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Abstract: Buildings are responsible for approximately 40% of the world’s energy consumption and
36% of the total carbon dioxide emissions. Building occupancy is essential, enabling occupant-centric
control for zero emissions and decarbonization. Although existing machine learning and deep
learning methods for building occupancy prediction have made notable progress, their analyses
remain limited when applied to complex real-world scenarios. Moreover, there is a high expectation
for Transformer algorithms to predict building occupancy accurately. Therefore, this paper presents an
occupancy prediction Transformer network (OPTnet). We fused and fed multi-sensor data (building
occupancy, indoor environmental conditions, HVAC operations) into a Transformer model to forecast
the future occupancy presence in multiple zones. We performed experimental analyses and compared
it to different occupancy prediction methods (e.g., decision tree, long short-term memory networks,
multi-layer perceptron) and diverse time horizons (1, 2, 3, 5, 10, 20, 30 min). Performance metrics
(e.g., accuracy and mean squared error) were employed to evaluate the effectiveness of the prediction
algorithms. Our OPTnet method achieved superior performance on our experimental two-week data
compared to existing methods. The improved performance indicates its potential to enhance HVAC
control systems and energy optimization strategies.

Keywords: occupancy prediction; deep learning; multi-sensor fusion; Transformer

1. Introduction

In recent years, the world has witnessed a significant surge in demand for energy,
which can be attributed to a combination of factors, including a growing global population
and rising living standards [1]. While these advancements have undoubtedly enhanced the
quality of life, they have substantially increased carbon emissions. This rise in emissions is
a significant contributor to climate change, resulting in severe consequences like extreme
weather events, alterations in weather patterns, and global warming [2]. As the global
population continues to grow, energy demand is expected to escalate further, posing a
considerable challenge in balancing energy requirements with environmental sustainability.
Therefore, enhancing energy efficiency is a widely discussed topic in energy. The focus is on
discovering methods enabling use of less energy while still maintaining or improving the
quality of services provided. This concept applies to various sectors, including buildings,
transportation, and industry, where systems are designed with energy efficiency in mind [3].
By striving for optimal energy efficiency in these sectors, significant economic benefits can
be achieved by reducing the expenses associated with energy consumption.

Buildings are responsible for approximately 40% of the world’s energy consumption
and release around 36% of the total carbon emissions [4]. Within building systems, the
heating, ventilation, and air conditioning (HVAC) system is the most considerable portion,
accounting for 40% of the energy usage [5]. Notably, the HVAC system plays a vital role in
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regulating indoor temperature [6–8], ensuring thermal comfort [9], and enhancing indoor
air quality (IAQ) [10,11]. In this sense, it is crucial to emphasize the significance of building
performance evaluation (BPE) [12]. Buildings are carefully designed to provide occupants
with a pleasant and comfortable environment [13]. However, it is essential to recognize
that the number and presence of occupants can directly impact energy consumption [14].
Various studies have explored the connection between occupants’ behavior and energy
consumption, aiming to understanding their impact on energy consumption. In [15], a
scientific approach was adopted to quantify occupants’ behavior consistently. This ap-
proach encompassed factors such as occupants’ presence, movement, and interactions with
the energy systems installed in buildings. The objective was to integrate these behavioral
aspects into building performance simulation programs for a comprehensive analysis. A
detailed review conducted by [16] highlighted the dire need for adaptation to occupancy
variation; the studies reviewed showed the primary sources of inefficiency in the build-
ing system, namely, irregular and partial occupancy. Prior research has demonstrated
significant reductions in building energy usage by aligning HVAC systems with actual
occupancy patterns [17,18]. For example, the simulation results presented in [19], showed
that there was the potential to achieve energy savings ranging from 11% to 34% across
different climatic regions while maintaining occupant comfort levels.

The review article [20] on occupancy prediction research highlighted the existence
of two distinct categories: “occupancy detection/estimation” [21,22] and “occupancy
forecast”. To understand these categories, it is essential to consider the concept of the
prediction window. In the context of occupancy prediction, “occupancy detection” pertains
to predicting the occupancy for the current time step, providing real-time information about
the current occupancy state. On the other hand, “occupancy forecast” involves predicting
the occupancy for a future time step, enabling insights into future occupancy patterns. The
research on occupancy prediction specifically focusing on forecasting occupancy for future
time windows needs to be improved and is often conflated with detection methods. As
a result, the value of occupancy forecasting may need to be emphasised or mixed with
real-time occupancy detection.

Predicting future occupancy has promise for facilitating building operations and
energy efficiency [23]. Nevertheless, accurately predicting occupancy is complex due
to the stochastic nature of occupant presence and the inherent variability in individual
behavior [24,25]. The ongoing advancements in sensor technologies, data analytics, and
prediction algorithms offer promising avenues for enhancing the accuracy and reliability of
future occupancy predictions. In the past decade, there have been substantial advancements
in forecast algorithms, leading to significant improvements in the accuracy of occupancy
predictions. These forecast methods can be categorized into four main groups [20]: con-
ventional statistical approaches (i.e., Markov-chain-based [26] and recursive models [27]),
unsupervised machine learning approaches (i.e., k-means, k-nearest neighbor techniques,
and support vector clustering [28,29]), supervised machine learning approaches (i.e., gra-
dient boosting [30], support vector regression [31], decision tree [32], random forest [33],
and deep neural networks [33]), and hybrid approaches. Each group employs different
techniques and methodologies to forecast occupancy patterns and behaviors.

In the literature, predicting occupancy has been an area of significant interest for
researchers. However, a common trend in this field is that most researchers rely on single
sources to collect input data [20]. While this approach may seem practical and convenient,
it carries inherent risks. If a sensor fails, the collected data may omit valuable information,
resulting in incomplete and potentially unreliable predictions. On the other hand, every
source of data collection has its limitations. For example, PIR occupancy sensors are widely
used in lighting controls, but they have limitations in detecting stationary occupants [34].
CO2-based approaches have constraints such as low sensitivity to occupant mobility and
slow response to drastic occupancy changes [35]. WiFi-based monitoring systems may also
face challenges, such as connection problems, limited battery life of connected devices,
and poor connections for accurate occupancy detection in large-scale buildings with many
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occupants [36]. These factors can significantly affect the performance of the data collection
approaches. Therefore, a better solution is to utilize multi-source data collection approaches.
By adopting this approach, researchers can reduce the risk of missing out on valuable
information in the event one source fails. This strategy is especially critical in occupancy
prediction situations where the presented information carries significant weight and is
of utmost importance. Researchers can use multiple sources to ensure their predictions
are accurate, reliable, and comprehensive. However, the multi-source data for occupancy
prediction needs to be improved in buildings.

To address the above problems, we introduce an occupancy prediction Transformer
network (OPTnet) for building occupancy prediction. It can robustly predict occupancy
presence in diverse rooms and time horizons. We fuse and feed multi-sensor data into a
Transformer model to obtain the future occupancy presence in multiple zones. We provide
experimental analysis and comparison between existing occupancy prediction methods
and diverse time horizons. The main contributions of this paper are as follows:

• We introduce OPTnet, a Transformer-based multi-sensor building occupancy predic-
tion network to learn an effective fused representation.

• We process two-week real operating sensor data from a multi-zone office building
to predict accurate occupancy, including building occupancy, indoor environmental
conditions, and HVAC operations.

• Through experimental analysis and comparison, we found that the OPTnet method
outperformed existing algorithms (e.g., decision tree (DT), long short-term memory
networks (LSTM), multi-layer perceptron (MLP)).

• Considering long or short occupancy prediction applications, we provide a compre-
hensive analysis and comparison of diverse time horizons to highlight the importance
of choosing the suitable time horizon.

2. Methods

This research aims to predict occupancy using a dataset from our previous work [37].
The dataset was collected in an office building in Hebei Province, China, from 9 August to
21 August 2021, spanning two weeks. Further details regarding the dataset can be found
in Section 3.

The research framework in this study consisted of four key steps. Firstly, sensor
data and corresponding occupant information were collected from the office building,
serving as the ground truth for occupancy. Secondly, data normalization techniques were
applied to standardize all features to a single scale or range. Thirdly, occupancy prediction
was performed using OPTnet, and its performance was compared with various machine
learning algorithms, including DT, LSTM, and MLP. Lastly, performance evaluation metrics
were employed to assess the accuracy and effectiveness of the prediction algorithms. The
comprehensive methodology, which includes each step, is thoroughly explained in the
following subsections and visually illustrated in Figure 1.

Data
collection

Performance
Evaluation

Prediction
algorithm

Data
preparation

Location: Multi-

zone office.

Source: Calendar 

information, HVAC 

control, room 

temperature, 
relative humidity.

Data normalization

𝑥 𝑡 =
𝑛 𝑡 − 𝑛𝑚𝑖𝑛

𝑛𝑚𝑎𝑥 − 𝑛𝑚𝑖𝑛

• Decision tree

• Long short-term 
memory networks

Multi-layer perceptron

• Occupancy Prediction 
Transformer network 

• Accuracy

• Mean Squared
Error

Figure 1. Illustration of the step-by-step methodology for occupancy prediction in buildings.
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2.1. Data Collection

The dataset employed in this study was constructed by gathering 829,440 data points
derived from the system’s operational data from 9 August to 21 August 2021. In order to
make sure the dataset was relevant, we filtered it to only include times when the HVAC
system was on, specifically on weekdays (Monday through Friday) from 9:00 a.m. to
7:00 p.m. Consequently, the dataset encompassed data collected at a resolution of 1 min
during the operational hours of the HVAC system. The dataset spanned two weeks:
9–13 August (week 1) and 16–20 August (week 2), amounting to 10 days. A total of 600 data
samples were recorded daily, comprising 54 numerical values (6 zones and 9 features).
Therefore, the complete dataset encompassed 324,000 numerical values (10 × 600 × 54).

2.2. Data Preparation

The dataset utilized in the system consisted of raw data with numerical values span-
ning diverse ranges. For instance, the indoor temperature across each zone fluctuated
between 22 and 32 ◦C, the number of occupants varied from 0 to 10, and the control signal
for the FCUs (fan coil units) ranged from 0 to 3.

Such disparate distributions in the raw data introduce complexity during the training
process. In order to tackle this issue, data normalization techniques were utilized. By
normalizing the data, the possibility of gradient explosion in deep learning is minimized,
which speeds up convergence, stabilizes training, and improves the model’s overall per-
formance [7]. Prior to inputting the data into the algorithms, all raw data underwent
normalization through the following steps:

x(t) =
n(t)− nmin
nmax − nmin

, (1)

where n(t) denotes the true number of occupants at time t, while nmin and nmax, respectively,
denote the minimum and maximum number of occupants.

Furthermore, when the prediction algorithms generated the predicted occupancy,
the output value was converted to the corresponding number of occupants through the
following transformation:

n̄(t) = x̄(t) ∗ (nmax − nmin) + nmin, (2)

where the predicted value of algorithms is denoted as x̄(t), while the predicted number of
occupants is represented by n̄(t).

2.3. Algorithms

This research paper presents OPTnet, designed explicitly for building occupancy
prediction. Furthermore, a comprehensive comparative analysis was conducted to as-
sess the performance of this algorithm in comparison to established machine learning
techniques, including DT, LSTM, and MLP. The subsequent sections of the paper pro-
vide detailed explanations and insights into these algorithms’ underlying principles and
operational mechanisms.

2.3.1. Decision Tree

DT models categorize and generalize datasets into predefined data analysis and ma-
chine learning classes. The primary objective of a decision tree is to construct a classification
model that can predict the value of a target attribute (response) based on multiple input
attributes (predictors). Each internal node or leaf node within the decision tree corresponds
to one of the predictors, and the number of branches emerging from a categorical inter-
nal node (leaf node) is equivalent to the possible values of the associated predictor. The
leaf nodes represent specific values of the response variable and are reached by travers-
ing the path from the root node, which is the starting point of the tree, to the final leaf
(possible answers) [32].
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2.3.2. Long Short-Term Memory Networks

The LSTM network is a specialized variant of recurrent neural networks (RNNs)
developed in 1997 [38]. Designed to address the challenges posed by vanishing and
exploding gradients in standard RNNs, LSTM networks leverage the back-propagation
through time (BPTT) algorithm to train and excel in tasks involving long-term dependencies.
In contrast to conventional neuron-based architectures, LSTM networks feature memory
blocks consisting of memory cell units capable of retaining state values over extended
periods. Moreover, these memory blocks incorporate three distinct gate units responsible
for learning how to preserve, utilize, or discard states as needed. The connectivity between
memory blocks is established through layers, facilitating the overall functionality and
effectiveness of LSTM networks [39].

2.3.3. Multi-Layer Perceptron

The MLP is a feed-forward artificial neural network (ANN) that draws inspiration
from the functioning of the human brain [40]. This network comprises at least three
layers of neurons, specifically the input, hidden, and output layers. MLP can effectively
capture non-linear relationships between predictor variables and labels by employing
activation functions, except for the input layer. In this study, the rectified linear unit (ReLU)
activation function is implemented in the hidden layers as it is commonly recommended for
developing neural networks [41]. Additionally, linear and sigmoid functions are adopted in
the output layers for regression and classification models. To facilitate the learning process,
backpropagation, a supervised learning technique, determines the optimal weights and
bias values for each neuron.

2.3.4. Occupancy Prediction Transformer Network

With the rapid development of Chatgpt and visual foundation models, the Trans-
former has become a state-of-the-art (SOTA) deep learning method. Transformer, a neural
network, is adequate for dealing with sequence-to-sequence (seq2seq) tasks and learning a
deep understanding of sequential data. Inspired by RNNs, the Transformer follows the
encoder-decoder architecture to learn aggregated hidden-layer features. Unlike RNNs,
the Transformer does not perform data processing in sequential order but processes the
sequential input data in parallel. In particular, encoders and decoders, composed of multi-
ple self-attention layers, are stacked to extract multi-layer features. Multi-head attention
mechanisms are applied to learn the correlation between tokens.

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (3)

In this paper, we develop an OPTnet for the occupancy prediction model. We formulate
the occupancy prediction as a sequence prediction problem. In Figure 2, we treat the
history occupancy and environmental factors as the OPTnet’s inputs while treating future
occupancy information (presence or number) as the OPTnet’s outputs. The structure
OPTnet is shown in Figure 2.

2.4. Performance Evaluation

We define two evaluation indicators for occupancy prediction as follows:

MSE =
1
N

N

∑
f=1

(n(t)− n̄(t))2,

Accuracy =
1
N

N

∑
t=1

(1− sign|n(t)− n̄(t)|),
(4)

where n(t) is the true number of occupants in the time t, and n̄(t) represents the predicted
number of occupants. N is the time length. The mean squared error (MSE) indicates the
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difference between the predicted value and the ground truth, while the accuracy indicates
the hit rate of occupancy prediction. The performance is better when the MSE is smaller
and the accuracy is bigger.

t t t t1 10 11 12

Linear

Transformer

Linear

26
features

(building
information)

category 1

256 latent
features

0

Figure 2. The structure of OPTnet.

3. Experiments
3.1. Experimental Environment

Our experimental system in Hebei, China, represents a multi-zone office environment.
It comprises seven distinct working zones, a refrigeration station, and an activity room.
Within the system, we employ various components to facilitate efficient operation. These
include an air source heat pump (HP) for cooling purposes, variable frequency water
pumps for circulation, a fan coil unit (FCU) for indoor HVAC control, and cameras for
video capture to monitor the environment.

The building is divided into nine regions: an activity room, a refrigeration station,
and seven working zones. Zones 4 to 6 are virtually separated from a more extensive
zone, following the specifications of the IoT system deployment [37]. Figure 3 provides
an overview of the entire office building system, showcasing the arrangement and func-
tionalities of each zone. It is important to note that data from Zone 3, which is the financial
office, is not publicly accessible. Therefore, our experiments focus on the remaining zones
(1, 2, and 4–7).
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Figure 3. The experimental multi-zone office [37].

Each zone has an indoor temperature sensor (ITS), a device management panel for
controlling the FCU, a video recording camera, and a Jetson Nano for video processing and
zone occupancy estimation. The system also contains an outdoor temperature sensor (OTS),
which is deployed on the north external wall, for collecting the outdoor data. Please refer
to our previous work in [37] for more detailed information on the experimental system and
IoT architectures.

3.2. Experimental Data

Given the substantial influence of office occupants on the energy performance of an
office, the experimental data for the occupancy prediction model is based on the routines
and behaviors of these occupants. These data are categorized into four groups: calendar,
occupancy, indoor environment, and HVAC control.

• The calendar information: We collected the sensor data from 9:00 to 19:00 during the
five working days (from Monday to Friday) and weekends (Saturday and Sunday).

• The occupancy information: We captured videos from our cameras. Then, we analyzed
and estimated occupancy presence (1 or 0) in each room using advanced artificial
intelligence technologies. The time resolution was 1 min. The duty ratios of occupancy
in multi-zones are shown in Table 1. The duty ratios are various, indicating that the
practical dataset is diverse and complete.

• The indoor environment information: We collected the indoor temperature and relative
humidity data, directly affecting the occupants’ thermal comfort. The temperature
and relative humidity data can be used to predict future occupancy.

• The HVAC control information: The HVAC system employs FCUs for control. The
control signs (FCU temperature feedback, FCU control mode, FCU on/off feedback,
and FCU fan feedback) are considered for occupancy prediction.

Table 1. Duty ratios of occupancy in multi-zones.

Weeks Zone 1 Zone 2 Zone 4 Zone 5 Zone 6 Zone 7

Week 1 0.314 0.504 0.919 0.405 0.898 0.611
Week 2 0.084 0.854 0.816 0.353 0.898 0.256
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3.3. Experimental Parameters

A recommendation in [23] emphasizes the importance and effectiveness of occupancy
prediction models for occupancy-based HVAC control systems.

In our experiments, We chose the historical multi-sensor data (including occupancy
presence, HVAC control, FCU temp feedback, FCU control mode, FCU on-off feedback,
FCU fan feedback, room temperature 1 and 2, room relative humidity 1 and 2) as the
method inputs. We chose occupancy presence (1 or 0) as the method outputs. We compared
well-known occupancy prediction methods (DT, LSTM, MLP) and OPTnet. To compare
LSTM and OPTnet reasonably, we fixed the hyperparameters:

• The Adam optimizer trained the LSTM and OPTnet model for 20 epochs.
• The learning rate was 10−4.
• The batch size was 4.
• The numbers of LSTM and TOPTnet layers were 6.
• The number of fully connected layers was 5.
• The dropout of the last layer was 0.5.
• MSE loss function.

Considering long or short prediction applications, we used the 30 min historical multi-
sensor data to predict occupancy presence in diverse time horizons. In other words, we
compared the occupancy prediction performance with 1 min, 2 min, 5 min, 10 min, 20 min,
and 30 min horizons.

4. Results and Discussion

The DT, LSTM, MLP, and OPTnet algorithms were implemented on a dataset obtained
from a multi-zone office building. The performance of these algorithms with different
time horizons was evaluated by measuring their accuracy and MSE values for each zone.
The results are presented in Tables 2 and 3, respectively, showcasing the accuracy and the
corresponding MSE.

4.1. OPTnet vs. (LSTM, MLP, DT)

In Table 2, it is evident that the OPTnet exhibited exceptional accuracy values for
both weeks in Zones 1 and 4. Across various time horizons, the OPTnet consistently
outperformed the other machine learning algorithms, demonstrating its superior predictive
capabilities. Moving to Zone 2, the accuracy values of the DT algorithm were consistently
perfect (the accuracy was 1) for week 1 but comparatively lower for week 2 compared
to the other machine learning algorithms. However, the Transformer algorithm showed
high and consistent accuracy values for week 1 across different time horizons, and even
higher accuracy values for week 2, surpassing the performance of the other machine
learning algorithms.

In Zone 5, the OPTnet achieved high accuracy values for both weeks, particularly for
smaller time horizons such as 1 min and 2 min. However, as the time horizon increased,
the accuracy of the OPTnet decreased. Shifting to Zone 6, the accuracy values of the MLP
algorithm were consistently higher than for the other machine learning algorithms for
different time horizons in both weeks. Lastly, in Zone 7, the OPTnet demonstrated higher
accuracy values than the other machine learning algorithms for week 1, while the MLP
algorithm outperformed other algorithms for week 2.

Upon careful analysis of the results, specifically the accuracy and MSE values for each
zone, it was evident that the OPTnet mostly outperformed the other machine learning
algorithms with regard to the diverse duty ratios in Table 1. Here are some reasons why
the OPTnet outperformed these methods:

• Occupancy patterns in buildings can exhibit long-range dependencies, where the
presence or absence of occupants in one area can impact occupancy in other areas.
The self-attention mechanism in the OPTnet allows it to capture such long-range
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dependencies effectively. In contrast, DT, LSTM, and MLP struggle to model these
dependencies explicitly.

• Occupancy patterns often have temporal dynamics, where the presence or absence
of occupants at one time influences future occupancy. The OPTnet, with its self-
attention mechanism, can capture these temporal dynamics by attending to relevant
past occupancy information at each time step. On the other hand, DT typically
considers each time step independently, LSTM focuses on short-term dependencies,
and MLP lacks inherent mechanisms for capturing temporal dynamics.

• OPTnet can use parallel computation, making it highly scalable and efficient, especially
when dealing with large datasets. This scalability allows the Transformer model to
handle complex occupancy prediction tasks efficiently. In comparison, DT, LSTM,
and MLP may need to improve scalability and computational efficiency, mainly when
dealing with longer sequences or large datasets.

• OPTnet has shown robustness to noisy data due to its ability to attend to relevant
information and suppress noise during the attention mechanism. This robustness
can benefit occupancy prediction tasks, where the data may contain missing or noisy
observations. DT, LSTM, and MLP are more sensitive to noisy data and require
additional preprocessing or regularization techniques to handle such scenarios.

The superior performance of the OPTnet highlights its effectiveness in accurately
predicting occupancy patterns within different building zones. This outcome underscores
the significance of utilizing the OPTnet as a reliable and robust approach for occupancy
prediction in diverse environments. The improved performance of the OPTnet signifies
its potential to enhance the efficiency and effectiveness of various applications that rely
on accurate occupancy forecasts, such as HVAC control systems, energy optimization
strategies, and overall building management.

4.2. Time Horizons vs. Performance

We noticed a clear pattern after analyzing the performance of OPTnet and the other
machine learning algorithms across different time horizons. As the time horizon became
longer, the accuracy of each algorithm tended to decrease while the MSE value tended
to increase. This finding highlights the importance of selecting an appropriate time horizon
based on the specific application requirements. The effect of the time horizon on algorithm
performance highlights the importance of choosing the right time window for different pur-
poses. Short-term time horizons are beneficial for applications needing instant occupancy
predictions or real-time monitoring. This enables better capture and response to short-term
occupancy changes with higher accuracy. On the other hand, longer time horizons are
better for applications that focus on long-term occupancy forecasting and trend analysis.
Even though the accuracy may be slightly lower, having a broader view of occupancy
patterns and trends over a more extended period is valuable for tasks like energy planning,
resource allocation, and managing occupancy in the long run.

There are two exceptions to the point that accuracy decreases with increasing horizons.
In Zones 4 and 6, we found the accuracy was increasing. We noticed that, as shown
in Table 1, the duty ratios of occupancy in Zone 4 and 6 were very high (0.919, 0.816,
0.898, 0.898). With increasing horizons (1, 2, 5, 10, 20, 30 min), in the historical occupancy
data, the weight of occupancy presence became bigger while the weight of occupancy
absence became smaller. Thus, the OPTnet and machine learning algorithms became more
conservative to achieve high accuracy, even though we used balanced class weights to
train our models. When the time horizon grows, conventional models converge to the
class with the most duty ratios and predict occupancy presence. This is a limitation of our
proposed framework.
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Table 2. The accuracy evaluation for zones 1, 2, 4–7. Bold means better performance.

Time Horizon Week-1 Week-2

Zone 1

DT LSTM MLP OPTnet DT LSTM MLP OPTnet

1 min 0.818 0.949 0.686 0.951 0.854 0.961 0.916 0.967

2 min 0.782 0.923 0.909 0.915 0.928 0.942 0.945 0.931

5 min 0.793 0.821 0.812 0.82 0.861 0.92 0.911 0.92

10 min 0.772 0.682 0.596 0.774 0.798 0.901 0.912 0.922

20 min 0.701 0.622 0.478 0.716 0.825 0.824 0.767 0.857

30 min 0.665 0.585 0.549 0.676 0.851 0.654 0.55 0.827

Zone 2

1 min 1 0.798 0.504 0.751 0.777 0.865 0.854 0.863

2 min 1 0.703 0.847 0.768 0.746 0.852 0.86 0.854

5 min 1 0.679 0.814 0.773 0.772 0.829 0.834 0.854

10 min 1 0.497 0.596 0.782 0.754 0.852 0.818 0.853

20 min 0.984 0.498 0.787 0.714 0.736 0.849 0.839 0.849

30 min 0.953 0.499 0.803 0.778 0.733 0.847 0.818 0.847

Zone 4

1 min 0.893 0.919 0.919 0.919 0.718 0.816 0.816 0.9

2 min 0.912 0.92 0.92 0.952 0.774 0.815 0.815 0.837

5 min 0.899 0.938 0.923 0.923 0.864 0.814 0.855 0.817

10 min 0.917 0.927 0.927 0.927 0.821 0.819 0.819 0.819

20 min 0.909 0.935 0.935 0.935 0.836 0.824 0.824 0.824

30 min 0.924 0.945 0.945 0.945 0.824 0.827 0.827 0.827

Zone 5

1 min 0.779 0.854 0.405 0.896 0.411 0.775 0.353 0.882

2 min 0.788 0.798 0.839 0.842 0.414 0.699 0.75 0.352

5 min 0.748 0.77 0.796 0.777 0.559 0.367 0.744 0.359

10 min 0.696 0.723 0.756 0.673 0.468 0.65 0.641 0.35

20 min 0.631 0.426 0.61 0.629 0.474 0.348 0.343 0.368

30 min 0.596 0.402 0.539 0.59 0.452 0.344 0.608 0.361

Zone 6

1 min 0.872 0.961 0.96 0.96 0.895 0.963 0.96 0.96

2 min 0.837 0.953 0.946 0.947 0.907 0.951 0.946 0.95

5 min 0.872 0.915 0.939 0.933 0.823 0.915 0.934 0.929

10 min 0.85 0.886 0.906 0.883 0.86 0.883 0.903 0.879

20 min 0.72 0.863 0.875 0.815 0.707 0.848 0.873 0.864

30 min 0.924 0.891 0.83 0.898 0.824 0.885 0.836 0.898

Zone 7

1 min 0.756 0.921 0.912 0.932 0.854 0.965 0.968 0.97

2 min 0.824 0.888 0.87 0.889 0.899 0.898 0.95 0.93

5 min 0.783 0.82 0.862 0.809 0.833 0.875 0.938 0.817

10 min 0.763 0.645 0.723 0.764 0.798 0.745 0.908 0.81

20 min 0.667 0.608 0.695 0.724 0.834 0.775 0.877 0.779

30 min 0.665 0.578 0.577 0.685 0.744 0.704 0.833 0.719
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Table 3. The MSE evaluation for zone 1, 2, 4–7. Bold means better performance.

Time Horizon Week-1 Week-2

Zone 1

DT LSTM MLP OPTnet DT LSTM MLP OPTnet
1 min 0.182 0.051 0.314 0.049 0.146 0.039 0.084 0.033

2 min 0.218 0.077 0.091 0.085 0.092 0.058 0.055 0.069

5 min 0.207 0.179 0.188 0.18 0.139 0.08 0.089 0.081

10 min 0.228 0.318 0.259 0.226 0.202 0.099 0.088 0.078

20 min 0.299 0.372 0.378 0.284 0.175 0.176 0.233 0.143

30 min 0.335 0.428 0.415 0.324 0.149 0.46 0.344 0.173

Zone 2

1 min 0.0 0.202 0.496 0.249 0.223 0.135 0.146 0.137

2 min 0.0 0.297 0.153 0.085 0.266 0.148 0.14 0.146

5 min 0.0 0.321 0.186 0.227 0.228 0.171 0.166 0.147

10 min 0.0 0.503 0.171 0.218 0.246 0.148 0.182 0.148

20 min 0.016 0.502 0.213 0.286 0.264 0.151 0.161 0.151

30 min 0.047 0.501 0.197 0.222 0.267 0.153 0.182 0.153

Zone 4

1 min 0.107 0.081 0.081 0.081 0.282 0.184 0.186 0.1

2 min 0.088 0.08 0.08 0.048 0.226 0.185 0.185 0.163

5 min 0.101 0.062 0.077 0.77 0.136 0.186 0.145 0.183

10 min 0.093 0.073 0.073 0.073 0.179 0.181 0.181 0.181

20 min 0.091 0.065 0.065 0.065 0.164 0.176 0.176 0.176

30 min 0.076 0.055 0.055 0.055 0.176 0.173 0.173 0.173

Zone 5

1 min 0.221 0.146 0.595 0.104 0.589 0.225 0.647 0.118

2 min 0.212 0.202 0.161 0.158 0.586 0.301 0.25 0.648

5 min 0.252 0.23 0.204 0.223 0.441 0.633 0.256 0.641

10 min 0.304 0.277 0.244 0.327 0.532 0.65 0.359 0.35

20 min 0.369 0.574 0.39 0.371 0.526 0.652 0.657 0.632

30 min 0.404 0.598 0.461 0.41 0.548 0.656 0.392 0.639

Zone 6

1 min 0.128 0.039 0.04 0.04 0.105 0.037 0.04 0.04

2 min 0.163 0.047 0.054 0.053 0.093 0.049 0.054 0.05

5 min 0.128 0.061 0.204 0.067 0.177 0.085 0.066 0.071

10 min 0.15 0.114 0.094 0.117 0.14 0.117 0.097 0.121

20 min 0.255 0.137 0.125 0.185 0.216 0.152 0.127 0.136

30 min 0.28 0.109 0.17 0.102 0.293 0.115 0.164 0.102

Zone 7

1 min 0.244 0.079 0.088 0.068 0.146 0.035 0.0032 0.03

2 min 0.176 0.112 0.13 0.111 0.101 0.102 0.05 0.07

5 min 0.217 0.18 0.138 0.191 0.167 0.125 0.062 0.183

10 min 0.237 0.355 0.277 0.236 0.202 0.255 0.092 0.19

20 min 0.333 0.392 0.305 0.276 0.166 0.225 0.123 0.221

30 min 0.335 0.422 0.423 0.315 0.256 0.296 0.167 0.281
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5. Conclusions

Buildings are significant contributors to global energy consumption, accounting
for approximately 40% of the total, and they are responsible for about 36% of carbon
emissions. Achieving occupant-centric control is crucial for zero emissions and decar-
bonization efforts. This paper has addressed these challenges by introducing OPTnet, an
innovative occupancy prediction framework. OPTnet utilizes data from multiple sensors,
including building occupancy, indoor environmental conditions, and HVAC operations,
to forecast future occupancy presence in multiple zones. Through experimental analysis
and comparisons with other prediction methods, such as DT, LSTM, and MLP, OPTnet
demonstrated superior performance across different time horizons (1, 2, 3, 5, 10, 20, and
30 min) using a practical two-week dataset. The promising results obtained from the
OPTnet method underscore its potential to significantly improve HVAC control systems
and energy optimization strategies in buildings. By accurately predicting occupancy
patterns, the OPTnet-based approach can lead to more efficient building management,
ultimately resulting in substantial reductions in energy consumption and environmental
impact. However, further validation and testing of the OPTnet framework in real-world
buildings of varying sizes, types, and locations will be essential to assess its scalability
and generalizability.

Author Contributions: Conceptualization, I.Q.; Methodology, I.Q. and K.S.; Software, K.S.; Valida-
tion, K.S.; Investigation, I.Q.; Resources, H.Y.; Data curation, I.Q., T.X. and H.Y.; Writing—original
draft, I.Q. and K.S.; Writing—review & editing, I.Q., Q.Z. and T.X.; Visualization, I.Q. and K.S.; Super-
vision, K.S. and Q.Z.; Funding acquisition, Q.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China under Grant
No. 62192751 and 61425027, in part, by the Key R&D Project of China under Grant No. 2017YFC0704100,
2016YFB0901900, by the 111 International Collaboration Program of China under Grant No. BP2018006,
the 2019 Major Science and Technology Program for the Strategic Emerging Industries of Fuzhou
under Grant No. 2019-Z-1, and, in part, by the BNRist Program under Grant No. BNR2019TD01009,
and the National Innovation Center of High Speed Train R&D project (CX/KJ-2020-0006).

Data Availability Statement: To promote transparency and reproducibility, we make the code
publicly available at https://github.com/kailaisun/occupancy-prediction-binary.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bazazzadeh, H.; Pilechiha, P.; Nadolny, A.; Mahdavinejad, M.; Hashemi Safaei, S.s. The impact assessment of climate change on

building energy consumption in Poland. Energies 2021, 14, 4084. [CrossRef]
2. Kavari, G.; Tahani, M.; Mirhosseini, M. Wind shear effect on aerodynamic performance and energy production of horizontal axis

wind turbines with developing blade element momentum theory. J. Clean. Prod. 2019, 219, 368–376. [CrossRef]
3. Kabbaj, O.A.; Péan, L.M.; Masson, J.B.; Marhic, B.; Delahoche, L. Occupancy states forecasting with a hidden Markov model for

incomplete data, exploiting daily periodicity. Energy Build. 2023, 287, 112985. [CrossRef]
4. Li, Z.; Wang, P.; Zhang, J.; Mu, S. A strategy of improving indoor air temperature prediction in HVAC system based on

multivariate transfer entropy. Build. Environ. 2022, 219, 109164. [CrossRef]
5. Idahosa, L.O.; Akotey, J.O. A social constructionist approach to managing HVAC energy consumption using social norms–A

randomised field experiment. Energy Policy 2021, 154, 112293. [CrossRef]
6. Jung, S.; Jeoung, J.; Hong, T. Occupant-centered real-time control of indoor temperature using deep learning algorithms. Build.

Environ. 2022, 208, 108633. [CrossRef]
7. Xing, T.; Sun, K.; Zhao, Q. MITP-Net: A deep-learning framework for short-term indoor temperature predictions in multi-zone

buildings. Build. Environ. 2023, 239, 110388. [CrossRef]
8. Barreca, F.; Praticò, P. Environmental indoor thermal control of extra virgin olive oil storage room with phase change materials.

J. Agric. Eng. 2019, 50, 208–214. [CrossRef]
9. Li, W.; Zhang, J.; Zhao, T.; Ren, J. Experimental study of an indoor temperature fuzzy control method for thermal comfort and

energy saving using wristband device. Build. Environ. 2021, 187, 107432. [CrossRef]

https://github.com/kailaisun/occupancy-prediction-binary
http://doi.org/10.3390/en14144084
http://dx.doi.org/10.1016/j.jclepro.2019.02.073
http://dx.doi.org/10.1016/j.enbuild.2023.112985
http://dx.doi.org/10.1016/j.buildenv.2022.109164
http://dx.doi.org/10.1016/j.enpol.2021.112293
http://dx.doi.org/10.1016/j.buildenv.2021.108633
http://dx.doi.org/10.1016/j.buildenv.2023.110388
http://dx.doi.org/10.4081/jae.2019.947
http://dx.doi.org/10.1016/j.buildenv.2020.107432


Buildings 2023, 13, 2002 13 of 14

10. Che, W.W.; Tso, C.Y.; Sun, L.; Ip, D.Y.; Lee, H.; Chao, C.Y.; Lau, A.K. Energy consumption, indoor thermal comfort and air quality
in a commercial office with retrofitted heat, ventilation and air conditioning (HVAC) system. Energy Build. 2019, 201, 202–215.
[CrossRef]

11. Sun, Y.; Kojima, S.; Nakaohkubo, K.; Zhao, J.; Ni, S. Analysis and Evaluation of Indoor Environment, Occupant Satisfaction, and
Energy Consumption in General Hospital in China. Buildings 2023, 13, 1675. [CrossRef]

12. Barreca, F.; Praticò, P. Post-Occupancy Evaluation of Buildings for Sustainable Agri-Food Production—A Method Applied to an
Olive Oil Mill. Buildings 2018, 8, 83. [CrossRef]

13. Barreca, F.; Cardinali, G.D. Agri-food building performance evaluation by an integration of different measurement techniques:
Case study of a bakery in south Italy. Build. Environ. 2021, 204, 108109. [CrossRef]

14. Qaisar, I.; Zhao, Q. Energy baseline prediction for buildings: A review. Results Control Optim. 2022, 7, 100129. [CrossRef]
15. Yan, D.; Hong, T.; Dong, B.; Mahdavi, A.; D’Oca, S.; Gaetani, I.; Feng, X. IEA EBC Annex 66: Definition and simulation of

occupant behavior in buildings. Energy Build. 2017, 156, 258–270. [CrossRef]
16. Park, J.Y.; Ouf, M.M.; Gunay, B.; Peng, Y.; O’Brien, W.; Kjærgaard, M.B.; Nagy, Z. A critical review of field implementations of

occupant-centric building controls. Build. Environ. 2019, 165, 106351. [CrossRef]
17. Dai, X.; Liu, J.; Zhang, X. A review of studies applying machine learning models to predict occupancy and window-opening

behaviours in smart buildings. Energy Build. 2020, 223, 110159. [CrossRef]
18. Wang, W.; Wang, J.; Chen, J.; Huang, G.; Guo, X. Multi-zone outdoor air coordination through Wi-Fi probe-based occupancy

sensing. Energy Build. 2018, 159, 495–507. [CrossRef]
19. Wang, C.; Pattawi, K.; Lee, H. Energy saving impact of occupancy-driven thermostat for residential buildings. Energy Build. 2020,

211, 109791. [CrossRef]
20. Jin, Y.; Yan, D.; Chong, A.; Dong, B.; An, J. Building occupancy forecasting: A systematical and critical review. Energy Build. 2021,

251, 111345. [CrossRef]
21. Sun, K.; Ma, X.; Liu, P.; Zhao, Q. MPSN: Motion-aware Pseudo-Siamese Network for indoor video head detection in buildings.

Build. Environ. 2022, 222, 109354. [CrossRef]
22. Choi, H.; Um, C.Y.; Kang, K.; Kim, H.; Kim, T. Review of vision-based occupant information sensing systems for occupant-centric

control. Build. Environ. 2021, 203, 108064. [CrossRef]
23. Esrafilian-Najafabadi, M.; Haghighat, F. Impact of occupancy prediction models on building HVAC control system performance:

Application of machine learning techniques. Energy Build. 2022, 257, 111808. [CrossRef]
24. Esrafilian-Najafabadi, M.; Haghighat, F. Impact of predictor variables on the performance of future occupancy prediction: Feature

selection using genetic algorithms and machine learning. Build. Environ. 2022, 219, 109152. [CrossRef]
25. Sun, K.; Zhao, Q.; Zou, J. A review of building occupancy measurement systems. Energy Build. 2020, 216, 109965. [CrossRef]
26. Candanedo, L.M.; Feldheim, V.; Deramaix, D. A methodology based on Hidden Markov Models for occupancy detection and a

case study in a low energy residential building. Energy Build. 2017, 148, 327–341. [CrossRef]
27. Gunay, H.B.; O’Brien, W.; Beausoleil-Morrison, I. Development of an occupancy learning algorithm for terminal heating and

cooling units. Build. Environ. 2015, 93, 71–85. [CrossRef]
28. Sun, Y.; Hao, W.; Chen, Y.; Liu, B. Data-driven occupant-behavior analytics for residential buildings. Energy 2020, 206, 118100.

[CrossRef]
29. Jiefan, G.; Peng, X.; Zhihong, P.; Yongbao, C.; Ying, J.; Zhe, C. Extracting typical occupancy data of different buildings from

mobile positioning data. Energy Build. 2018, 180, 135–145. [CrossRef]
30. Razavi, R.; Gharipour, A.; Fleury, M.; Akpan, I.J. Occupancy detection of residential buildings using smart meter data: A

large-scale study. Energy Build. 2019, 183, 195–208. [CrossRef]
31. Jain, R.K.; Smith, K.M.; Culligan, P.J.; Taylor, J.E. Forecasting energy consumption of multi-family residential buildings using

support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy.
Appl. Energy 2014, 123, 168–178. [CrossRef]

32. D’Oca, S.; Hong, T. Occupancy schedules learning process through a data mining framework. Energy Build. 2015, 88, 395–408.
[CrossRef]

33. Chen, Y.T.; Piedad, E., Jr.; Kuo, C.C. Energy consumption load forecasting using a level-based random forest classifier. Symmetry
2019, 11, 956. [CrossRef]

34. Benezeth, Y.; Laurent, H.; Emile, B.; Rosenberger, C. Towards a sensor for detecting human presence and characterizing activity.
Energy Build. 2011, 43, 305–314. [CrossRef]

35. Yang, J.; Santamouris, M.; Lee, S.E. Review of occupancy sensing systems and occupancy modeling methodologies for the
application in institutional buildings. Energy Build. 2016, 121, 344–349. [CrossRef]

36. Wang, W.; Chen, J.; Song, X. Modeling and predicting occupancy profile in office space with a Wi-Fi probe-based Dynamic
Markov Time-Window Inference approach. Build. Environ. 2017, 124, 130–142. [CrossRef]

37. Xing, T.; Yan, H.; Sun, K.; Wang, Y.; Wang, X.; Zhao, Q. Honeycomb: An open-source distributed system for smart buildings.
Patterns 2022, 3, 100605. [CrossRef]

38. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

http://dx.doi.org/10.1016/j.enbuild.2019.06.029
http://dx.doi.org/10.3390/buildings13071675
http://dx.doi.org/10.3390/buildings8070083
http://dx.doi.org/10.1016/j.buildenv.2021.108109
http://dx.doi.org/10.1016/j.rico.2022.100129
http://dx.doi.org/10.1016/j.enbuild.2017.09.084
http://dx.doi.org/10.1016/j.buildenv.2019.106351
http://dx.doi.org/10.1016/j.enbuild.2020.110159
http://dx.doi.org/10.1016/j.enbuild.2017.11.041
http://dx.doi.org/10.1016/j.enbuild.2020.109791
http://dx.doi.org/10.1016/j.enbuild.2021.111345
http://dx.doi.org/10.1016/j.buildenv.2022.109354
http://dx.doi.org/10.1016/j.buildenv.2021.108064
http://dx.doi.org/10.1016/j.enbuild.2021.111808
http://dx.doi.org/10.1016/j.buildenv.2022.109152
http://dx.doi.org/10.1016/j.enbuild.2020.109965
http://dx.doi.org/10.1016/j.enbuild.2017.05.031
http://dx.doi.org/10.1016/j.buildenv.2015.06.009
http://dx.doi.org/10.1016/j.energy.2020.118100
http://dx.doi.org/10.1016/j.enbuild.2018.09.002
http://dx.doi.org/10.1016/j.enbuild.2018.11.025
http://dx.doi.org/10.1016/j.apenergy.2014.02.057
http://dx.doi.org/10.1016/j.enbuild.2014.11.065
http://dx.doi.org/10.3390/sym11080956
http://dx.doi.org/10.1016/j.enbuild.2010.09.014
http://dx.doi.org/10.1016/j.enbuild.2015.12.019
http://dx.doi.org/10.1016/j.buildenv.2017.08.003
http://dx.doi.org/10.1016/j.patter.2022.100605
http://dx.doi.org/10.1162/neco.1997.9.8.1735


Buildings 2023, 13, 2002 14 of 14

39. Amadou Boukary, N. A Comparison of Time Series Forecasting Learning Algorithms on the Task of Predicting Event Timing.
Master’s Thesis, Royal Military College of Canada, Kingston, ON, Canada, 2016.

40. Noriega, L. Multilayer perceptron tutorial. Sch. Comput. Staff. Univ. 2005, 4, 5.
41. Reed, R.; Marks, R.J., II. Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks; MIT Press: Cambridge, MA,

USA, 1999.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Methods
	Data Collection
	Data Preparation
	Algorithms
	Decision Tree
	Long Short-Term Memory Networks
	Multi-Layer Perceptron
	Occupancy Prediction Transformer Network

	Performance Evaluation

	Experiments
	Experimental Environment
	Experimental Data
	Experimental Parameters

	Results and Discussion
	OPTnet vs. (LSTM, MLP, DT)
	Time Horizons vs. Performance

	Conclusions
	References

