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Abstract: Taking the main beams of historical buildings as the engineering background, existing
theoretical research results related to influencing structural factors were used along with numerical
simulation and data fusion methods to examine their integrity. Thus, the application of multifactor
data fusion in the safety assessment of the main beams of historical buildings was performed. On
the basis of existing structural safety assessment methods, neural networks and rough set theory
were combined and applied to the safety assessment of the main beams of historical buildings. The
bearing capacity of the main beams was divided into five levels according to the degree to which they
met current requirements. The safety assessment database established by a Kohonen neural network
was clustered. Thus, the specific evaluation indices corresponding to the five types of safety levels
were presented. The rough neural network algorithm, integrating the rough set and neural network,
was applied for data fusion with this database. The attribute reduction function of the rough set
was used to reduce the input dimension of the neural network, which was trained, underwent a
learning process, and then used for predictions. The trained neural network was applied for the
safety assessment of the main beams of historical buildings, and six specific attribute index values
corresponding to the main beams were directly input to obtain the current safety statuses of the
buildings. Corresponding management suggestions were also provided.

Keywords: historical buildings; dynamic security assessment; data fusion; rough set; neural network

1. Introduction

Building structural assessment can be divided into three processes: data collection,
data analysis and evaluation, and decision making [1]. The collection of data refers to
the process of obtaining as much data as possible to characterize the current state of
the building structure, thus laying the foundation for subsequent structural assessment.
The analysis and evaluation of data involve the selection of appropriate methods and
theories based on the collected data and the determination of the actual working state
of the building structure through analysis and processing [2]. Decision making refers to
making reasonable suggestions for the maintenance, repair, reinforcement, or replacement
of building structures based on evaluation results.

The evaluation of building structures can be regarded as a process that starts shallow
and becomes deep. In the initial evaluation, relatively easy-to-obtain data can usually be
collected and, thus, a relatively simple and effective evaluation method was selected to
obtain preliminary evaluation results [3–5]. If one is not satisfied with the initial evaluation
results or wants a more accurate assessment, it will be necessary to carry out further work
to obtain more detailed data or to consider the numerical calculation model more carefully
before once again evaluating the building structure [6,7].

At present, experts, scholars, and engineers in the domestic construction industry
have actively researched and explored the performance evaluation of building structures,
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thus accumulating much experience, achieving extensive research results, and constantly
putting forward relevant evaluation theories and methods. At present, comprehensive
evaluation methods based on neural networks, fuzzy theory, analytic hierarchy processes,
grey theory, reliability, genetic algorithms, and other mathematical methods, as well as
integrations of various methods, have become mainstream in research [8–10].

Zhang et al. used the analytic hierarchy process to evaluate levels of housing dam-
age [11]. Li Jing et al. discussed the Shanghai housing safety management system frame-
work based on the housing situation in Shanghai and used the fault tree method to find
and analyze the hidden dangers of housing safety. Yuan established a hierarchical struc-
ture model and used the comprehensive evaluation method of fuzzy integrals to evaluate
the safety state of houses. Zhao [12] put forward a basic theory of grey comprehensive
evaluation of housing reliability based on grey system theory.

At present, the methods used for building safety assessment based on differences in the
size of the assessment target are also different. In general, there are two main methods for
evaluating the state of a building. One method focuses on the evaluation of target-bearing
capacity and the other focuses on comprehensive evaluation of the target state.

Because of the large number and wide distribution of building structures, it is ex-
tremely uneconomical and unrealistic to monitor the health of buildings by installing
monitoring sensors on each structural member of each building. The usual practice is
to rely on manual combined detection instruments to determine the actual carrying ca-
pacity of the target and then to evaluate the state of the building [13]. Commonly used
evaluation methods include (1) the appearance survey evaluation method, (2) checking
evaluation methods based on design specifications, (3) the load test method, (4) the expert
system evaluation method, (5) evaluation methods based on reliability theory [14,15], and
(6) evaluation methods of bearing capacity based on numerical simulations [16].

However, building safety assessment is a problem involving many influencing factors.
The above theories and methods also have some defects and deficiencies, with their use
thus having certain limitations. A single evaluation method for a specific project might
not directly obtain accurate evaluation results. Therefore, on one hand, it is the primary
task to further improve evaluation theories and actively explore the integrated application
of various evaluation theories in the evaluation process. On the other hand, it is also of
great significance and value to find new methods that can be used for building structural
safety assessments.

2. Material and Methods

Due to limited space, this report only takes main beams as an example for verifying
the feasibility of the multisource data fusion method.

In this study, a new ensemble algorithm was selected for the safety assessment of main
building beams, namely, a rough neural network algorithm [17–19] that links the rough set
and neural network. The combination of a neural network and rough set theory was the
goal for reducing data through the rough set, and the reduced data set was thus used as
the design basis and training data for the neural network [20]. Subsequently, this made the
data more representative, the training data were reduced, the training time was reduced,
and the efficiency improved. In this study, the rough neural network mainly completed the
process of index screening, rough neural network training, and prediction.

(1) First, as much useful data as possible is collected.
(2) Data processing: The data to be processed is represented by a decision table, that is, in

a two-dimensional table, with each object described by a row and each attribute of the
object described by a column. In this process, if the obtained data table is incomplete,
the information table must be completed. If the information table has continuous data,
it must be discretized.

(3) Rough set theory is used for data attribute reduction [21]; at the same time, the
redundant condition attributes in the table and duplicate samples are removed and
contradictory samples are dealt with.
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(4) The basic parameters of the neural network are determined according to the training
data samples, that is, the number of hidden layer nodes and the number of input layer
units of the neural network are determined according to the reduction results.

(5) The neural network weights are obtained by training the neural network with the
reduced learning samples. Then, the test sample is input into the network for testing.

(6) The output is the final result.

The flow chart of the rough neural network algorithm is shown in Figure 1.
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3. Discussion on the Feasibility of Applying Data Fusion Technology to Structural
Safety Assessment Method

At present, the application of data fusion technology to structural safety assessment is
still in the exploratory stage, mainly for the following three reasons: (1) Signals of multiple
channels come from different sensors; (2) the same signal has different characteristic infor-
mation; and (3) diagnostic conclusions vary according to different diagnostic approaches.
Comprehensive use of building information can yield reasonable and accurate judgment
conclusions, which can achieve the ultimate goal of information fusion to be applied to
building evaluation.

Although the application of multisource information fusion in structural evaluation is
still in the exploratory stage, it is still considered feasible. To begin with, data fusion technol-
ogy and building safety assessment have the same purpose and requirements. In essence,
structural evaluation deals with various information on a structure’s operational states
comprehensively and obtains a comprehensive description of structural system operation
and damage state based on the existing knowledge. In addition, data fusion technology and
structural safety assessment use the same functional model. The information source that
provides the original information, that is, the object of diagnosis, is subjected to monitoring
diagnosis after various information processing procedures. This technology is applied
to fault monitoring, diagnosis, and alarm systems such that the accuracy of obtaining
information on the object state can be improved. The two complement each other, and this
is actually a good combination using the new technology. Therefore, it is feasible to apply
data fusion technology to structural safety assessment.
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3.1. Results

Based on the above analysis, the research content of this study was as follows:

(1) On the basis of studying a large number of relevant studies in the literature, this study
summarized the relevant overview, necessity, and research status of structural safety
assessment research; pointed out the commonly used structural safety assessment
methods; and expounded the basic concept of multisource data fusion and feasibility
of its application in structural assessment.

(2) By consulting the relevant design data of a historical building on the campus of North-
eastern University, the general situation of the design and construction environment
of the project was clarified. Through comparative analysis, the element type and
boundary conditions were determined and the parameters of constant and live loads
were taken as examples.

(3) Considering various existing data fusion algorithms and their practicability, the rough
set and neural network were integrated to complement each other and a rough neural
algorithm was constructed to further improve the accuracy of data fusion and to
reduce the time required for fusion.

(4) On the basis of extensive access to the relevant literature, existing research on the
time-variance of structural safety factors, such as concrete carbonization, prestress loss,
concrete strength, and steel corrosion, was integrated and combined with the internal
force analysis of the main beam structure. From this, the safety assessment database
of the main beam structure was established and specific classification standards of
the safety assessment grade were obtained by cluster analysis. The rough data set
was used to reduce the attribute index of the database, thus producing a simplified
database. The designed neural network was then trained using these data.

(5) The trained neural network was applied here to the evaluation of the main beams of a
historical building on the campus of Northeastern University. Based on the predicted
results given by the neural network, the corresponding safety level of the main beam
structure was accordingly given.

3.2. Discussions Summary

Based on the current research and application status of existing structural safety as-
sessment methods and combined with the feasibility of data fusion application in structural
state assessment, this study continued to pursue research in the following four aspects:

(1) In the existing structural evaluation method used in the process of concrete implemen-
tation, human subjective factors have a great impact on the results and the dependence
on the engineering experience of experts, which reduces the credibility of the final
evaluation results.

(2) Research on structural safety assessment and early warning are clearly insufficient,
being basically in the theoretical research and trial stage, and can be practically ap-
plied to structural safety assessment. At the same time, structures are very complex
systems with various factors interrelated to, interacting with, and influencing each
other. Therefore, it is clearly inappropriate to use single-index assessment for struc-
tural safety assessment. How to consider all influencing factors comprehensively and
suitable for practical engineering is a problem worth studying.

(3) The establishment of a finite element model (FEM) can provide reference for theoretical
research and analysis to a certain extent, but there are usually some errors in the
initially established FEM. Is it possible to better establish the FEM and ensure that
the calculation results from the model can truly reflect the actual stress state of the
structure, thus laying a good foundation for subsequent research work? This is also
an aspect worth considering.

(4) A data fusion algorithm is the core part of the whole data fusion work. A reasonable
fusion algorithm combined with a relatively accurate FEM can ensure the accuracy of
structural safety assessment work and make the evaluation work more efficient.
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A rough set and neural network data fusion algorithm was applied for information
fusion of the database. The rough set was then used to reduce the input dimension of the
neural network. On this basis, the neural network was trained to learn and predict. Such
research results have the possibility to be applied in practical engineering.

Data fusion technology and structural safety assessment have the same purpose and
requirements. In essence, structural evaluation deals with various information of the struc-
tural operational state and make extensive decisions on structural system operation and the
damage state based on existing knowledge. Second, data fusion technology and structural
safety assessment have the same functional model. The information source that provides
the original information, that is, the object of diagnosis, yields the monitoring diagnosis
results after various information processing procedures. This technology is applied to fault
monitoring, diagnosis, and alarm systems such that the accuracy of obtaining information
on the state of the object can be improved. The two complement each other, and are actually
a good combination under the new technology.

4. The Establishment of Historical Building Safety Assessment Model

In a normal environment, steel corrosion, concrete carbonation, and overload are
several important factors that reduce the bearing capacity of main beam structures of a
building. Considering that the external environmental conditions rely upon the actual
project, this study synthesized the research results of experts and scholars in these aspects.
Factors that cause the attenuation of the bearing capacity of concrete beams were focused on,
including concrete carbonization, ordinary steel bar corrosion, freeze–thaw, and overload.
The goal was to find the evaluation index of the safety assessment of the main girder of the
building. Then, the safety assessment standard database was comprehensively established
for main girders of the project, and the safety assessment of the main girder was prepared
based on multisource data fusion.

4.1. Determination of Influencing Factors on Safety Assessment

To evaluate the safety of the main beams of the established building, it was necessary
to clarify the factors affecting the beams’ safety states. However, the beam structure was a
complex synthesis of many influencing factors, with factors not acting alone. Therefore, it
was necessary to determine the main factors affecting the safety status of the main beams so
as to facilitate the analysis and evaluation of the main beam structure from both qualitative
and quantitative perspectives.

4.1.1. Concrete Carbonation Time-Varying Model

The carbonation of concrete is due to the fact that carbon dioxide (CO2) in the air
penetrates into the interior of the concrete and produces a series of chemical reactions
with alkaline substances produced by hydration, which produce calcium carbonate and
other substances. The volume of calcium carbonate and other products produced by
concrete carbonation is ~1.17 times that of the original hydration products, which reduce
original voids inside the concrete, thereby enhancing concrete strength and compactness
and indirectly reducing the CO2 diffusion rate inside the concrete. However, CO2 is
an acidic gas with water, and the long-term carbonization of concrete will cause its pH
value to decrease. When the pH value is <7, a steel bar can be corroded as the protection
of the alkaline environment is lost. Due to single- and limited-detection methods, the
carbonization of concrete in the general atmospheric environment is the most important
manifestation of the deterioration of concrete structure performance. This study considered
the influence of concrete carbonization on the bearing performance of the main beams.

Scholars abroad have presented a variety of calculation models for carbonization depth
from the perspective of influencing factors of concrete carbonization through actual engi-
neering carbonization investigation statistics, outdoor burst tests, and rapid carbonization
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tests. This study adopted the practical model of carbonization depth of ordinary concrete
given in the literature [23]. The calculation model was as follows:

X(t) = k
√

t, k = 2.56Kmk jkco2 kpks
4√T(1− RH) · RH

(
50.7
fcuk
− 0.76

)
, (1)

where Km is the uncertain random variable of the calculation model; Kj the correction
coefficient, with the diagonal at 1.4 and noncorner 1.0; KCO2 the influence coefficient of CO2
concentration, which is 1.2–1.8 when the population is dense; KP is the influence coefficient
of the pouring surface, with 1.0 taken according to the actual engineering survey; KS is
the working stress coefficient, at 1.0 in compression and 1.1 in tension; RH is the annual
average relative humidity of the environment where the building is located, taking 70% as
the average; and T is the annual temperature of the environment in which the structure is
located, taking 20 ◦C as the average.

Because the main beams in the engineering background were designed according to
the old code, it was necessary to convert the concrete and strength grades of the new and
old codes, which were converted according to the following formula, expressed as

fcu,k =
1− 1.645δ f

0.95
(

1− δ f

)Rb (2)

where fcu,k is the concrete strength grade of this specification (MPa); Rb is the original
concrete grade; and δ f is the coefficient of concrete variation.

4.1.2. Time-Varying Model of Steel Corrosion

Before concrete carbonization, the pH of the environment in which the steel bar is
located is >12, and the steel bar is protected from corrosion under the protection of a surface
passivation film. However, with the development of carbonization, the pH of concrete
continues to decrease, eventually damaging the passive film of the steel bar. Water and air
then contact the steel bar and cause corrosion of the steel bar.

In the current durability research, the corrosion of steel bars has mostly been studied
for the corrosion of longitudinal bars. In practice, the stirrups often corrode first, and
stirrups at the overlap with the longitudinal bars corrode more seriously. When the
corrosion rate of longitudinal bars reaches 5–10%, the stirrups can be corroded and broken.
The existence of stirrups mainly improves the compressive-bearing capacity and shear-
bearing capacity of the structure, and the closer the stirrup spacing is, the greater the effect.
Because this study mainly focused on the bending bearing capacity of the main beams,
only the corrosion of the longitudinal reinforcement was considered.

The research focus of steel corrosion law is the corrosion rate of steel. Based on a large
amount of experimental data, the relationship between the corrosion rate of steel bars over
time has been fitted [24], and can be expressed as

icorr(t) = 0.85icorr(0)t−0.29 (3)

icorr(0) =
37.8(1− w/c)

Co

−1.64
(4)

where icoor is the initial corrosion rate of the steel bar (µA/cm); w/c is the water-binder ratio
of concrete; C0 is the thickness of the protective layer concrete (mm); and t is the corrosion
time of the steel bar (s).

Because the corrosion of steel bars produces different forms, it can be divided into two
forms: uniform and local corrosion. Uniform corrosion refers to the corrosion degree of
each point of the steel bar section being consistent, that is, the speed of corrosion along
the outer contour is consistent. Local corrosion occurs in the local area of the steel bar
section and often occurs at cracks of the component concrete, resulting in high-density iron
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dioxide. The corrosion of steel bars is one of the reasons for degradation of the bearing
capacity of the main girder of an existing structure. To study the bending concrete girder
structure, and based on the principle of least squares method, the time-varying model of
the cross-sectional area of corroded steel bars was obtained by the Monte Carlo method [25],
expressed as

(1) Uniform corrosion

µg(t) =

{
µg0 t < tp

µg0

[
1− 0.00195

(
t− tp

)]
t ≥ tp

, and (5)

(2) Local corrosion

µg(t) =

{
µg0 t < tp

µg0

[
1− 0.00193

(
t− tp

)]
t ≥ tp

(6)

where µg(t) is the average value of the cross-sectional area of the reinforcement after t years
(mm2), µg0 is the average value of the initial cross-section of the reinforcement (mm2), and
tp is the time at which the reinforcement begins to rust (s). The end time point of concrete
carbonation life was taken as the beginning time point of steel corrosion, and the beginning
time point of steel corrosion as ti =

( c−xmax
k

)2 ≈
( 50.89−36

4.392
)2 ≈ 11.5.

The steel corrosion rate was expressed as

η(t) =

{
1.0 t < tp

1− 0.00195(t− 4.85) t ≥ tp
(7)

4.1.3. Concrete Strength Time-Varying Model

In the normal environment, if the main beams is exposed to the air for too long, due to
the influence of various loads and environmental conditions, the initial defects and cracks
inside the structure will continue to expand, resulting in a decrease in the compressive
strength of concrete. Therefore, it is not appropriate to use the design value of concrete
when calculating the bearing capacity of the main beams in any service period.

Based on the fact that the strength of concrete obeys normal distribution and, on the
basis of the measured compressive strength of concrete in buildings and existing exposure
tests, Niu [26] constructed a time-varying model of statistical parameters of compressive
strength of concrete under general atmospheric conditions. The time-varying model of
average concrete strength was expressed as

µ f (t) = η(t)µ f0 and (8)

η(t) = 1.4529e−0.0246(ln t−1.7154)2
(9)

where µ f0 is the average compressive strength of concrete when its age is 28 d (MPa), and
η(t) is the function of average concrete strength changing with time.

The time-varying model of standard deviation of concrete strength is expressed as

σf (t) = ξ(t)σf0 and (10)

ξ(t) = 0.0305t + 1.2368 , (11)

where σf0 is the strength standard deviation of concrete at 28 d and ξ(t) is the function of
the concrete strength standard deviation changing with time.

In this section, the adoption of the strength degradation formula of structural concrete
proposed by Professor Niu is described. The strength of concrete in the early stage (gener-
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ally within 10 y) was observed to increase with time, and then in the later stage (generally
after 10 y), to decrease with time, but the strength reduction was not very large (Figure 2).
Even if the concrete age reaches 100 y, its strength can still meet the original design strength
requirements.
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4.1.4. Freeze–Thaw Action

Freeze–thaw action occurs throughout the service period of the structure. In the
early stage, the structural loss caused by freeze–thaw is less, or even nonexistent, due
to the continuous hydration of unhydrated cement in high-strength concrete to achieve
improvement of the frost resistance of the concrete members, as well as other factors.
However, in the later stage, with the accumulation of structural freeze–thaw action, the
rate of structural loss accelerates. The research of Zhu [27] from Yangzhou University
has shown that, after 125 freeze–thaw cycles, the proportion of structural loss caused by
freeze–thaw relative to the total loss is not negligible and the freeze–thaw loss of general
components accounts for more than 5% of the total loss.

A large number of practical studies at home and abroad show that the main factors
affecting the frost resistance of concrete are the water–cement ratio and gas content, as well
as the content; quality; and bubble properties (bubble parameters) of admixtures, such
as fly ash. In addition, the total amount of cementing materials also has effects. Through
the multiple regression method, the multiple regression equation [28] of the relationship
between the number of frost resistance cycles of concrete and water–cement ratio, gas
content, and fly ash content was established, and is expressed as

N = (A + 1)1.5 · e−11.188(W/C−0.794)−0.01307 f (12)

where N is the maximum number of freeze–thaw (quick freeze) cycles the concrete can
stand; A is the air content of concrete (%); W/C is the water–binder ratio; and f is the fly
ash content (wt%).

The air content of concrete was ~4%, the water–binder ratio 0.4/1, and the fly ash 11 wt%.
Substituting these values into the formula obtains N = (4+ 1)1.5·e−11.188(0.4−0.794)−0.01307×11 =
795 times.

Thus, the number of freeze–thaw cycles under natural conditions was 795 × 12 = 9540.

4.2. Selection of Safety Assessment Indicators

According to the results in Section 4.1, the factors affecting the main beams of the struc-
ture were generally divided into three categories: environmental, load, and material factors.
The environmental factors mainly included high- and low-temperature environments and
corrosive gas and liquid. The load factors mainly included high-stress effects, high- and
low-cycle fatigue damage, and overload. The material’s own factors mainly included con-
crete shrinkage and creep effects, reinforcement corrosion, concrete strength time-varying
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effects, reinforcement strength time-varying effects, concrete carbonization, and alkali
aggregate reaction. Combined with practical engineering experiences and operability in
northern China, seven indices, including apparent inspection, carbonization depth, con-
crete strength, steel bar area, freeze–thaw cycle (outdoor components), temperature, and
overload conditions, were selected as the attribute indices of the evaluation database.

The established evaluation model is shown in Figure 3 below:
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Among the seven evaluation indices in the above model, the apparent inspection
score P1 was the value of a random variable, which was mostly related to the engineering
experience and knowledge level of inspection technicians and, thus, the great uncertainty.
In this section, a group of random numbers between 0 and 1 were generated randomly by
MATLAB programming to simulate the apparent inspection score of historical buildings.
These numbers were observed to be consistent with the trend that the apparent inspection
scores of buildings have been growing lower over time. The carbonization depth P2 was
mainly used to determine the corrosion degree of reinforcement. A time-varying model was
adopted for concrete strength P3, which generally conformed to the trend that strength first
increased and then decreased. The influence of P4 on historical buildings mainly manifested
by causing a reduction in the concrete strength and elastic modulus to different degrees.
The steel bar area P5 was mainly calculated from the angle of corrosion of steel bars or
prestressed tendons according to their respective time-varying rates. In the case of overload
P6, the bending moment effect values at 1.0, 1.15, 1.35, and 1.5 times of the standard crowd
load values were considered. The temperature effect P7 considered the subsequent overall
warming and cooling and used discrete numbers “0” and “1”, respectively, in the safety
assessment database of the building’s main beams.

5. Establishment of Evaluation Database
5.1. Determination of Safety Evaluation Index

To judge the bearing capacity of the main beams more objectively, the safety identifica-
tion coefficient K [29] of the main beam structure was defined as

K = R∗/γ0S (13)

where R∗ is the nominal resistance of the main beam structure (each component); S∗ the
nominal load effect of the main beam structure (each component); and γ0 the importance
coefficient of the structure, with the safety grade at 1–3 and corresponding coefficients of
1.1, 1.0, and 0.9, respectively.

Taking the continuous main beams, which were the main bearing component in the
building, as an example, to reflect the relative importance of the midspan section of the
middle and edge spans, the corresponding K value of each section was weighted. The
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corresponding weighting coefficients of midspan sections of the left, middle, and right
spans were 0.3, 0.4, and 0.3, respectively:

K = 0.3 · K1 + 0.4 · K2 + 0.3 · K3 (14)

where K1, K2, and K3 represent the corresponding K of the midspan sections of the left,
middle, and right spans, respectively.

It can be seen from Equation (13) that the smaller the value of K was, the less the
bearing capacity of the structure met the current operational needs and the more the
structure was inclined to an unsafe state, and vice versa. However, it should be noted
that the K obtained by the above series of calculations only depended on the output of the
benchmark finite element model and did not take apparent checks into account. To make
the entire safety assessment work more comprehensive and detailed, the above-calculated
K and apparent inspection score P1 were weighted to obtain a new value, denoted as K*,
expressed as

K∗ = 0.1 · P1 + 0.9 · K (15)

5.2. Calculation of Sample Data

To further explain the source of the sample data, this section used a historical building
on the campus of Northeastern University as the research object. The building was com-
pleted in 1952. The main structure of this building is a frame structure with an asymmetric
“L”-shaped layout of and a building area of 10,500 m2 (shown in Figure 4). Using the
71st year of operation of the building and the overload of 1.15-fold the main structural
beams as an example, the calculation process of the sample data was given. The method of
obtaining sample data of other historical building components (beams, plates, and columns)
was the same as that for this example, so it will not be repeated in detail here.
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Figure 4. Appearance chart of historical building.

For the sake of safety, the concrete protective layer of the main beams was 20 mm
thick. According to the design drawing, the concrete was C25 concrete and the strength
grade of the concrete was 24.11 MPa after conversion, according to Equation (2). According
to Equation (1), the carbonization depth of the main beams under a standard carbonization
environment was 17.65 mm and its carbonization depth did not reach the critical maximum
carbonation depth.

This had no effect on the freeze–thaw of the main structure beams, such that the
strength and elastic moduli of the concrete were not reduced. After 71 y of operation,
buildings have certain apparent damage and, the longer the operation time, the lower the
apparent score will be. However, due to the great uncertainty of the apparent inspection
score, a set of values was randomly generated to simulate the apparent inspection score,
producing a generated score of 0.8021.

According to archived data of architectural drawings, the section of the three-span
continuous main beam b × h was 32 × 90 cm, with a span of 5.5 + 7.5 + 5.5 m; lower edge
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reinforcement of the side span main beam 3Φ25 + 2Φ25; lower edge reinforcement of the
middle span main beam 5Φ22 + 3Φ22; and upper edge reinforcement of the middle span
main beam 2Φ22 + 4Φ25. The model is shown in Figure 5.
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The maximum bending moments of the middle sections of the left, middle, and right
spans were calculated to be 462.26, 570.96, and 462.26 kN·m, respectively, when the build-
ing had been operating for 71 y and there was an effective combination of 1.15-fold over-
load on the main beams. At this time, the maximum bending moment bearing capaci-
ties of the middle section of the left, middle, and right spans were 547.31, 586.95, and
547.31 kN·m, respectively. Therefore, by substituting these values into Equation (1), K1 = 1.184,
K2 = 1.028, and K3 = 1.184 were obtained. The K value obtained by weighting the three
values according to Equation (2) was equal to 1.122. The obtained K was then weighted
with the apparent check score according to Equation (3) and the obtained K* value at 1.090.
The sample data obtained thus far corresponding to a building operating for 71 y with
1.15-fold of overload are shown in Table 1.

Table 1. Table of sample data.

Apparent
Examination, P1

Carbonization
Depth, P2

Concrete Strength
(Field Test), P3

Area of
Reinforcement, P5

Overload,
P6

Temperature,
P7

K*
Value

0.8021 18.14 24 1.00 1.15 0 1.090

5.3. Establishment of Security Assessment Database

By analogy, different sample data were obtained, considering the effects of different
combinations. Taking the main beams of the historical building component as the evalua-
tion index, a total of 665 groups of data sets were established. The established evaluation
data sets are shown in Table 2.

Table 2. Database of security evaluation.

Number Apparent
Examination Carbonization Concrete

Strength
Freeze–Thaw

Cycles
Area of Rein-

forcement Overload Temperature K*
Value

1 0.9906 11.88 30.81 64 1.0000 1.00 1 1.2109
2 0.8508 16.86 25.13 960 0.9932 1.00 1 1.2013
3 0.8435 17.65 24.42 1024 0.9912 1.00 1 1.1914
: : : : : : : : :

301 0.8016 17.20 24.82 3328 0.9210 1.00 0 1.0527
302 0.7215 20.63 22.06 3776 0.9074 1.15 1 1.0519
303 0.7054 28.86 17.41 2944 0.9327 1.15 0 1.0510

: : : : : : : : :
663 0.1390 46.61 11.97 5888 0.8430 1.50 0 0.6637
664 0.1283 47.82 11.72 5952 0.8411 1.50 0 0.6576
665 0.1175 49.04 11.48 6016 0.8391 1.50 0 0.6515
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6. Data Fusion Based on Coarse Neural Network Algorithm
6.1. Data Discretization

The method adopted in this section was to discretize the groups of means and standard
deviations (SD) in the unguided data box. This method took the mean value of a variable as
the center and the value of plus or minus 2 SD as the group limit, then divided the variable
values into 5 groups.

Using Clementine 12.0 as a data mining tool, the data flow of sample data was
discretized by means of mean–SD grouping (Figure 6).
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6.2. Attribute Reduction of Rough Set

Sample data were simplified using the adequacy theory of the rough set, which was
divided into two steps: one was to kernel the conditional attribute set of the decision
table and the other to reduce the conditional attribute value. The advantage of using
rough set theory to preprocess data was that there was no need to predict any additional
information, which was conducive to a centralized solution for the problem. Also, the
reduction algorithm was simple, which was conducive to automatic operation with the
help of a computer or software.

After eliminating the duplicate information from the sample data set, the conditional
attribute value became six, which reduced the redundancy of the database and improved
the operational efficiency. The attribute list after rough reduction is shown in Table 3, and
the complete security evaluation database after reduction is shown in Table 4.

Table 3. Result of attribute reduction by rough set.

Attribute Name Apparent
Examination Carbonization Concrete

Strength
Freeze–Thaw

Cycle
Area of

Reinforcement Overload Temperature

Reduce or not
√ √

Table 4. Security evaluation database after attribute reduction

Number Apparent
Examination Carbonization Concrete

Strength
Freeze–Thaw

Cycle Overload Temperature K* Value

1 0.9906 11.88 30.81 64 1.00 1 1.2109
2 0.8508 16.86 25.13 960 1.00 1 1.2013
3 0.8435 17.65 24.42 1024 1.00 1 1.1914
: : : : : : : :

301 0.8016 17.20 24.82 3328 1.15 0 1.0527
302 0.7215 20.63 22.06 3776 1.15 1 1.0519
303 0.7054 28.86 17.41 2944 1.15 0 1.0510

: : : : : : : :
663 0.1390 46.61 11.97 5888 1.50 0 0.6637
664 0.1283 47.82 11.72 5952 1.50 0 0.6576
665 0.1175 49.04 11.48 6016 1.50 0 0.6515
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6.3. Determination of Safety Assessment Level

The set of all evaluation levels that the evaluator might make for the evaluation object
is called the evaluation set. It is commonly used in the form of V = {V1, V2, V3, V4, · · ·} and
reflects the degree to which the evaluated factor belongs to each evaluation level.

The reliability of the Industrial Plant Reliability Evaluation Standard (GB 50144,
2019) [31] includes safety and applicability, with the reliability divided into four levels
by unit, item, and subitem. For the concrete structure or member, the bearing capacity is
assessed by these four aspects of the evaluation rating: crack, deformation, structure, and
connection. Among them, the subitem of carrying capacity is divided into four grades:
A, B, C, and D; the specific value ranges are shown in Table 5. Among these, (1) Grade
A indicates that the current national standards and specifications are met; (2) Grade B
denotes a value slightly lower than the current national standard, but not affecting the
safety of the structure or normal use; (3) Grade C means that the value not in line with the
current national norms and standards and affects the safety or normal use of the structure,
but the structure will not collapse immediately, although there is a need to implement
reinforcement measures; and (4) Grade D indicates a value seriously not in line with the
national standards which endangers the safety of the structure or indicates that it cannot
be normally used, such that accidents can happen at any time and measures need to be
taken immediately.

Table 5. Evaluation of bearing capacity of concrete structures or members.

Type of Structure or Component
Carrying Capacity R/γ0 S

A B C D

Roof truss, bracket, roof beams,
platform main beams, column, and

intermediate, heavy-duty crane beams
K ≥ 1.0 0.92 ≤ K < 1.0 0.87 ≤ K < 0.92 K < 0.87

General components (including floor,
cast slab, and beam, etc.) K ≥ 1.0 0.90 ≤ K < 1.0 0.85 ≤ K < 0.9 K < 0.85

Referring to the relevant literature combined with the current codes and standards,
and taking into account the attenuation trends of the carrying capacity of buildings and
the corresponding maintenance reinforcement work, the carrying capacity levels of his-
torical buildings were divided into five classes. These 1 to 5 classes were determined
according to the different use requirements of the present stage. The evaluation set was
V = {V1, V2, V3, V4, V5}. The specific corresponding situation of each category was de-
scribed as:

Category 1: Important parts in the process of use, material, and performance are
good. The secondary components work normally and function well, and can fully meet the
current operation requirements. Category 2: The functions of important parts are good,
some materials have slight defects and do not need special repair or strengthening. This
kind of structure needs minor repair and maintenance. Category 3: In the materials of
important parts, there are a large number of moderate defects or slight functional damages
that have occurred. Corresponding technical measures should be taken to inhibit the
development of injuries. Such houses are subject to minor or moderate repairs. Category
4: The building exhibits a serious threat to its normal function and constitutes a serious
harm risk, resulting in a decline in the carrying capacity of the building. There is a need
for maintenance and strengthening. Category 5: The house has major defects and the
normal function of the house cannot be maintained. It is no longer suitable for operation or
large-scale reinforcement work, such that demolition and reconstruction are required.

To determine the evaluation criteria for the safety level, 20 experts and scholars were
asked for suggestions via questionnaires. The statistical results of the questionnaires are
shown in Table 6.
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Table 6. Questionnaire result statistics [30].

Proponent
(%) Scheme

Evaluation Standard
Level 1 Level 2 Level 3 Level 4 Level 5

35 Plan 1 K ≥ 1.30 1.20 ≤ K < 1.30 1.10 ≤ K < 1.20 1.00 ≤ K < 1.10 K ≤ 1.00
40 Plan 2 K ≥ 1.20 1.10 ≤ K < 1.20 1.00 ≤ K < 1.10 0.90 ≤ K < 1.10 K ≤ 0.90
25 Plan 3 K ≥ 1.25 1.15 ≤ K < 1.25 1.00 ≤ K < 1.15 0.95 ≤ K < 1.00 K ≤ 0.95

It is worth noting that most of the suggestions given by experts and scholars were
based on subjective experience and only provide a general range. To make the evaluation
criteria more accurate and objective, the Kohonen neural network was used to cluster
the evaluation database. In this section, Clementine 12.0 was selected as a data mining
tool and a Kohonen neural network was established to perform cluster analysis on the
database (Figure 7).
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The Kohonen neural network chose an expert mode to train. The width was 5, length
1, number of neurons in the output layer 5, and the Kohonen network clustered the
samples into 5 categories, corresponding to the classification of expert evaluation standards.
Network learning rate attenuation selected linear attenuation.

Training of the Kohonen network consisted of two stages. Stage 1 was a rough
estimation stage to capture the approximate pattern in the data, and stage 2 was the
adjustment phase, which was used to adjust the graph to model more detailed features of
the data. Each stage had the following three parameters:

(1) Neighborhood. The nearest neighbor here was the neighborhood mentioned above
and the nearest neighbor set to determine the starting size of the neighborhood radius.
In this phase, the nearest neighbor in stage 1 was 2 and the nearest neighbor in
stage 2 was 1.

(2) Initial Eta (initial learning rate). In stage 1, the initial Eta was set to 0.3. After training,
its value gradually decreased to the initial Eta of stage 2 (set to 0.1 in this section). In
stage 2, the initial Eta gradually decreased from 0.1 to 0.

(3) Cycle. The number of cycles was the number of iterations set for each stage of training.
Each stage performed data processing a specified number of times. In this phase, the
number of training cycles for stage 1 was 20 and for stage 2 was 150.

After the above parameter settings were completed, the Kohonen neural network was
run to cluster the data stream. The clustering results are shown in Figure 8.
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After cluster analysis, the entire evaluation database was grouped into five categories,
and the specific evaluation criteria are shown in Table 7.

Table 7. Standard for safety ratings.

Evaluation Standard

Level 1 Level 2 Level 3 Level 4 Level 5
K ≥ 1.20 1.10 ≤ K < 1.20 1.03 ≤ K < 1.10 0.93 ≤ K < 1.03 K ≤ 0.93

From the above results, the evaluation standard obtained by the Kohonen neural
network was seen to be very close to the recommended evaluation standard given by
most experts. Thus, it exhibited high credibility and was determined as the safety grade
evaluation standard of the main beams of this building.

6.4. Training in Neural Network

To test the performance and correctness of the training model based on the crude
neural network, 545 sets of data samples were extracted from the above simplified database
as training sets and were input into the neural network for training. The remaining 120 sets
of data samples were used as verification data to test the prediction accuracy of the network.

Neural networks are created and trained by neural network nodes and work by
simulating a large number of interconnected simple processing units, which are arranged in
layers. A neural network is usually composed of three parts: one the input layer, whose unit
represents the input field; one or more hidden layers; and one output layer, whose units
represent output fields. Cells are connected by varying connection strengths or weights.
Clementine provides six training methods: fast, dynamic, multiple, pruning, radial basis
function network (RBFN), and thorough pruning, to train neural network models (Figure 9).

The training method selected in this study was the fast mode, the method was the
rough estimation method, and the appropriate type of neural network was selected accord-
ing to data characteristics. Newer methods often produce smaller hidden layers, shorter
training times, and better models. Here, the number of neurons in the input layer was n = 7
and the number of neurons in the output layer was m = 1. The neural network had three
hidden layers, with numbers of neurons in the 1st, 2nd, and 3rd layers of l = 20, 15, and 10,
respectively, and the duration set to 200 cycles. The neural network training error precision
was set at k = 0.0001, with neural network accuracy >95%. The learning efficiency of the
neural network was set as Alpha at 0.3, initial Eta at 0.3, Eta attenuation at 30, high Eta at
0.1, and low Eta at 0.01.
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The prediction accuracy of the output variable by type was the proportion of the
model that correctly predicted samples out of the total samples. For output variables of
numerical type, the prediction accuracy was calculated as:

1− |Yi −Yi
′|

Ymax −Ymin
× 100% (16)

where |Yi −Yi
′| is the absolute error between the i th actual observed value and the pre-

dicted value of the model, and Ymax and Ymin represent the actual maximum and minimum
values of the output variables, respectively. After training, the neuron node returned the
optimal network to the generated network node; the feedback graph of network accuracy
is shown in Figure 10.
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The prediction accuracy of the model based on the training sample set was 99.45%.
The neural network had high accuracy and thus had a satisfactory estimation.

6.5. Prediction of Neural Networks

After the neural network training was completed, 120 sets of calibration data were
input into the neural network to obtain the predicted value based on the rough neural
network algorithm. The data flow diagram of the neural network prediction is shown in
Figure 11.
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The K value of the 120 sets of data in the original security assessment database was
taken as the theoretical value; that is, it was considered to be correct and the value output by
the neural network was taken as the predicted value. The predicted value was determined
on the basis of existing data training and was based on five attribute indices. The relative
size between the two was compared and used as the basis for evaluating the prediction
accuracy of the established neural network model. The comparison of theoretical and
predicted values is shown in Table 8.

The neural network was observed to have high accuracy and a relative error of no
more than 1.54%, which fully met the needs of the actual situation and could be applied to
practical projects (Table 8).

6.6. Sensitivity Analysis of Neural Network

Sensitivity analysis in neural networks is mainly used to analyze the impact of changes
to input variables on output variables. The sensitivity coefficient is commonly used to
represent the degree of influence. The influence of input variables on output variables
increases with an increased sensitivity coefficient, and vice versa. Sensitivity analysis is
aimed to obtain the sensitivity coefficient of each input variable to the output variable
and its ranking results. On one hand, because the neural network is a direct data-mining
algorithm, its internal calculation is a “black box“ for users, which makes people feel less
confident in applying the neural network model. The advantage of sensitivity analysis is
that it can open the black box to a certain extent so that people can have some intuitive
understanding of the analytical results of neural network models. On the other hand,
sensitivity analysis can help people to find the input variables that have a great influence
on the output variables, remove the input variables that have little influence, and then
effectively reduce the number of input variables to improve model accuracy.

Through sensitivity analysis of the neural network, the importance ranking results of
the input variables in this study are shown in Figure 12.
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The steel bar area was observed to be the most important input variable, and the sub-
sequent order of importance was freeze–thaw cycle, overload, concrete strength, apparent
inspection, and temperature (Figure 12).
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Table 8. Comparison of theoretical and predictive values.

Number Theoretical
Value

Predicted
Value

Relative Error
(%) Number Theoretical

Value
Predicted

Value
Relative Error

(%)

1 1.501 1.481 1.332 61 1.029 1.028 0.097
2 1.479 1.488 0.609 62 1.021 1.020 0.098
3 1.463 1.441 1.504 63 1.016 1.016 0.000
4 1.447 1.448 0.069 64 1.008 1.004 0.397
5 1.431 1.434 0.210 65 1.006 1.003 0.298
6 1.418 1.426 0.564 66 1.000 1.002 0.200
7 1.400 1.407 0.500 67 0.997 0.997 0.000
8 1.390 1.399 0.647 68 0.993 0.995 0.201
9 1.379 1.389 0.725 69 0.990 0.990 0.000
10 1.377 1.368 0.653 70 0.986 0.986 0.000
11 1.372 1.381 0.656 71 0.982 0.983 0.102
12 1.363 1.370 0.514 72 0.979 0.978 0.102
13 1.355 1.357 0.148 73 0.970 0.970 0.000
14 1.342 1.349 0.522 74 0.966 0.965 0.104
15 1.334 1.340 0.450 75 0.961 0.961 0.000
16 1.331 1.335 0.300 76 0.960 0.958 0.208
17 1.325 1.328 0.226 77 0.954 0.954 0.000
18 1.308 1.315 0.535 78 0.951 0.950 0.105
19 1.298 1.296 0.154 79 0.944 0.944 0.000
20 1.288 1.292 0.311 80 0.940 0.938 0.213
21 1.279 1.284 0.391 81 0.937 0.937 0.000
22 1.269 1.272 0.236 82 0.931 0.931 0.000
23 1.255 1.256 0.080 83 0.927 0.927 0.000
24 1.244 1.245 0.080 84 0.923 0.921 0.217
25 1.231 1.233 0.162 85 0.917 0.915 0.218
26 1.226 1.230 0.326 86 0.913 0.913 0.000
27 1.217 1.220 0.247 87 0.906 0.907 0.110
28 1.210 1.211 0.083 88 0.901 0.900 0.111
29 1.208 1.243 2.897 89 0.899 0.902 0.334
30 1.201 1.202 0.083 90 0.891 0.895 0.449
31 1.193 1.191 0.168 91 0.886 0.888 0.226
32 1.188 1.188 0.000 92 0.880 0.882 0.227
33 1.176 1.175 0.085 93 0.876 0.875 0.114
34 1.172 1.169 0.256 94 0.872 0.871 0.115
35 1.164 1.166 0.172 95 0.868 0.872 0.461
36 1.162 1.165 0.258 96 0.862 0.860 0.232
37 1.154 1.152 0.173 97 0.858 0.858 0.000
38 1.147 1.149 0.174 98 0.852 0.854 0.235
39 1.145 1.144 0.087 99 0.846 0.845 0.118
40 1.139 1.137 0.176 100 0.842 0.843 0.119
41 1.130 1.128 0.177 101 0.837 0.838 0.119
42 1.123 1.124 0.089 102 0.831 0.832 0.120
43 1.121 1.121 0.000 103 0.825 0.825 0.000
44 1.117 1.117 0.000 104 0.818 0.820 0.245
45 1.114 1.115 0.090 105 0.813 0.811 0.246
46 1.107 1.109 0.181 106 0.809 0.811 0.247
47 1.103 1.103 0.000 107 0.805 0.804 0.124
48 1.094 1.098 0.366 108 0.799 0.801 0.250
49 1.084 1.084 0.000 109 0.795 0.796 0.126
50 1.075 1.074 0.093 110 0.791 0.789 0.253
51 1.072 1.069 0.280 111 0.781 0.780 0.128
52 1.067 1.069 0.187 112 0.778 0.776 0.257
53 1.064 1.060 0.376 113 0.771 0.769 0.259
54 1.060 1.059 0.094 114 0.767 0.764 0.391
55 1.055 1.055 0.000 115 0.760 0.760 0.000
56 1.050 1.051 0.095 116 0.751 0.748 0.399
57 1.047 1.047 0.000 117 0.744 0.742 0.269
58 1.042 1.042 0.000 118 0.738 0.736 0.271
59 1.040 1.038 0.192 119 0.707 0.707 0.000
60 1.033 1.036 0.290 120 0.688 0.693 0.727
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7. Conclusions

Taking a historical building on the campus of Northeastern University as our engi-
neering background, this study drew reference from existing theoretical research results on
structural influencing factors. We adopted the method of combining numerical simulation
and data fusion to carry out research on the application of multifactor data fusion in the
safety assessment of continuous beams. The main conclusions are as follows:

(1) Considering the weight of surface inspection P1 of historic buildings and the weight of
bearing internal forces of sections of continuous main beams at different positions, the
safety appraisal coefficient of historic buildings was defined as K∗ = 0.1·P1 + 0.9·K.
Using the 71-year-old building at Northeastern University as the research object, we
found that the safety appraisal coefficient of historic buildings was 1.090 and the
structural safety grade was 3.

(2) According to the Reliability Evaluation Standard of Industrial Plants and combined
with the suggestions of experts and scholars, the Kohonen neural network was con-
structed to cluster the database. It was then used to obtain the safety rating standard
of historical buildings and verify the results using calculation data from continuous
main beams samples in actual engineering. The results were consistent with the actual
test results obtained from current buildings.

(3) With the K value in the original safety evaluation database as the theoretical value
and the output value of the neural network as the predicted value, it was concluded
through analysis that the accuracy of the neural network was very high and its
relative deviation was <1.54%, which could fully meet practical needs and be applied
in practical projects.
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