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Abstract: The use of fabrics in the form of grids embedded in cementitious matrices—usually termed
as textile-reinforced mortar, fiber-reinforced cementitious matrix, or textile-reinforced concrete—
demonstrate a more stable performance in elevated temperature conditions compared with fiber-
reinforced polymers. This study investigated the residual tensile properties of bare yarns and fabrics
in the form of grids embedded in a cementitious mortar after exposure to 100 ◦C, 200 ◦C, and
300 ◦C. Three different coated fabric textiles were used as reinforcement: carbon, basalt, and glass.
Additionally, scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermos-gravimetric
analysis (TGA) were conducted to evaluate potential changes in the internal structure of the fibers
and the mortar. The cracking stress, the tensile strength, and the ultimate strain of the composite
specimens were increased after exposure to 100 ◦C, while only carbon and glass fiber grids retained
their effectiveness up to 200 ◦C. At 300 ◦C, the coupons reinforced with carbon and basalt fibers
deteriorated rapidly. Only the glass counterparts showed an improved overall performance due to
fiber contraction and the differences in the coating material. The results highlight the differences in
the performance of the three fiber types and the important role of the coating material in the overall
composite behavior.

Keywords: textile-reinforced mortars; coated fabric yarns; elevated temperature; tensile test

1. Introduction

The use of woven fabrics in the form of textiles embedded in inorganic matrices,
such as cementitious mortars of various types, has a distinct advantage against fiber-
reinforced polymers (FRPs) when exposed to heated environments. The FRP systems start
losing adhesive properties between 50 ◦C to 80 ◦C [1–5]; hence, the effectiveness of any
intervention scheme becomes questionable. On the other hand, since the inorganic matrix
is not impacted by high temperatures to the same extent as the polymeric counterpart,
employing textiles embedded in mortars offers a possible substitute. The specific type of
composite material termed herein textile-reinforced mortar (TRM) consists of high-strength
fibers in the form of textiles (e.g., aramid, basalt, carbon, polybenzoxazole (PBO), glass)
and inorganic matrices (e.g., cementitious or lime mortars). The open weave architecture
of the grid introduces an inherent problem to the method, since only the outer surface
of the bundles is in complete contact with the cementitious matrix leaving the internal
filaments mostly unbonded. A thin coating layer is implemented on the textiles to improve
the adhesion between the fibers and the surrounding matrix. Polymeric agents are the most
popular coating materials, but recently, silica-based coatings (inorganic) have also been
investigated [6]. Moreover, nanoclay particles were introduced to improve the interaction
between the coating and the yarns [6,7]. The overall behavior under heated environments
is affected not only by the types of fibers—coated or dry—but also by the type of the
coating—liquids or precursors of liquids.

Although the thermal resistance of TRM comprises a significant advantage, it was only
a decade ago when the first experimental projects began focusing on its specific behavior
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(e.g., [8,9]). The performance of reinforced concrete and, to a lesser extent, masonry elements
have since been the subject of similar research (for additional references, see [10,11]). The
experimental projects may focus on the overall behavior of TRMs during or after exposure
to elevated temperatures. In the latter case, the residual mechanical properties of the
composite material, owing to alterations of the individual constituents, affect the overall
structural behavior and set the limits for any design intervention scheme.

2. Literature Review

The conditioning environments and long-term performance of FRCM and its compo-
nents (mortar and textile) were systematically reviewed by Al-Lawi et al. [12]. Furthermore,
several researchers looked at the residual mechanical characteristics of textiles embedded
inorganic matrices after exposure to high temperatures. The most notable results are given
and analyzed in the following paragraph.

Colombo et al. conducted one of the earliest experiments to examine the residual
tensile strength of AR-glass fiber TRMs following exposure to high temperatures [13].
The specimens were reinforced with two layers of grids before being put through tensile
testing after spending two hours in temperatures as high as 600 ◦C. Similar tests were
carried out by Rambo et al. [14] and Rambo et al. [15]. They employed coated basalt fiber
grids inserted in refractory concrete made of high alumina cement and calcium–aluminate
aggregates. The samples underwent tension testing after exposure to temperatures between
75 ◦C and 1000 ◦C. Specifically, at 200 ◦C, three exposure periods were employed—1 h,
3 h, and 6 h. The effect of the coating on the postheated tensile behavior of carbon FRCM
specimens was examined by Donnini et al. [16]. Three groups of specimens reinforced
with three types of carbon fabrics (dry, epoxy-coated, and sand-treated) were heated at
120 ◦C for 60 min and 100 min. The residual strength of textile-reinforced concrete (TRC)
exposed for one hour at five target temperatures—75 ◦C, 150 ◦C, 300 ◦C, 400 ◦C, and
600 ◦C—was measured by Tlaiji et al. [17]. The specimens were reinforced with AR-glass
fiber textiles. Messori et al. [18] investigated the postheated tensile strength of specimens
reinforced with epoxy-coated AR-glass grids exposed to 100 ◦C, 150 ◦C, 200 ◦C, and 250 ◦C
for two hours. Truong et al. [19] studied the performance of the lap-splice length and its
influence on the residual strength of TRM coupons reinforced with carbon fiber textiles
embedded in alumina cement-based mortar. The specimens were subjected to uniaxial
tensile tests after exposure to 250 ◦C and 300 ◦C. Kapsalis et al. [11] presented results
from an extended experimental campaign comprising a wide range of carbon and glass
fiber grids—coated or dry—in low- and high-volume fractions embedded in a commercial
cementitious matrix reinforced with micropolypropylene fibers. The specimens were fired
up to 700 ◦C using a specially designed furnace. Estevan et al. [20] investigated the tensile
behavior of postheated TRM specimens embedded with basalt, carbon, and two types
of AR-glass textile grids. The temperature path contained a one-hour maintenance at
target elevated temperatures up to 600 ◦C. Ombres et al. [21] added to the knowledge on
the residual characteristics of PBO grids embedded in cement-based mortars following
exposure to hot conditions. The authors conducted a series of tensile tests on TRM coupons
following five heating cycles at 100 ◦C and 200 ◦C as part of an experimental program
examining the residual properties of PBO-confined concrete cylinders. Additional details
on specimens reinforced with PBO grids subjected to 100 ◦C while under tensile stresses
were published by Calabrese et al. [22]. Five coupons were put through six hours of
dry-heat conditioning and tension testing.

The specimens in most studies above the specimens maintained their initial strength
up to 200 ◦C. The authors often pointed to the shrinkage of the mortar and changes in
the coating material as the primary causes of that behavior. In particular, the melting and
subsequent solidification of the coating agent produced a beneficial interlocking mechanism
between the grid and the matrix. Furthermore, failure accelerated above 300 ◦C due to the
coating material deterioration and consequent loss of bonding between the grid bundles
and the surrounding matrix. According to some researchers, uncoated fibers perform better
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in heated environments. In most situations, the length of the exposure was not recognized
as important to the overall behavior.

Silva et al. [23] investigated the residual bonding between coated and dry carbon fiber
grids embedded in Portland cement inorganic matrices. Liu et al. [24] investigated the
pullout behavior of coated AR-glass and basalt fibers in the form of yarns and textiles after
exposure to various temperatures; the range was from 100 ◦C to 600 ◦C, and both situations
lasted two hours. Liu et al. [24] found a considerable decrease in strength due to bond
disintegration following exposure to high temperatures. However, Silva et al. (2014) [23]
detected an improvement in strength for temperatures up to 150 ◦C due to enhanced bond
conditions.

Xu et al. [25] and Xu et al. [26] studied the flexural performance of TRC thin plates
after exposure to four different temperatures for one hour: 200 ◦C, 400 ◦C, 600 ◦C, and
800 ◦C. Both investigations employed standard Portland cement and high-alumina cement
as inorganic matrices. In the first study, the reinforcement comprised three layers of coated
and uncoated grids having carbon and E-glass fiber bundles in the warp and the weft
direction, respectively. In the second investigation, three layers of textiles made from basalt
fibers served as reinforcement. The outcomes demonstrated that up to 600 ◦C, the matrix
type did not affect the general behavior. However, the high-alumina cementitious matrix
specimens outperformed their Portland counterparts at 800 ◦C. The outcomes also showed
that specimens reinforced with coated grids reached higher loads than those without
coating and displayed brittle behavior regardless of the cementitious matrix. According to
the authors, the degradation of the matrix, the deterioration of the fibers, and the decay of
the interface between the two materials were the primary causes of the worsening of the
mechanical behavior of the TRC sheets.

A finite difference scheme and the Aveston–Cooper–Kelly (ACK) model used by
Rambo et al. [27] and Kapsalis et al. [11], respectively, was used to simulate the tension
stiffening, predict the crack spacing, and describe the stress–strain relation of the specimens.
Donnini et al. [16] also used a variational fracture analytical model to evaluate the bond
strength between carbon FRCMs and clay brick substrates subjected to double-shear testing.

The literature review demonstrates that the experimental results are at an early stage
and that numerous parameters (such as different materials, load configurations, and ex-
perimental set-ups) still need to be studied. The current project seeks to improve the
understanding of the residual characteristics of TRM composites when subjected to heated
environments by providing information on the development of the residual tensile strength,
the deformation behavior, the interaction between the fibers and the surrounding mortar,
the changes in the individual components, and the failure modes.

3. Materials and Test Design
3.1. General Information

Three distinct fibers—carbon, basalt, and E-glass—were set up and used in an experi-
mental campaign to measure the residual tensile strength of textile yarns and composite
coupons after exposure to high temperatures. The coupons were made of grid-shaped fibers
in a commercial polymer-modified cementitious mortar containing a trace amount of mi-
crofibers (the supplier provided no further information). Four target temperatures—20 ◦C,
100 ◦C, 200 ◦C, and 300 ◦C—were chosen, with specimens tested at room temperature
(20 ◦C) serving as the reference. The mortar preparation’s water-to-binder mass ratio was
0.18. All fabrics were bidirectionally woven with the grid dimensions depicted in Figure 1.
The warp and weft yarns were stitched together in the basalt and carbon grids, whereas
the glass grid was thermofixed; the basalt yarns comprised two separated bundles. A high-
temperature resistive agent was utilized as the carbon and basalt fiber coating material (the
provider provided no details). At the same time, styrene–butadiene rubber (SBR) was used
for the glass counterparts. The distribution of the glass fibers was 52% for the warp and
48% for the weft, but the reinforcement in two orthogonal directions was the same for the
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basalt and carbon textiles. The nominal roving area of textiles was estimated according to
the area weight, coating substance content, and corresponding fiber density (Table 1).
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Figure 1. (a) Basalt, (b) carbon, and (c) glass fabric textile materials.

Table 1. Mechanical Characteristics and dimensions of three kinds of fabric textiles.

Fabric Textile Basalt Fabric Textile Carbon Fabric
Textile Glass Fabric Textile

Area density(
gr/m2) 220/170 * 270/220 360/280

Yarn area
(
mm2) 0.81 1.61 1.015

Nominal thickness
(mm) 0.032 0.054 0.011

Number of yarns per
coupon 3 2 4

Coating material High-temperature
resistive coating

High-temperature
resistive coating SBR coating

Note: * refers to ‘coated/dry fiber’.

3.2. Specimen Preparation

According to EN 1015-11: 2019 [28], the mechanical characteristics of the mortar were
evaluated by prism samples utilizing metallic molds with dimensions of 160× 40× 40 mm.
For each temperature (the ambient included), three samples were cast and allowed to
cure for 28 days in a controlled environment at 20 ◦C and 95% relative humidity. The
dumbbell-shaped composite specimens (coupons) utilized for the tensile testing had a
total length of 550 mm and a rectangular gauge area of 390 × 70 mm in the center; the
dimensions used were according to De Santis et al. [29] (Figure 2a). The shape of the
specimens and the test set-up adopted in this experimental campaign had certain variations
compared with guidelines (e.g., AC 434 report [30]). The dumbbell shape was chosen
against the rectangular one to accommodate the customized grip presented in the following
section. The specimens consisted of a fabric textile laid manually in the middle of two
mortar layers having 6 mm thickness each. The ends of the grids were adhered between
two aluminum plates by a high-temperature resistive adhesive in an alternate arrangement
described in Molter [31], preventing the heads of the dumbbell-shaped coupons from
prematurely failing. The TRM specimens were prepared using specially made timber
molds (Figure 2b). These specimens had an average thickness of 12 mm. All samples were
kept in the laboratory (under indoor, protected conditions) for seven days until the start of
the testing. Additionally, at least four separate yarns were extracted from each grid type
and put through similar tests to monitor the fibers’ residual properties. The total length of
the yarn samples was 300 mm, leaving an effective gauge length of 200 mm.
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and (d) yarn specimens.

3.3. Test Set-Up

The three types of textiles were used to categorize the testing on TRM coupons and
fabric yarns. According to the target temperature, each group of fibers was further sepa-
rated into four distinct subcategories; three coupons and four yarns were tested at each
temperature. Twelve TRM coupons and sixteen yarns were made for each type of fiber.
In this set of tests, 48 samples of fabric yarns and 36 coupons in total were used. Each
specimen was labeled using the alphanumeric code X-F-TN, where X designated the type
of specimen (coupon or yarn), F the type of fiber, T the target temperature, and N the
specimen number. For example, the first basalt yarn tested at 300 ◦C was called Y-B-3001.

The coupons, yarn samples, and mortar prisms were all heated in an electric furnace.
The furnace, the placement of the specimens, and the temperature ramp are shown in
Figure 3. The heating process lasted eight hours at a constant rate of 120 ◦C/hr. Because
the mortar has a low thermal conductivity and diffusivity [32], the duration was chosen to
ensure uniform temperature distribution and to mimic actual operational conditions. The
specimens were positioned within the furnace on top of three concrete blocks to ensure
even exposure of all sides (Figure 3b). All specimens were older than 28 days at the time
of testing. All specimens were allowed to cool inside the furnace for nearly 24 h after the
exposure; the gradual temperature drop was crucial to prevent potential thermal shock [17].
All mortar prisms underwent a three-point bending test to determine the flexural tensile
strength. The two separated pieces were then put through a compression test to determine
their strength. A 300 kN capacity universal testing machine (UTM) was used to test all
TRM coupons. A clevis-style grip made specifically for the test (similar to the one used
in [33]) was used for fixing the coupons to the device (Figure 2c). The decision to use
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the particular type of grip was based on two primary considerations: the avoidance of
clamping the specimens directly to the machine due to concerns about damaging the
contact area (pressure from the grips was manually controlled) and the observation of the
fiber–matrix bond based on the works by Focacci et al. [34,35], hence the adopted shape of
the specimens. The load application was in a displacement control mode with an initial
speed of 0.05 mm/min up to the formation of the first crack and subsequently changed
to 0.5 mm/min up to failure. A UTM with a 100 kN capacity was used to test fabric yarn
specimens’ residual tensile characteristics (Figure 2d). After heating, the yarn edges were
embedded between two 2 mm thick aluminum plates using an epoxy resin. The glue was
allowed to cure for at least 48 h before testing. The load was applied by using displacement
control at a 0.5 mm/min speed. As seen in Figure 2c, the deformations were recorded
using external LVDTs attached to the coupons and yarns. The TGA, SEM, and XRD were
performed on three fragment samples from the tested mortar and yarn specimens. For the
TG analysis, a Netzsch STA 449 F3 device was used in a technical air environment with a
heating and flow rate of 10 ◦C/min 60 mL/min, respectively. The surface morphology of
the fibers and the inorganic matrix were observed using a HITACHI TM3000 SEM device.
XRD measurements were performed with a double light source single-crystal Bruker D8
VENTURE diffractometer and an X-ray wave length λ = 1.5418.
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4. Results and Discussion
4.1. Flexural and Compressive Tests on Mortar Specimens

The results obtained from the flexural and compressive tests on mortar specimens
exposed to 100 ◦C, 200 ◦C, and 300 ◦C before testing are presented in Table 2. Between
20 ◦C and 100 ◦C, the mean flexural strength remained unchanged, whereas the mean
compressive strength decreased by 40.6%. As was expected, the temperature of 100 ◦C
was a tipping point since, for higher temperatures, both the flexural and the compressive
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strength changed their behavior. Between 200 ◦C and 300 ◦C, the former decreased—by
7.8% and 35%—while the latter increased—by 5.4% and 11.8%—respectively. However,
from the variation of the respective values between 100 ◦C and 300 ◦C, it can be speculated
that the compressive strength remained unchanged. The bigger scatter of the results at
200 ◦C was attributed to the nonuniform alterations in the mortar mass. Additionally,
the mean tensile strength value was calculated per the FIB Model Code for Concrete
Structures [36] and provided in the same table to compare the tensile stress in the mortar
σ1,m at the first crack.

Table 2. Mechanical properties of the mortar in ambient temperature and after exposure to elevated
temperatures.

20 ◦C 100 ◦C 200 ◦C 300 ◦C

Flexural strength, fu,m
(MPa) 7.5 (0.016) 7.6 (0.065) 7.1 (0.140) 5.0 (0.015)

Mean tensile strength fctm
(MPa) 3.0 2.0 2.2 2.4

Compressive strength,
fc,m (MPa) 34.2 (0.045) 20.3 (0.070) 21.4 (0.140) 22.7 (0.090)

4.2. XRD, SEM, and TGA for the Mortar

The changes that were observed in the mortar’s microstructure are presented in the
following section. The results obtained from the XRD analysis are presented in Table 3 and
Figure 4. As can be seen, between 20 ◦C and 100 ◦C, there was a decrease in the integrated
peak intensity (IPI) of calcium hydroxide owing to improved ‘curing’ conditions allowing
the polymeric film dispersion. The resiliency of the flexural strength was thought to be
caused by this phenomenon, combined with the existing microfibers and the drop in water
content from evaporation [5]. Additionally, the IPI of quartz and calcite was relatively
high at room temperature. The first indicated that carbonation began during the test,
whereas the second correlated to the increase in the elevated silica level of the polymeric
component [32]. The delayed ettringite formation (DEF), which occurs between 20 ◦C and
100 ◦C, was probably the reason for the increase in the relevant IPI—that extra amount
aided in the mortar’s continued degradation [37]. Above 100 ◦C, the ettringite becomes
unstable and starts to decompose. As Table 3 shows, between 100 ◦C and 200 ◦C, the
polymeric film’s deterioration allowed the release of calcium hydroxide; between 200 ◦C
and 300 ◦C, the decrease in the latter might be attributed to supplemental carbonization,
hence the increase in calcite. Zhou and Glasser [38] and Jeong et al. [39], reported that
if the specimens return to environmental conditions after heating, then the C-S-H, the
monosulfate and the pore solution can react and produce more ettringite. Therefore, this
most likely explains why the IPI for the specimens treated at 300 ◦C was enhanced; however,
a more in-depth investigation of the phenomena is outside the boundaries of this work.
Additionally, the TGA test results show that the first stage of mass loss began at 80 ◦C due to
the evaporation of unbounded water, with a starting temperature of 50 ◦C (the endothermic
reaction’s peak is shown in Figure 5). Extra information on the use of the TGA is provided
in Appendix A. The decrease in the compressive strength between 20 ◦C and 100 ◦C is
linked to the procedure above; the water evaporation helps the microcrack formation and
weakens the cohesive forces within C-S-H [40]. Above 100 ◦C, the dehydration of C-S-H
and the ettringite decomposition partially restored the compressive strength [38,41,42]. The
latter is decomposed at around 120 ◦C, hence the observed peak of the derivative mass loss
(DTG) (Figure 5). Additionally, the SEM pictures demonstrate a gradual deterioration of
the mortar’s internal structure. They depict the melting of the microfibers in temperatures
above 200 ◦C, which increased the porosity and further weakened the mortar’s performance
(Figure 6).
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Table 3. Integrated Peak Intensity of the various constituents in different temperatures.

Components
Integrated Peak Intensity (in Counts)

2θ (deg.) 20 ◦C 100 ◦C 200 ◦C 300 ◦C

Portlandite 18 57 15 136 88

Quartz 26 19,478 17,022 20,955 25,099

Calcite 29 21,187 15,279 14,566 15,328

Ettringite 50 3018 4102 1719 2836

C-S-H 47 3618 4290 4261 3366
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Figure 6. SEM pictures for mortar at (a) 20 ◦C, (b) 100 ◦C, (c) 200 ◦C, and (d) 300 ◦C.

4.3. Fabric Yarns Tensile Test

Table 4 summarizes the heat-treated basalt, carbon, and glass textile yarn’s residual
tensile strength. The maximum load measured over the roving area was the basis for
calculating the tensile strength, while ASTM D2256-02 [43] was used to determine the
elastic modulus. The relevant strain was determined based on the deformation obtained
from the two LVDTs divided by the gauge length. The relative stress–strain curves are
shown in Figure 7. The outcomes demonstrated that the three different fibers’ residual
strengths were affected by temperature in various ways. Starting from the basalt yarns, the
exposure to 100 ◦C increased the tensile strength by 37%, while at 200 ◦C, there was an
increase of 31%. The residual strength at 300 ◦C deteriorated fast, exhibiting a drop of 33%.

Table 4. Ultimate tensile stress of the fabric yarns for different preheating temperatures.

Group of Specimens Y-B-20 Y-B-100 Y-B-200 Y-B-300

Tensile strength (MPa) 1983.1 (0.2) * 2718.5 (0.16) 2591.4 (0.02) 1325.3 (0.04)
Ultimate strain 0.0239 (0.17) 0.0332 (0.14) 0.0273 (0.07) 0.0132 (0.05)

Elastic modulus (GPa) 87.9 (0.01) 95.7 (0.02) 101.2 (0.04) 109.8(0.01)

Y-C-20 Y-C-100 Y-C-200 Y-C-300

Tensile strength (MPa) 1317.1 (0.09) 1260.8 (0.05) 1411.1 (0.03) 1222.9 (0.02)
Ultimate strain 0.0067 (0.05) 0.0062 (0.03) 0.0074 (0.01) 0.0061 (0.04)

Elastic modulus (GPa) 204.6 (0.03) 215.7 (0.02) 217.6 (0.03) 220.0 (0.03)

Y-G-20 Y-G-100 Y-G-200 Y-G-300

Tensile strength (MPa) 996.9 (0.06) 1019.6 (0.06) 1067.1 (0.07) 1037.3 (0.05)
Ultimate strain 0.0208 (0.13) 0.0178 (0.07) 0.0180 (0.12) 0.0159 (0.07)

Elastic modulus (GPa) 57.9 (0.06) 65.9 (0.01) 65.4 (0.05) 69.6 (0.01)
Note: * refers to the coefficient of variation value.
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Figure 7. Stress–strain relationship of (a) basalt, (b) carbon, and (c) glass fiber yarns.

On the other hand, carbon fibers proved more resilient up to 200 ◦C, since the residual
tensile strength exhibited small fluctuations; at 100 ◦C, there was a drop of 4.3%, while up
to 200 ◦C, the strength increased by 7%. At 300 ◦C, the yarns lost 7.2% of their original
strength. The glass yarn exhibited a different performance, for which the residual tensile
strength remained unaffected up to 100 ◦C (a slight increase of 2.3%). By contrast, from
100 ◦C to 200 ◦C, the residual strength increased by 7%, while an increase of 4% was
recorded between 200 ◦C and 300 ◦C. Meanwhile, all types of fibers exhibited a consistent
increase in the modulus of elasticity after heat treatment in all temperatures.

The failure modes observed during the tensile tests varied according to the fiber type
and the temperature level. More accurately, the basalt yarns exposed to environmental
conditions failed due to the gradual breakage of individual filaments, unlike the specimens
exposed to 100 ◦C, which failed due to rupture of one of the yarns (Figure 8a,b). Individual
filament breakage determined the type of failure at 200 ◦C and 300 ◦C (Figure 8c,d). The
failure of carbon yarns, up to 200 ◦C, was characterized by abrupt rupture. The failure was
close to the grips or in the middle (Figure 9a–c). At 300 ◦C, the gradual breakage of filaments
was the prominent mode (Figure 9d). The glass fibers showed similar behavior: up to 200 ◦C
failed due to abrupt rupture either in the middle or close to the grips (Figure 10a–c); at
300 ◦C, failure was characterized by gradual breakage of individual filaments (Figure 10d).
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The changes in the coating agent (melting and solidification) explained the relative
increase in tensile strength for all types of fibers up to 200 ◦C due to better impregnation of
the filaments in the yarns. Additionally, all specimens became more brittle between 200 ◦C
and 300 ◦C due to changes in their microstructure and the wear off of the coating (details
are discussed in the following section). At 200 ◦C and 300 ◦C, in particular, basalt and
carbon fiber yarns were difficult to handle (the filaments were easily broken). The specific
behavior was not so extensive for the glass fiber grids, implying that SBR performed better.
The separation of the filaments observed at 300 ◦C indicated the deterioration of the coating
material for all types of fibers (Figures 8d, 9d and 10d).

4.4. XRD, SEM, and TGA Tests for the Yarns

Figure 11a–c presents the XRD curves for the three types of fibers subjected to different
temperature environments. Changes in the peak intensity demonstrated a dependency
on the types of fibers and temperature. As was expected, the basalt and glass fibers had
similar curves, whereas the respective carbon exhibited a different XRD pattern. The
changes were more evident for the basalt and glass than for carbon fibers throughout
the range of temperatures, implying changes in the microstructure. Additionally, their
samples heated to 300 ◦C showed a sizable peak intensity shift to the right. Particularly
for the glass fibers, this pattern was more noticeable (Figure 11c). Those changes were
attributed to the weakening of the chemical bonds in the basalt structure [44] and the
lattice’s compressive stresses caused by the glass fibers’ contraction [45,46]. At the same
time, the carbon fibers exhibited a considerable change in the XRD curve between 200 ◦C
and 300 ◦C (the corresponding peak became broader than in the previous temperatures).
The slight alteration in the grain sizes caused by the degree of graphitization of carbon was
responsible for that change after exposure to 300 ◦C.
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Table 5 presents the full width of the peaks at half maximum height (FWHM) used to
detect potential lattice strains. A similarity between basalt and glass fibers appeared—the
carbon, on the contrary, remained almost unchanged. The decrease in the FWHM between
20 ◦C and 100 ◦C for the basalt and glass fibers implied tensile stress relaxation in the
microstructure [47]. Since the temperatures were low, this relaxation was attributed to
modifications in the coating material. Based on evidence obtained from TGA (presented
in the subsequent paragraph) and on findings from other researchers (e.g., [48]), the glass
transition temperature for the polymeric coating agent was between 75 ◦C and 100 ◦C. The
specific transition requires the breakage of secondary bonds between the atoms involved in
this type of relaxation [49]. At 200 ◦C, the FWHM values for the basalt and the glass fibers
increased, while the carbon remained unchanged. This behavior implied the existence of
residual nonuniform strains; a possible partial penetration of the material to the fiber might
also have occurred, as other researchers stressed [15,48,50]. Furthermore, the decrease in
FWHM at 300 ◦C for both fibers indicated substantial residual strains (compressive) in the
solid structure, implying fiber contraction, hence the XRD peaks shift to the right.

Table 5. Full Width of the peaks at Half Maximum height (FWHM).

Types of Fibers FWHM
20 ◦C 100 ◦C 200 ◦C 300 ◦C

Basalt 10.51 7.6 9.06 7.06
Carbon 2.64 3.63 2.60 2.56
Glass 9.3 7.75 8.76 7.33

The SEM pictures depict significant alterations of the coating material. Especially for
the basalt, and to a lesser extent for the carbon and glass fibers, the transformations of
the coating agent were more evident at 100 ◦C (Figure 12b,f,j). At 200 ◦C, and especially
at 300 ◦C, the structure of all the grids gave signs of deterioration: multiple fractures of
fibers, absence or heavy decomposition of the coating agent (Figure 12c,g,k,d,h,l). The
absence of the latter was responsible for the decrease in strength not only because of the
uneven distribution of stresses but also because it revealed initial flaws on the surface of the
fibers. According to [51,52], the desizing effect—removal of the coating through heating—
reveals these flaws and precipitates failure; the spots on the surface of the glass and the
basalt fibers at 300 ◦C were indicative (Figure 12d,l). The same effect can also explain
the increase in elastic modulus with temperature. On the other hand, the SEM pictures
show that the SBR as a sizing agent was more resistant—it starts to deteriorate above
200 ◦C [53]—hence the rupture of the fiber yarns up to that temperature. Additionally,
the difference in the coefficient of thermal expansion between SBR and glass fibers—the
former is higher than the latter—yielded cracking of the surrounding coating material
during cooling (Figure 12k,l). An important factor that needs to be further investigated is
the duration of the exposure to the elevated temperatures, since it plays an important role
in the overall behavior of the fibers [51,54–56].



Buildings 2023, 13, 1900 13 of 25Buildings 2023, 13, x FOR PEER REVIEW 13 of 26 
 

 
Figure 12. SEM analysis for (a–d) basalt, (e–h) carbon, and (i–l) glass fibers preheated to different 
target temperatures. 

Furthermore, the heating and cooling-off of the samples plays a significant role in the 
interfacial shear strength (IFSS) developed between the fibers and the coating material. 
According to Jenkins [46], between 180 °C and 200 °C the IFSS increases, hence the in-
creased tensile strength between 100 °C and 200 °C. Nonetheless, more research is needed 
on this specific aspect. 

The TGA results supported the findings described above (Figure 13). The onset tem-
perature for all fibers ranged between 150 °C and 200 °C. The extrapolated onset temper-
ature (𝑇௢) for the carbon and basalt fibers was around 270 °C and 360 °C for the glass 
counterparts, marking the initiation of mass loss related to the volatile behavior of the 
coating agent. The inflation point for the carbon and basalt fibers was around 360 °C and 
400 °C for glass. Additionally, in the differential thermal analysis (DTA) curve for the car-
bon and the basalt fibers, a slight change occurred at around 70 °C, while a peak occurred 
close to 50 °C for the glass fibers, signaling the glass transition temperature for the coating 
agents. Additional information for defining the terms mentioned above is presented in 
Appendix A. 

Figure 12. SEM analysis for (a–d) basalt, (e–h) carbon, and (i–l) glass fibers preheated to different
target temperatures.

Furthermore, the heating and cooling-off of the samples plays a significant role in the
interfacial shear strength (IFSS) developed between the fibers and the coating material.
According to Jenkins [46], between 180 ◦C and 200 ◦C the IFSS increases, hence the increased
tensile strength between 100 ◦C and 200 ◦C. Nonetheless, more research is needed on this
specific aspect.

The TGA results supported the findings described above (Figure 13). The onset
temperature for all fibers ranged between 150 ◦C and 200 ◦C. The extrapolated onset
temperature (To) for the carbon and basalt fibers was around 270 ◦C and 360 ◦C for the
glass counterparts, marking the initiation of mass loss related to the volatile behavior of
the coating agent. The inflation point for the carbon and basalt fibers was around 360 ◦C
and 400 ◦C for glass. Additionally, in the differential thermal analysis (DTA) curve for
the carbon and the basalt fibers, a slight change occurred at around 70 ◦C, while a peak
occurred close to 50 ◦C for the glass fibers, signaling the glass transition temperature for
the coating agents. Additional information for defining the terms mentioned above is
presented in Appendix A.

4.5. TRM Coupons Tensile Test
4.5.1. Stress–Strain Diagrams

Figure 14 illustrates the average stress vs. strain curves for all the types of fibers at
different temperature environments. The majority of the coupons responded consistently
across all temperatures. A nonlinear transition zone typically followed the first linear
section, signifying the start of microcracking before the first significant crack. Most of the
time, Stages II and III were difficult to discern from one another. The behavior was slightly
different for two basalt specimens tested at ambient temperature, one at 200 ◦C, and one
at 300 ◦C, since after cracking, slippage of the fibers within the matrix led to failure. The
clevis-type grip and the deterioration of the mortar at high temperatures were considered
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responsible for the absence of stage II (e.g., [57–60]); in retrospect inspections, it was clear
that the embedded aluminum plates did not prevent the slippage of the fibers within the
coupons. At the final stage, most specimens failed after displaying an ascending branch
or pseudohardening effect. At this point, the graphs had a certain jaggedness from the
gradual failure of individual filaments.
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Figure 13. TGA results of (a) basalt, (b) carbon, and (c) glass fibers.

4.5.2. Modes of Failure

After exposure to various temperatures, none of the specimens showed any apparent
color change or spalling. A post-test examination of the aluminum plates showed that
the adhesive compound was not affected by temperatures up to 100 ◦C but was entirely
burned at temperatures above that point, particularly at 300 ◦C. The failure mechanisms
were divided into four major categories according to the location of the cracks—close to
the grips, in the middle of the specimen, a combination of the previous two, and multiple
cracking—types, I, II, III, and IV, respectively. Based on how the fibers performed at
failure—rupture, slippage of the yarns within the matrix, and a combination of the two—
they were further separated into three subcategories, a, b, and c (Table 6 includes detailed
description of the modes of failure). The tensile results of coupons are shown in Table 7.
The coupons reinforced with basalt fibers at 20 ◦C failed, exhibiting type Ib failure. One
specimen suffered tensile failure of the yarns after cracking—type IIa (Figure 15a). The
specimens exposed to 100 ◦C failed under type Iic mode (Figure 15b). At 200 ◦C, types Iva
and Ivc were the prominent failure modes; all specimens developed secondary cracks in the
middle, and one specimen suffered additional cracks at the grips (Figure 15c). At 300 ◦C,
all specimens developed a large crack in the middle, while one had additional cracks at the
grips; a sudden rupture of the fibers characterized the failure mode. The degradation of the
stitches between the warp and the weft, together with changes in the internal structure of
the fibers and the coating agent (implied by the color change), were considered responsible
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(Figure 15d). According to the evidence, the TRM coupons’ basalt fibers failed like the
corresponding fabric yarns.
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Table 6. Description of the failure mode of coupons.

Cracking Condition Fibers’ Performance

I Close to the grips a Rupture

II In the middle of the specimen b Slippage of the yarns within the matrix

III A combination of I and II c Combination of the a and b

IV Multiple cracking
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Table 7. Results of the basalt, carbon, and glass textile-reinforced coupons’ tensile test for all tempera-
tures.

Specimen
Type σ1 (MPa) σu (MPa) σ1,m (MPa) Failure

Mode
Specimen

Type σ1 (MPa) σu (MPa) σ1,m (MPa) Failure
Mode

C-B-201 135.8 411.3 0.39 IIa C-C-201 317.9 963.0 1.43 IVa
C-B-202 785.9 * 785.9 2.24 Ib C-C-202 444.3 527.2 2.00 IVc
C-B-203 607.1 * 607.1 1.73 Ib C-C-203 296.1 539.5 1.33 IVb
Average 509.6 601.2 1.46 Average 352.8 676.5 1.6

CoV 0.53 0.25 0.53 CoV 0.18 0.30 0.18

C-B-1001 257.3 545.4 0.86 IIc C-C-1001 115.0 796.3 0.52 IVa
C-B-1002 364.9 897.5 1.22 IIc C-C-1002 244.6 1047.8 1.10 IVa
C-B-1003 - - - C-C-1003 346.6 993.5 1.56 IVa
Average 311.1 721.5 1.04 Average 235.4 945.9 1.06

CoV 0.17 0.24 0.17 CoV 0.40 0.11 0.40

C-B-2001 499.2 * 499.2 1.66 IVa C-C-2001 210.3 764.2 0.95 IVa
C-B-2002 306.8 623.3 1.02 IVc C-C-2002 244.4 643.2 1.10 IVa
C-B-2003 300.9 512.1 1.00 IVa C-C-2003 419.4 1036.7 1.89 IVa
Average 368.9 540.7 1.23 Average 291.4 814.7 1.31

CoV 0.25 0.11 0.25 CoV 0.31 0.20 0.31

C-B-3001 306.5 537.5 1.02 IIa C-C-3001 244.6 478.7 1.10 IIIc
C-B-3002 254.5 * 254.2 0.85 IIa C-C-3002 389.8 387.7 1.75 IIIc
C-B-3003 137.8 399.0 0.46 IIIa C-C-3003 180.6 364.5 0.81 IIIc
Average 232.9 396.9 0.78 Average 271.7 410.5 1.22

CoV 0.30 0.29 0.30 CoV 0.32 0.12 0.32

Specimen
Type σ1 (MPa) σu (MPa) σ1,m

(MPa)
Failure
mode

Specimen
Type σ1 (MPa) σu (MPa) σ1,m

(MPa)
Failure
mode

C-G-201 191.2 681.8 0.78 IIIa C-G-2001 140.1 749.7 0.57 IVa
C-G-202 276.5 737.8 1.13 IIIb C-G-2002 258.3 112.9 1.06 IVa
C-G-203 255.2 770.7 1.04 IIIa C-G-2003 144.6 433.5 * 0.59 IVa
Average 240.9 730.1 0.98 Average 181.0 765.4 0.74

CoV 0.15 0.05 0.15 CoV 0.30 0.36 0.31

C-G-1001 257.4 901.1 1.05 IIIa C-G-3001 260.8 785.3 1.07 IVa
C-G-1002 224.0 880.6 0.92 Ia C-G-3002 333.4 768.3 1.36 IVc
C-G-1003 253.0 902.6 1.04 IIIa C-G-3003 353.5 940.0 1.45 IVa
Average 244.8 895.1 1.00 Average 315.9 831.2 1.29

CoV 0.06 0.01 0.06 CoV 0.13 0.09 0.13

Note: * the maximum value coincides with the cracking stress.

Up to 200 ◦C, the carbon fiber-reinforced coupons failed, exhibiting multiple cracks
perpendicular to the axis of the specimen; the cracks followed the grid’s dimensions along
the weft yarns. Fiber rupture characterized the failure of one coupon at 20 ◦C, whereas the
others failed due to slippage or a combination of slippage and tensile failure. The failure
mode was type IVa up to 200 ◦C, but at 300 ◦C, the loss of the coating material and the
stitch bonding altered the failure mode to type IIIc (Figure 16d).

At 20 ◦C, the glass counterparts failed, exhibiting both IIIa and IIIb modes, whereas
the specimens exposed to 100 ◦C failed due to Ia and IIIa types (Figure 17a,b). Instead,
the 200 ◦C and 300 ◦C developed multiple cracks—both failed due to rupture of the glass
filaments (Figure 17c,d). The grid behaved at the last stage precisely like the appropriate
fabric braids during the tensile testing.



Buildings 2023, 13, 1900 17 of 25

Buildings 2023, 13, x FOR PEER REVIEW 17 of 26 
 

Up to 200 °C, the carbon fiber-reinforced coupons failed, exhibiting multiple cracks 
perpendicular to the axis of the specimen; the cracks followed the grid’s dimensions along 
the weft yarns. Fiber rupture characterized the failure of one coupon at 20 °C, whereas the 
others failed due to slippage or a combination of slippage and tensile failure. The failure 
mode was type IVa up to 200 °C, but at 300 °C, the loss of the coating material and the 
stitch bonding altered the failure mode to type IIIc (Figure 16d). 

 
Figure 16. Failure modes of carbon coupons at (a) 20 °C, (b) 100 °C, (c) 200 °C, and (d) 300 °C. 

At 20 °C, the glass counterparts failed, exhibiting both IIIa and IIIb modes, whereas 
the specimens exposed to 100 °C failed due to Ia and IIIa types (Figure 17a,b). Instead, the 
200 °C and 300 °C developed multiple cracks—both failed due to rupture of the glass fil-
aments (Figure 17c,d). The grid behaved at the last stage precisely like the appropriate 
fabric braids during the tensile testing. 

 
Figure 17. Failure modes of glass coupons at (a) 20 °C, (b) 100 °C, (c) 200 °C, and (d) 300 °C. 

It is clear from the above description that the changes in the coating material and the 
mortar greatly impacted the failure patterns. More precisely, for all types of reinforce-
ment, the failure modes changed from 100 °C onwards, observed by the SEM, XRD, and 
TGA, as well as in earlier experiments [14,23]. Furthermore, it was clear from the data 
above that the two different coating agents further distinguished the specimens’ re-
sponses. Further study is necessary, nevertheless, as these findings differ from those pub-
lished in previous experimental campaigns (e.g., [24]). Additionally, at 300 °C, the changes 
in the microstructure of the glass fibers detected in the XRD were responsible for produc-
ing a low level of prestress caused by the contraction of the fibers [46]. The failure patterns 
agreed with those of Bernat-Maso et al. [60]. One interesting observation from the 

Figure 16. Failure modes of carbon coupons at (a) 20 ◦C, (b) 100 ◦C, (c) 200 ◦C, and (d) 300 ◦C.

Buildings 2023, 13, x FOR PEER REVIEW 17 of 26 
 

Up to 200 °C, the carbon fiber-reinforced coupons failed, exhibiting multiple cracks 
perpendicular to the axis of the specimen; the cracks followed the grid’s dimensions along 
the weft yarns. Fiber rupture characterized the failure of one coupon at 20 °C, whereas the 
others failed due to slippage or a combination of slippage and tensile failure. The failure 
mode was type IVa up to 200 °C, but at 300 °C, the loss of the coating material and the 
stitch bonding altered the failure mode to type IIIc (Figure 16d). 

 
Figure 16. Failure modes of carbon coupons at (a) 20 °C, (b) 100 °C, (c) 200 °C, and (d) 300 °C. 

At 20 °C, the glass counterparts failed, exhibiting both IIIa and IIIb modes, whereas 
the specimens exposed to 100 °C failed due to Ia and IIIa types (Figure 17a,b). Instead, the 
200 °C and 300 °C developed multiple cracks—both failed due to rupture of the glass fil-
aments (Figure 17c,d). The grid behaved at the last stage precisely like the appropriate 
fabric braids during the tensile testing. 

 
Figure 17. Failure modes of glass coupons at (a) 20 °C, (b) 100 °C, (c) 200 °C, and (d) 300 °C. 

It is clear from the above description that the changes in the coating material and the 
mortar greatly impacted the failure patterns. More precisely, for all types of reinforce-
ment, the failure modes changed from 100 °C onwards, observed by the SEM, XRD, and 
TGA, as well as in earlier experiments [14,23]. Furthermore, it was clear from the data 
above that the two different coating agents further distinguished the specimens’ re-
sponses. Further study is necessary, nevertheless, as these findings differ from those pub-
lished in previous experimental campaigns (e.g., [24]). Additionally, at 300 °C, the changes 
in the microstructure of the glass fibers detected in the XRD were responsible for produc-
ing a low level of prestress caused by the contraction of the fibers [46]. The failure patterns 
agreed with those of Bernat-Maso et al. [60]. One interesting observation from the 

Figure 17. Failure modes of glass coupons at (a) 20 ◦C, (b) 100 ◦C, (c) 200 ◦C, and (d) 300 ◦C.

It is clear from the above description that the changes in the coating material and the
mortar greatly impacted the failure patterns. More precisely, for all types of reinforcement,
the failure modes changed from 100 ◦C onwards, observed by the SEM, XRD, and TGA, as
well as in earlier experiments [14,23]. Furthermore, it was clear from the data above that
the two different coating agents further distinguished the specimens’ responses. Further
study is necessary, nevertheless, as these findings differ from those published in previous
experimental campaigns (e.g., [24]). Additionally, at 300 ◦C, the changes in the microstruc-
ture of the glass fibers detected in the XRD were responsible for producing a low level of
prestress caused by the contraction of the fibers [46]. The failure patterns agreed with those
of Bernat-Maso et al. [60]. One interesting observation from the experiments was that most
specimens exposed to 300 ◦C did not experience cracks around the grips, which could be
explained by the mortar’s higher compressive strength at that temperature.

4.5.3. Stress, Deformability, and Precracked and Postcracking Behavior

The comparisons between the different temperatures and the different types of fibers
were made based on seven parameters as follows: (a) the stress σ1, (b) the strain ε1, (c) the
slope E1, (d) the stress σu, € the strain εu, (f) the slope E2, and (g) the stress σ1,m. For the
calculation of stress σ1, the respective load was divided by the total area ∑ An of the yarns
included in each coupon—n was the number of yarns—while for σ1,m, the same load was
divided by the coupon’s gross cross-sectional area. The strains ε1 and εu were determined
using the average value of two external LVDTs mountain on the two sides of the coupons
having a gauge length of 300 mm. The slope E1 was calculated according to the method
provided in Annex A of AC434 [30]. Similarly, the slope E2 was calculated as the gradient
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of the line passing through the points (ε0.6 fu , 0.6 fu) and (ε0.9 fu , 0.9 fu), as was recommended
in ACI 549.6R-20 [61]. Tables 6–8 present the stresses σ1, σu, and σ1,m for each group of
specimens and temperatures, whereas Table 8 contains the average values of ε1, εu, E1, and
E2. Figure 18 presents the values of σ1 and σu concerning temperature, while Figure 19
presents the normalized values of ε1 E1 and εu E2 for all coupons and temperatures.

Table 8. Averaged value of ε1, εu, E1, and E2 of coupons for all temperatures.

Type of
Specimens ε1 εu E1 (GPa) E2 (GPa)

C-B-20 0.0037 (0.58) * 0.0115 (0.29) 180.19 (0.26) 35.5 (0.47)

C-B-100 0.0072 (0.36) 0.0204 (0.24) 95.05 (0.22) 38.4 (0.07)

C-B-200 0.0028 (0.32) 0.0112 (0.32) 217.12 (0.25) 96.4 (0.61)

C-B-300 0.0028 (0.18) 0.0102 (0.54) 155.90 (0.39) 55.5 (0.38)

C-C-20 0.0024 (0.51) 0.0244 (0.41) 214.40 (0.25) 14.4 (0.49)

C-C-100 0.0057 (0.71) 0.0371 (0.07) 139.9 (0.21) 28.0 (0.21)

C-C-200 0.0063 (0.36) 0.0306 (0.14) 90.6 (0.35) 21.2 (0.42)

C-C-300 0.0083 (0.50) 0.0190 (0.23) 97.1 (0.44) 12.8 (0.08)

C-G-20 0.0059 (0.34) 0.0296 (0.30) 73.0 (0.38) 19.8 (0.39)

C-G-100 0.0071 (0.18) 0.0331 (0.09) 67.4 (0.22) 20.5 (0.19)

C-G-200 0.0033 (0.39) 0.0212 (0.46) 69.9 (0.25) 41.2 (0.28)

C-G-300 0.0052 (0.25) 0.0279 (0.03) 68.9 (0.23) 26.9 (0.17)
Note: * refers to the coefficient of variation value.

The mortar matrix dominated the precracking behavior of coupons. The cracking
stress was usually around 1.9 MPa for all fibers and temperatures. At the same time, the
values of the calculated mean tensile strength were nearly twice as high as those observed,
showing that at this point the grids were not affecting the response. However, by going
through the results obtained from the basalt and the carbon fibers, it was obvious that the
values of the former were consistently higher than those of the latter up to 200 ◦C. That
performance agreed with the results provided by D’Antino [59] regarding the relevant
behavior of stitch-bonded yarns. At 300 ◦C, the deterioration of the stitches reversed
that behavior. The improvement of mortar’s performance brought on by better curing
conditions was connected with an increase in the first cracking stress up to 100 ◦C. At
200 ◦C, the carbon and basalt specimens exhibited an increase of σ1 (or σ1,m).
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Figure 18. Tendency of (a) cracking stress σ1 and (b) ultimate stress σu after preheated to different
temperatures.
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In contrast, the glass counterparts showed a substantial decrease (Figure 18a). Interest-
ingly, although the decline of σ1 (or σ1,m) was prominent for carbon and basalt fiber coupons
exposed to 300 ◦C, the glass fiber equivalents increased their strength by 31%. From the
deformability point of view, all specimens lost their axial stiffness at 100 ◦C, whereas at
200 ◦C, the basalt and the glass fabric coupons became more brittle. On the contrary, the
carbon counterparts increased their deformability almost linearly at the expense of their
stiffness (Figure 19a,b). The improved cracking behavior of carbon and basalt coupons up
to 200 ◦C was ascribed to initial stresses developed during the heating–cooling procedure,
owing to the changes in the coating agent [23]; both share the same coating material. How-
ever, since the results from the literature are contradictory, e.g., in Colombo et al. [13], the
first cracking stress increased at 200 ◦C, whereas in Rambo et al. [14], it decreased. Further
research is needed using different types of mortar combined with different grids and fibers.
The improved behavior of the glass coupons at 300 ◦C was attributed to the prestress effect
due to fiber contraction (similar evolution in the cracking stress reported by Bernat-Maso
et al. [60]).

In the postcracking stage, the tensile behavior was dominated by the interfacial prop-
erties between textiles and the matrix and the tensile properties of textiles. Figures 18b and
19c,d present the development of the ultimate stress σu and the normalized parameters
εu and E2, respectively. The ultimate stress σu, increased for all specimens up to 100 ◦C.
The coupons reinforced with basalt fibers lost a significant amount of their initial strength
above that temperature, 10% and 34% at 200 ◦C and 300 ◦C, respectively. The strength of
the carbon and glass coupons increased at 200 ◦C by 20.4% and 4.6%, respectively, but they
had already begun to deteriorate (the strength was lower at 200 ◦C than at 100 ◦C by 13.9%
and 14.5%, respectively). The carbon coupons and the basalt lost about half their initial
strength at 300 ◦C. At the same temperature, the glass coupons gained 13.5% more strength.

Overall, there was a correlation between the ultimate stress, the kind of fiber, and the
heating intensity. Moreover, in cases where there was a change in the failure mode from
rupture of the fiber tensile to slippage within the matrix, the results show considerable
difference, hence the increased variation. The increase in strength up to 100 ◦C was caused
by an interlocking mechanism between the coating agent and the surrounding mortar;
symptoms included a change in failure modes and increased number and pace of cracks.
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The increase in yarn strength and the better bonding conditions were responsible for the
improved behavior of the carbon and glass specimens at 200 ◦C; strains imposed by the
mortar’s shrinkage were another potential contributor to further investigation. The low
fiber percentage, the deterioration of the coating agent (which was evident in the change in
color of the fibers), and the deterioration of the stitches in the nodes of the grid have all
been responsible for the different behavior the basalt fibers displayed, which resulted in the
coupons losing 10% of their original strength. Contrary to carbon grids, the stitching region
was weaker because the warp and weft directions were made of two smaller separated
yarns. The increase that the glass fiber coupons demonstrated at 300 ◦C was consistent
with the results obtained from the bare yarns at the same temperature. Combined with
the different behavior of the SBR, it explained that difference in performance. However,
additional investigation is needed for the overall behavior of the glass fabric grids.

Regarding the deformation characteristics, such as the maximum strain εu and the
slope E2, all of the specimens in the postcracked region followed the patterns of the corre-
sponding bare yarns, demonstrating that the performance of the fibers had a substantial
influence on the end stage. At 100 ◦C, a rise in E2 coincided with an increase in strength.
The basalt and glass specimens continued rising in E2 at 200 ◦C, whereas the corresponding
carbon specimens started to lose stiffness. At 300 ◦C, all specimens lost stiffness. How-
ever, the values of the glass fiber and basalt specimens remained higher than the initial
values. The basalt and glass fibers generally maintained their inherent brittleness over
200 ◦C. When exposed to temperatures up to 300 ◦C, the carbon and glass fiber grids
showed greater strength and resistance. The basalt fibers, in comparison, appeared suitable
only up to 100 ◦C. The pseudohardening behavior and deformability trends appeared
consistent with those reported in other experimental studies (e.g., [13–15,17]). Before such
characteristics can be utilized in design applications, further data are required.

5. Conclusions

A series of tests were conducted on mortar specimens, fabric yarns, and TRM coupons
after exposure to 100 ◦C, 200 ◦C, and 300 ◦C for eight hours. Given the specific experimental
set-up (i.e., clevis-type grip, dumbbell shape specimens), the focus was to assess the residual
tensile strength, the deformation behavior, and potential changes in the internal structure
of the constituents. The conclusions drawn can be summarized as follows:

– The polymer-modified mortar up to 100 ◦C retains its flexural strength due to the
improved dispersion of the polymeric agent, but the compressive strength drops
significantly. Above 100 ◦C, the increased porosity harms the flexural strength. The
compressive strength at the same range of temperatures experiences a marginal in-
crease due to the dehydration of C-S-H and the ettringite.

– The behavior of the fiber yarns remains unaffected up to 100 ◦C. The changes in the
coating agent increase the tensile strength up to 200 ◦C due to better impregnation
of the individual filaments. The coating agent starts to deteriorate at around 270 ◦C,
hence the significant decrease in tensile strength at 300 ◦C; between 200 ◦C and 300 ◦C,
the tensile strength drops by 48.9%, 13.30%, and 6% for the basalt, carbon, and glass
yarns, respectively.

– The contribution of the polymer-modified mortar to the overall behavior of the TRMs
is not significant.

– At 300 ◦C, the cracking stress σ1 (or σ1,m), for the glass fabric coupons are increased
due to a prestress effect attributed to fiber contraction.

– At 100 ◦C, the coupons’ tensile strength and ultimate strain are increased due to better
bonding conditions between the matrix and the grids.

– At 200 ◦C, the carbon fiber coupons and the glass counterparts increase their original
strength by 20.4% and 6%, respectively. At the same temperature, the basalt coupons
lost 10% of the original strength and became less efficient.
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– At 300 ◦C, the basalt and the carbon coupons lost between 34% and 40% of their origi-
nal strength, while the glass fiber coupons demonstrate an increase of 15% attributed
to the coating material and the inherent behavior of glass.

– From 200 ◦C onwards, the composite action gradually shows signs of deterioration
due to the decay of the coating agent and the changes within the mortar.

– The exposure to different temperatures alters the crack pattern of the different groups
of coupons at failure. Moreover, at 300 ◦C, all types of specimens failed due to slippage
of the fibers from the matrix.

– In general, carbon and glass fibers are more resilient when exposed to a heated
environment.

– The grids’ architecture plays a significant role in overall performance, since the
stitched-bond type deteriorates faster than the thermofixed type, affecting the bond
between the mortar and the grid.

Future experimental projects are needed to investigate the interaction between dif-
ferent matrices, coating agents, and fiber grids—especially the ‘interlocking mechanism’
between the coated fibers and the surrounding mortars. Another aspect that needs addi-
tional examination is the prestress effect introduced by the glass fiber contraction.
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Nomenclature
The following symbols are used in this paper:

An cross-sectional area of the yarns
n number of yarns
E1 elastic modulus of specimen in uncracked phase
E2 elastic modulus of TRM specimen in postcracked phase
fc,m compressive strength of mortar prisms
fctm mean tensile strength of mortar prisms
fu,m flexural strength of mortar prisms
To extrapolated onset temperature
σ1 tensile stress of the TRM specimen at the first cracking point
σ1,m tensile cracking stress of the TRM matrix
σu ultimate tensile strength of TRM specimen
ε1 strain value of TRM specimen at the first cracking point
εu strain value of TRM specimen at the ultimate tensile stress

Appendix A

The TGA analysis curves for the mortar and the three different fiber grids up to
1300 ◦C are presented in Figures A1 and A2, respectively. The first point of interest is the
onset temperature, which according to ASTM E2550 [62], is the ‘point in the TGA curve
where a deflection is first observed from the established baseline prior to the thermal event.’
The temperature at which the weight loss begins is the extrapolated onset temperature.
According to CSN EN ISO 11358-1 [63], the specific temperature can be defined as the point
of intersection between the horizontal line that passes through the initial mass baseline
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before heating and the tangent to the mass TGA curve passing through the point of the
maximum gradient. For the identification of the mass loss steps, the first derivative of
the TG curve is used; the corresponding temperature is called the inflation point. The
differential thermal analysis (DTA) curve gives information on potential transformations
like glass transition temperatures or melting. The extrapolated onset temperature for the
mortar was 80 ◦C, and the first mass loss step occurred at 125 ◦C; the second step occurred
above 300 ◦C and therefore was out of the range of the present study. The respective
extrapolated onset values for the basalt, carbon, and glass fibers were 275 ◦C and 365 ◦C,
while the inflation points were 360 ◦C and 400 ◦C.
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