges, some scholars [157–159]
have conducted comprehensive studies on the GN of diagonal cables. However, the tensile
force experienced by bridge diagonal cables is much higher than that of transmission lines,
and their vibrations differ significantly.

Based on the continuum model of the conductor, the galloping differential equa-
tion obtained through the Galerkin-type discretization method [160] is the primary ap-
proach for theoretically solving the galloping of transmission lines differential equation.
Yu et al. [161,162] employed the averaging method to solve the periodic solution of the con-
ductor’s galloping differential equation and discussed the accuracy range of this method.
They found that the small parameter ε has an upper limit of 0.01, corresponding to the
maximum wind speed for the model. If the critical wind speed is exceeded, the averaging
method incurs a large calculation error. To avoid these issues and account for increased
model considerations, recent galloping model studies have largely adopted the multiscale
method [163]. The analytical solution obtained from this method for the galloping differen-
tial equation is an asymptotic series, suitable only for weak geometric nonlinear systems
with small parameters and not applicable to cases with strong GN, such as ice-covered
conductor galloping. For vibrations displaying strong GN, a modified Lindstedt–Poincare
regression method can be utilized to derive an approximate analytical solution for the
amplitude and frequency of galloping over ice, while considering the effect of GN on the
galloping response [144,164]. Using Hamilton’s principle, a three-degree-of-freedom model
was employed to establish nonlinear equations of motion control for icing conductors,
which were then discretized into ordinary differential equations using the Galerkin-type
discretization method [145,165]. Lou et al. [146,166] developed galloping partial differential
control equations for ice-covered transmission lines to describe the nonlinear interactions
among in-plane, out-of-plane, and torsional vibrations, revealing the presence of internal
resonance phenomena. Internal resonance plays a vital role in nonlinear field, as it leads
to interactions between modes [147,167]. Additionally, although increasing damping can
dissipate vibration energy in transmission lines, it does not prevent internal resonance
from occurring [148,168]. In addition, the calculation of wind deflection of overhead lines
mainly focuses on the static analysis method. Wang et al. [149,169] proposed a linear
analysis framework with closed-form formulations to determine the static response while
considering the conductor’s GN. They found that neglecting static swing leads to an over-
estimation of the along-wind dynamic displacement and fails to capture the dynamic
crosswind and longitudinal tensions. Regarding modeling, Dua et al. [170] employed
finite element software to establish a tower-line system model and performed calculations
for wind deflection with large displacements. Their study concluded that the tower-line
system model can intuitively and comprehensively represent the dynamic wind deflection
response of transmission lines, taking into account GN.

In recent years, the topic of reducing the hazards caused by nonlinear dynamic wind
loading effects on transmission lines is of particular importance. Interwire friction is a
major source of energy dissipation [171]. Its application to vibration isolation systems
is considered advantageous. The spiral wire rope isolator (WRI) is a typical nonlinear
hysteretic damping device [172], which is also effective for wind-induced vibration control
of transmission lines [173]. In addition, a newly developed nonlinear energy sink (NES)
damper [174,175] is the current research hotspot of nonlinear dampers. The NES damper is
more stable compared with the general damper due to its frequency–energy dependence,
which makes it able to act nonlinearly in a broadband frequency–energy manner and
more predictable and controllable in the theoretical analysis of parameter optimization.
Some scholars have utilized the segmented linear recovery forcing function of the NES
by adding nonlinear dampers with NES to single-span tension cables for mitigating chirp
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vibration [176]. For the problem of nonlinear dynamic interactions between transmission
lines, nonlinear dampers, and wind, scholars have combined the nonlinearity of plane
stretching in the conductor, the equivalent cubic stiffness of the Stockbridge damper, and the
pulsating lift modeled as a Vanderbilt oscillator in a single model in order to study nonlinear
vortex-excited vibrations of transmission lines. The results show that the nonlinearity in
the system disappears with increasing axial tension and stall parameters of the wake
oscillator [177]. In addition, the application of the NES to wind-sensitive structures such as
tall buildings, high-rise structures, and flexible bridges has gradually become a topic of
future research of interest to many scholars [178,179].

6. Conclusions

(1) Wind-induced nonlinear analysis of tall buildings: Aerodynamic admittance is a
measure of the impact of free-stream turbulence on the range of scales in the pressure
coefficient spectra. It provides insights into the aerodynamic nonlinearity (AN) be-
tween the wind pressure spectrum and wind speed spectrum of building surfaces,
specifically in the high-frequency range, where strong characteristic turbulence exists
on the windward side and separation flow area of high-rise buildings. To account for
the diverse shapes of tall buildings and the complex nonlinear effects, the empirical
formula for aerodynamic admittance is typically derived from wind tunnel tests or
numerical simulations. This formula considers the influence of AN on wind-induced
vibration response. To address the evident AN in the aerodynamic damping of tall
buildings caused by nonlinear changes in wind speed and amplitude, the widely
adopted approach is to employ the equivalent nonlinear equation method. This
method enables the solution of the nonlinear vibration equation, which incorporates
the generalized van-der-Pol-type aerodynamic damping term. Furthermore, this
method can also consider the effects of geometric nonlinearity (GN) and material
nonlinearity (MN) in tall buildings when subjected to wind loads, particularly in
relation to the crosswind response amplitude.

(2) Wind-induced nonlinear analysis of high-rise structures: Currently, the elastic–plastic
finite element method, which has the advantage of high accuracy, has been developed
to account for GN and MN in high-rise structures under wind loads. In this method,
the geometric stiffness and elastic stiffness are adjusted in the time domain. To
simplify the iterative convergence process and reduce computation time, steel and
concrete are often treated as a single material, or a stiffness discount factor is applied
to consider material nonlinearity. Due to the limitations of current finite element
modeling techniques, it still remains a requested subject to simulate MN and synergy
between steel and concrete after local cracking occurs due to the action of wind loads.
The multiscale modeling method is widely employed to analyze the effects of GN
and MN at local nodes on the wind-induced response of latticed tall structures. One
of the key areas of focus for future researchers is to establish reasonable boundary
conditions for local models, which will further reduce errors in the wind vibration
analysis of local nodes.

(3) Wind-induced nonlinear analysis of flexible bridges: The AN in blunt sections of
bridges arises from the amplitude dependence of the aerodynamic derivative and the
higher-order term of the self-excited force. The presence of GN in bridge structures
results in postflutter behavior that does not increase indefinitely but exhibits a small
yet stable limit cycle oscillation. Modeling the nonlinear aerodynamic problems of
bridges using polynomial aerodynamic models and Volterra series aerodynamic mod-
els has become a prominent research focus in bridge wind engineering. However, the
identification of kernel functions and the calculation of multidimensional convolu-
tional integration in Volterra series aerodynamic models exponentially increase as
the nonlinear order rises. Therefore, further development is required to effectively
apply Volterra series aerodynamic models in the field of wind-induced nonlinearity
in flexible bridges.
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(4) Wind-induced nonlinear analysis of transmission lines: The extension deformation
of transmission lines under aeolian vibration is commonly assumed to be linear and
elastic within a small range, disregarding MN. One common approach to solving
the aeolian vibration equation for multisplit transmission lines, considering GN,
is to employ the empirical nonlinear model developed by Scanlan combined with
dynamic methods. To address the AN of the leeward-side conductor’s subspan
oscillation in the wake of the windward-side conductor in a multisplit transmission
line, nonlinear finite element models and the Runge–Kutta numerical integration
method are typically utilized to solve the nonlinear vibration equation. These methods
enable a qualitative assessment of the impact of AN on the oscillation amplitude.
When studying the wind-induced nonlinear effects of transmission line galloping, it
is necessary to account for both the GN resulting from large amplitudes and the AN
caused by variations in the aerodynamic three-component force coefficient with the
wind angle of attack. A three-node parabolic cue element is commonly employed
for modeling, combined with linearization using the incremental harmonic balance
method and curved beam theory. This approach reduces the computational time
required for incremental iterative calculations in numerical simulations for solving
the galloping equation. Attaining an accurate solution for discretized galloping
differential equations is crucial for further investigating the influence of geometric
nonlinear stiffness terms on the galloping response. The improved Lindstedt–Poincare
perturbation method, which considers the strong GN in the response of ice-covered
transmission lines, offers high accuracy.

(5) Existing instruments for free or forced vibration tests are not accurate enough to
identify wind load parameters in the nonlinear region, and there is no uniformly rec-
ognized computational model for crosswind nonlinear aerodynamic damping of tall
buildings and nonlinear self-excited aerodynamic forces of flexible bridges, which still
need to be explored. In addition, the complex numerical calculations and nonlinear
analyses involved in wind-induced nonlinear effects still consume a lot of computa-
tional resources and time, especially for complex wind field conditions or flexible and
variable structural forms. There is still a lack of sufficient in situ measurements to
support the study of complex wind fields in coastal and mountainous regions, and
uniform models need to be further supplemented and summarized, especially for
transient and non-Gaussian wind fields. Some of the major challenges ahead include
further development of analytical, modeling, and identification tools to facilitate
modeling of nonlinear features. The development of new predictive analysis tools in
conjunction with artificial intelligence information technology is also a challenging
area of research. Advanced suppression methods, such as aerodynamic optimization
methods adapted to different Archimedean optimization algorithms (AOAs) and
nonlinear damper control measures, are promising.
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