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Abstract: Building information modeling (BIM) is a crucial information technology that promotes the
transformation and upgrading of the construction industry. It has been widely used in various stages
of construction projects, including design, construction, and operation. However, BIM technology
still faces numerous obstacles in practice. From the perspective of construction practitioners, this
study constructs a structural equation model to explore the obstacles encountered by construction
practitioners in the process of applying BIM technology. Task–technology fit, effort expectancy,
performance expectancy, user trust, and facilitating conditions can significantly improve practitioners’
behavioral intention, with task–technology fit having the most significant impact on behavioral
intention. Facilitating conditions and behavioral intention significantly affect usage behavior, while
perceived cost does not significantly affect behavioral intention. The multiple-group analysis found
that in the path of performance expectancy on behavioral intention, males have a significant effect
while females do not; in the path of facilitating conditions on behavioral intention, higher education
levels have a significant effect while lower education levels do not; in the path of facilitating conditions
on behavioral behavior, lower usage time has a significant effect while higher usage time does not.
Suggestions for promoting the application of BIM technology are proposed in this article to improve its
utilization rate. This study provides more perspectives and ideas for future research on BIM diffusion.

Keywords: construction; building information modeling (BIM); application barriers; Unified Theory
of Acceptance and Use of Technology (UTAUT)

1. Introduction

With the rise of the Internet, information technology has been continuously integrated
into social production and life, bringing tremendous changes to various industries. At
the same time, the rapid development of information technology, represented by building
information modeling (BIM), is profoundly influencing and changing the construction
industry, injecting new vitality into the industry. BIM is usually understood as a technology
and solution to enhance collaboration among design, engineering, and construction organi-
zations [1]. It contributes significantly to owners, designers, contractors, and management
teams collaborating, visualizing, and managing construction work to achieve better re-
sults [2]. These functions of BIM have yielded project benefits in design changes, reducing
duplication, energy efficiency, shortening construction time, and quality management [3].
Therefore, the promotion of BIM research plays a significant role, bringing tremendous
economic benefits and potentially leading to a digital transformation in the construction
industry. BIM adoption rates have significantly increased in countries such as the United
States [4], the United Kingdom [5], Singapore [6], and Chile [7]. Especially in Chile, consid-
ered a developing country, BIM usage has reached a high level [7]. However, BIM adoption
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rates have remained stagnant in China [8], also classified as a developing country. Despite
the growing popularity of BIM technology in Asian countries such as China, South Korea,
and Japan [9], the actual adoption rate in the Chinese construction industry falls short
of expectations [10], even with the Chinese government’s vigorous encouragement and
promotion of BIM adoption. Thus, it becomes an urgent and practical issue to address how
to increase the application rate of BIM in the Chinese construction sector.

Previous research has investigated the barriers to BIM adoption during its applica-
tion process. However, these studies have focused solely on aggregate levels, such as
industry, project, and organization. At the industry level, the lack of BIM standards and
guidelines and inadequate government support have been identified as significant fac-
tors [11–13]. At the project level, resistance to change and high implementation costs
have been considered primary obstacles [14,15]. On the organizational level, the lack of
relevant knowledge and training has been recognized as one of the barriers influencing the
promotion of BIM [15–17]. Although these studies have provided valuable insights into
the obstacles encountered during BIM application, there are some limitations: Firstly, from
the perspective of technology diffusion, there is a specific type of factor that has not been
investigated: the perception of BIM by users, meaning that the researchers have overlooked
the viewpoints of individuals at the personal level regarding BIM. Secondly, while existing
research primarily summarizes the barriers to BIM adoption, few studies have explored the
causal relationships between different factors. Thirdly, though Howard et al. examined
BIM application barriers from an individual perspective [18], the subjects were mainly
senior managers, excluding general managers and practitioners. Additionally, a survey of
375 organizations indicated that individual user resistance was the primary challenge in
large-scale information technology implementations [19]. As BIM technology is essentially
an information technology, it is also influenced by individual perceptions. Hence, it is
necessary to investigate how individual users perceive BIM and how these perceptions
affect its application in projects.

Therefore, to address the research above gaps, our study aimed to investigate the
barriers construction practitioners face using BIM from an individual perspective. We
sought to identify and rank the obstacles in the application process of BIM and reveal
the causal relationships between different factors, with the ultimate goal of enhancing the
adoption rate of BIM in the Chinese construction industry. To achieve this, we designed a
questionnaire based on the Unified Theory of Acceptance and Use of Technology (UTAUT)
model and collected 408 valid responses from BIM users in the industry. Subsequently,
we employed structural equation modeling (SEM) to analyze the proposed conceptual
model empirically. This study investigates architectural practitioners’ perspectives on using
BIM individually. The research findings are expected to contribute to local policymakers,
projects, and organizations effectively disseminating BIM technology among practitioners.

The remaining parts of this article are organized as follows. Section 2 provides an
overview of research on the application of BIM, research on barriers to the application
of BIM, and research on barriers to the application of BIM based on the UTAUT model.
Section 3 introduces the conceptual framework and proposes several hypotheses regarding
barriers to applying BIM. The research design, including data collection, variables, and
methods, is presented in Section 4, while Sections 5 and 6 present the results and discussions,
respectively. Finally, Section 7 summarizes the main research findings.

2. Literature Review
2.1. BIM Application

Given the significant impact of BIM on the construction industry, there has been a
substantial amount of literature on the topic of BIM applications, focusing primarily on
design, construction, and operation. BIM has many applications in the design phase,
including 3D modeling and visualization, clash detection, and logistics management. For
example, Providakis et al. used 3D modeling to predict settlement risk during tunnel
excavation and applied it to water resources projects [20], where it facilitated project
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management [21]. Three-dimensional modeling and visualization can also be used for
smart city planning [22]. Furthermore, BIM three-dimensional simulation in safety training
on construction sites can increase training effectiveness [23]. Clash detection is a process
that searches for and reports conflict between different parts of engineering projects and is
often used in pipe facility analysis [24,25]. Magill et al. found that improving the logistics
efficiency of integrated supply chains can optimize production [26] and play an essential
role in improving safety on construction sites and reducing costs [27]. In the construction
phase, BIM is also widely used. It can simulate the construction process [28], calculate
the materials required on site, and manage materials [29]. Combining BIM with VR can
also achieve visualized construction technology communication [30], realizing high-quality
construction engineering [31].

Additionally, Liu et al. provided detailed construction schedule plans under resource
constraints while reducing costs and ensuring construction safety [32]. In the operation
and maintenance phase, BIM can be used for equipment management [33], maintenance
plan development and execution, equipment failure detection, and analysis to improve
equipment maintenance efficiency and reduce maintenance costs [34]. In summary, the
application of BIM in the construction industry is widespread and has gradually become a
trend, but it still faces some application barriers.

2.2. Barriers to BIM Application

Scholars have studied the barriers to applying BIM from different perspectives, includ-
ing the industry, project, and organizational aspects. At the industry level, Manzoor et al.
found that the lack of BIM standards and guidelines is a significant consideration for
applying BIM [35]. Ahuja et al. believe that inadequate government support for adopting
BIM is a crucial factor [12]. In addition, research has shown that the need for more skilled
professionals and a limited implementation market can also hinder the application of
BIM [13]. At the project level, Lee et al. suggest that potential data exchange issues and
unforeseen errors obstruct the adoption and utilization of BIM in design, construction, and
facility management [36].

Moreover, the benefits of implementing BIM in construction projects, such as im-
proved scheduling, time and cost savings, facility management, and reduced rework, are
key motivating factors for BIM use [10,37,38]. In addition to the benefits of BIM, project
characteristics such as scale, team members’ BIM expertise, and effective communication
among them are also crucial for BIM success [39]. From an organizational perspective,
implementing BIM can enable more effective communication and collaboration among
internal and external stakeholders [40]. Therefore, implementing BIM relates to internal
organizational characteristics such as qualified internal staff [41], inter-firm relationship
network structure and organizational competitiveness [42,43], corporate culture, and in-
novation strategic technology [17]. At the same time, the attitude of top management
towards BIM is also a critical factor in the company’s use of BIM. In addition, the high
initial investment, time, and cost required for BIM training and low investment returns
also hinder the use of BIM [37,43], especially for small- and medium-sized construction
enterprises [44]. It is important to note that the analysis of this study was conducted in
the context of China, using the application status and barriers of BIM technology in the
Chinese construction industry as an example. The intention is to provide valuable insights
that may serve as a reference for similar countries and regions.

2.3. Barriers to BIM Application Based on the UTAUT Model

The UTAUT model integrates eight research models related to technology acceptance
and usage, developed by Venkatesh et al. as an extension of the Technology Acceptance
Model (TAM) [45,46]. Research has shown that the UTAUT model has high explanatory
power for behavior and intention, up to 70% [47], and is more effective than previous
models. Therefore, many scholars have used the UTAUT model to study the application
of BIM technology. Howard et al. used the UTAUT model to investigate the views of UK
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construction professionals on the use of BIM and found that UK professionals believed that
BIM was an unrewarding workflow [18]. Xue et al. combined the UTAUT model with the
task–technology fit model to study the use of BIM by non-management employees [48].
Batarseh and Kamardeen added individual beliefs and expected variables to the UTAUT
model to build a theoretical framework for personal adoption of BIM willingness [49].
Ademci and Gundes explored the driving factors and barriers to BIM implementation
at the individual and organizational levels [50]. Murguia et al. analyzed the impact of
industry culture cognitive elements on the willingness of participants to adopt BIM using
the UTAUT model [51]. Addy et al. conducted empirical research on the promotion factors
of surveyors’ adoption of BIM using the UTAUT model. They found that workload and
facilitating conditions significantly positively impacted BIM adoption [52].

BIM has been widely adopted in various aspects, such as design, construction, and
operation. However, as the depth of application increases, so do the barriers encountered.
Existing research on BIM application barriers mainly revolves around the industry, project,
and organizational levels, identifying factors such as the lack of standards and guidelines,
insufficient government support, data exchange issues, company culture, and organiza-
tional competitiveness as primary obstacles [35,36,43]. However, most of these studies
merely summarize the application barriers and lack an in-depth examination of the causal
relationships between various factors. Furthermore, in BIM application barrier studies
based on the UTAUT model, researchers such as Howard et al. and Murguia et al. have
incorporated attitude and industry culture as variables [18,51]. However, they lack inte-
gration with other technology acceptance models. Additionally, the scope of participants
in these studies is limited, focusing either on high-level management or solely general
construction practitioners (non-managers). Apart from that of Howard et al., there is a
scarcity of studies exploring the barriers to applying BIM from an individual perspective.
Therefore, it is imperative to focus on construction practitioners using BIM as research
subjects, including senior management, general management, and general construction
practitioners, to comprehensively investigate the obstacles encountered while promoting
and applying BIM from a personal standpoint.

3. Conceptual Framework

This study was conducted in China to investigate the application of BIM technology in
the Chinese construction industry. The primary objectives were to identify barriers encoun-
tered during the BIM application process, rank their impact, and analyze the relationships
between these barriers to mitigate their effects and enhance the adoption of BIM in the
Chinese construction sector. To address this issue, relevant theories related to technology
acceptance need to be employed and integrated into a more comprehensive model that
considers variables closely related to human society and specific BIM engineering pro-
cesses [53]. Consequently, this study builds upon the UTAUT model, incorporating the
actual situation of the Chinese construction industry to examine the extent of BIM adop-
tion. A novel BIM technology acceptance model is proposed in this paper, as illustrated
in Figure 1.

The model was developed by adjusting the UTAUT model, which retains three key fac-
tors: effort expectancy, performance expectancy, and facilitating conditions. In the UTAUT,
performance expectancy and effort expectancy are regarded as antecedents of behavioral
intention and have been widely applied in different studies, particularly in information
acceptance [54,55]. Taib et al. and Isaac et al. found that performance expectancy and effort
expectancy have a positive impact on behavioral intention [56,57]. Facilitating conditions
also influence behavioral intention, with Ronaghi and Forouharfar indicating that the
more favorable conditions there are, the stronger the usage intention [54]. Additionally,
psychology and behavioral science research show that behavioral intention affects usage
behavior, which is explained and predicted by behavioral intention [58].

Furthermore, the model includes task–technology fit as an antecedent of performance
expectancy and behavioral intention. Task–technology fit is critical for individual BIM users,
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especially for construction industry practitioners, because if the task and BIM match, they
can receive more rewards, as confirmed by Goodhue and Thompson [59]. Task–technology
fit is also highly correlated with behavioral intention [60]. Finally, the model adds two
variables: perceived cost and user trust. The perceived cost variable is derived from the
perceived risk theory, which holds that perceived risks and costs influence users’ acceptance
of technology and products [61]. BIM technology-related software is different from ordi-
nary office software, with strong professionalism, requiring a certain amount of time and
financial cost during the learning process, as Yang et al. demonstrated [62]. The user trust
variable is based on consumer trust theory [63]. Building software is designed to replace
traditional manual methods and requires high precision; users may need clarification on
the accuracy of automated calculation results, leading to a reluctance to use. Nordhoff
et al. found that people are more willing to use tools only if they trust them. Therefore,
behavioral intention is related to the user’s trust level [64].
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Figure 1. Proposed BIM acceptance model.

Based on the literature review and analysis of the relevant variables mentioned above,
the following hypotheses are proposed:

H1. Task–technology fit positively correlates with one individual’s performance expectancy to
use BIM.

H2. Task–technology fit positively correlates with one individual’s behavioral intention to use BIM.

H3. Performance expectancy can strengthen individuals’ behavioral intention to use BIM.

H4. Effort expectancy positively influences the individual’s behavioral intention to use BIM.

H5. Perceived cost positively affects individuals’ behavioral intention to use BIM.

H6. User trust positively affects individuals’ behavioral intention to use BIM.

H7. Facilitating conditions positively affect individuals’ behavioral intention to use BIM.

H8. Facilitating conditions have a positive effect on one individual’s usage of BIM.

H9. Behavioral intention can increase one individual’s usage of BIM.
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4. Data Collection and Analysis Method
4.1. Questionnaire Design

Based on the review of previous studies on BIM adoption barriers by Venkatesh et al.
and related research, a questionnaire was designed for this study. Most of the questions
in the questionnaire were derived from the relevant literature, as shown in Table 1. The
questionnaire was used to investigate the BIM adoption behavior and its influencing factors
among construction professionals.

The questionnaire consisted of two parts. The first part collected background informa-
tion of the respondents, while the second part included latent variables and their observed
variables. In studies using the UTAUT model, Likert scales are commonly used to obtain
data on IT system users’ perceptions [65]. Therefore, we designed the questionnaire as a
Likert five-point scale, which is an attitude assessment method. Respondents can rate the
observed variables based on their feelings, with scores ranging from “strongly agree” (5
points), “agree” (4 points), “neutral” (3 points), “disagree” (2 points), to “strongly disagree”
(1 point).

Table 1. Items and their sources.

Variable Description Source

Task–technology fit (TTF) Related BIM is mature enough to meet my daily work needs. [66]
The work processed by the BIM used is well matched. [67]
There are sufficient types of BIM families to meet my work requirements. [68]
BIM can achieve integration between different software. [48]

Effort expectancy (EE) I think learning to use BIM is easy. [45]
I think it is not necessary to spend too much effort to become proficient in using BIM. [69]
I think BIM has poor applicability and interoperability. [70]
I think there is insufficient integration between BIM and traditional 2D construction drawings. [48]

Performance expectancy (PE) I think using BIM is very helpful for my work. [45]
I think using BIM can help me complete work tasks faster. [71]
I think using BIM can improve my work efficiency. [52]
If I use BIM, I will increase my chances of increasing my income. [54]

Perceived cost (PC) I need to spend a lot of money to purchase BIM software. [72]
I think the price of using BIM software is too high, and I may have financial barriers. [62]
If BIM software prices are reduced, I would be more willing to continue purchasing. [72]
I think learning to use BIM software incurs high time costs. [73]

User trust (UT) I believe that BIM is safe. [64]
I believe that BIM is reliable. [74]
I believe that the results of using BIM software applications are accurate. [75]
I think spending time learning to use BIM software is worth it. [64]

Facilitating conditions (FC) The company provides funding support for BIM software and hardware facilities costs. [76]
The supplier can provide good support. [77]
The government recommends implementing BIM. [78]
The government has issued many policies to promote the development of BIM. [71]
I have sufficient resources and knowledge to use BIM in my work. [79]

Behavioral intention (BI) I am willing to use BIM. [18]
I am willing to recommend BIM to others. [45]
I hope to continue using BIM in the future. [48]

Use behavior (UB) In my work, I will frequently use BIM. [74]
I will recommend BIM to people around me. [45]
I will continue using BIM in the future. [54]

4.2. Data Collection

This study focuses on construction practitioners using BIM as research subjects. Two
methods were employed to collect data. Firstly, a questionnaire was collected through
the Credamo platform, a specialized integrated data platform for research and modeling.
Credamo provides large-scale surveys, data collection, and modeling analysis services for
research institutions, enterprises, and individuals. Additionally, Credamo offers consul-
tation services to meet challenging research needs, such as longitudinal tracking surveys,
paired sample surveys (e.g., leader–subordinate relationships), and E-Prime experiments.
So far, Credamo has served over 3000 academic institutions globally, covering various dis-
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ciplines, including management, psychology, medicine, sociology, etc. The data collected
through Credamo is considered to be professional and reliable.

As the data collected through Credamo was insufficient, we utilized the second
data collection method. The survey questionnaire was emailed to construction industry
professionals who use BIM. A "snowball sampling" strategy was employed to gather more
feedback, inviting respondents to forward the questionnaire to their colleagues. This
strategy was chosen to increase the relative response rate. Through both methods, a total of
546 responses were collected. Out of these, 138 were incomplete or had ambiguous answers
and were invalid, resulting in a final sample size of 408 valid responses, with an effective
response rate of 74.7%.

4.3. Analysis Method

Under the guidance of the conceptual framework, we employed SEM to explore the
causal mechanism between effort expectancy, performance expectancy, perceived cost, user
trust, facilitating conditions, task–technology fit, behavioral intention, and use behavior
among building professionals when using BIM. SEM is a comprehensive statistical method
for explaining the relationship between multiple variables and is commonly used in factor
analysis [80]. SEM provides a better method for researchers to analyze complex theoretical
models [81]. In the past 20 years, SEM has become increasingly popular in behavioral
studies because SEM can address the issue of unobserved variables, handle multiple
dependent variables, and allow both independent and dependent variables to include
measurement errors [82]. In summary, SEM is an effective method that can be used to
test causal relationships between variables and help us gain a better understanding of the
obstacles that building professionals encounter when using BIM.

5. Results
5.1. Descriptive Statistics

The demographic characteristics of the sample are presented in Table 2. In terms of
gender, the sample was balanced with females (50.98%) and males (49.02%). The majority
of participants had a bachelor’s degree (52.45%). Additionally, 48.53% of respondents had
5–10 years of work experience in the construction industry, while 30.39% had over ten
years of experience, indicating that the survey participants had extensive work experience
and were knowledgeable about the construction industry. Regarding BIM usage duration,
72.55% of respondents reported using BIM for over two years. Most respondents were
from developers, design institutes, and contractors, accounting for 87.25% of the sample.
In terms of job position, technical personnel accounted for the largest proportion (57.87%).

Table 2. Description of socio-demographic characteristics.

Characteristic Category Frequency Percentage (%)

Gender Male 200 49.02%
Female 208 50.98%

Education Junior college and below 31 7.60%
Bachelor 214 52.45%
Master 149 36.52%
Doctor 14 3.43%

Work experience (years) 0–5 86 21.08%
6–10 198 48.53%
11–15 83 20.34%
>15 41 10.05%
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Table 2. Cont.

Characteristic Category Frequency Percentage (%)

Workplace Developer 112 27.45%
Design institute 143 32.05%

Contractor 101 24.75%
Consultancy firm 16 3.92%

Research institution 34 8.33%
Others 2 0.49%

Job position Technical personnel 236 57.84%
General management 84 20.59%
Senior management 60 14.71%

Others 28 6.86%
Usage time (years) 0–1 37 9.07%

1–2 75 18.38%
2–4 139 34.07%
4–6 127 31.13%
>6 30 7.35%

5.2. Reliability and Validity Tests
5.2.1. Reliability Tests

Cronbach’s α coefficient was used to measure the internal consistency of the ques-
tionnaire and conduct a reliability test. Table 3 shows that Cronbach’s α coefficients of all
variables are above 0.7 [83], indicating a high degree of reliability of the questionnaire.

Table 3. Reliability and convergent validity.

Construct Code Factor Loading Cronbach’s α AVE CR

Task–technology fit (TTF) TTF1 0.768 0.820 0.536 0.822
TTF2 0.697
TTF3 0.734
TTF4 0.727

Effort expectancy (EE) PE1 0.765 0.821 0.537 0.822
PE2 0.760
PE3 0.705
PE4 0.698

Performance expectancy (PE) EE1 0.823 0.823 0.547 0.827
EE2 0.699
EE3 0.766
EE4 0.658

Perceived cost (PC) PC1 0.796 0.835 0.564 0.838
PC2 0.760
PC3 0.744
PC4 0.701

User trust (UT) UT1 0.757 0.832 0.556 0.833
UT2 0.760
UT3 0.713
UT4 0.751

Facilitating conditions (FC) FC1 0.771 0.847 0.529 0.849
FC2 0.745
FC3 0.720
FC4 0.649
FC5 0.746

Behavioral intention (BI) UI1 0.837 0.816 0.611 0.825
UI2 0.766
UI3 0.739

Use behavior (UB) UB1 0.779 0.789 0.560 0.729
UB2 0.737
UB3 0.727
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5.2.2. Validity Tests

Before conducting validity testing, we performed Kaiser–Meyer–Olkin (KMO) and
Bartlett’s tests to evaluate the suitability of the survey data for factor analysis. The KMO
value was 0.919, which was greater than 0.9, and the Sig value of the sample data chi-square
statistic was 0.000, which was less than the significant level of 0.05, suggesting sufficient
correlations among the measurement items, and it was suitable for factor analysis. Then,
we conducted a confirmatory factor analysis to test the validity, and the results are shown
in Table 3. The factor loadings of each latent variable were between 0.658 and 0.81, all
greater than 0.5. The composite reliability (CR) ranged from 0.729 to 0.849, all greater than
0.7 [84]. The average variance extracted (AVE) ranged from 0.529 to 0.611, all greater than
the critical value of 0.5, indicating that the questionnaire had good convergent validity.

In Table 4, the discriminant validity values, that is, the square root values of AVE for
each construct are shown to be larger than the squared correlation estimate, thus providing
good evidence of discriminant validity.

Table 4. Discriminant validity.

TTF EE PC UT PE BI UB FC

Task–technology fit (TTF) 0.732
Effort expectancy (EE) 0.314 0.739

Perceived cost (PC) −0.534 −0.532 0.751
User trust (UT) 0.321 0.345 −0.554 0.746

Performance expectancy (PE) 0.429 0.337 −0.544 0.361 0.733
Behavioral intention (BI) 0.495 0.524 −0.620 0.538 0.532 0.782

Use behavior (UB) 0.518 0.493 −0.664 0.538 0.547 0.629 0.748
Facilitating conditions (FC) 0.347 0.292 −0.544 0.474 0.424 0.570 0.548 0.728

Note: The first values of each column are the square roots of AVE values, and other values are the correlations
among constructs.

5.3. Model Goodness-of-Fit Tests

After ensuring the reliability and validity of the measures, we established a structural
equation model using the theoretical framework proposed in Figure 1 and analyzed the
model using Amos24.0 software. The fit indices of the model are presented in Table 5, with a
chi-square to degrees of freedom ratio (χ2/df) of 1.742, which is less than the recommended
threshold of 3. The goodness of fit index (GFI), incremental fit index (IFI), and comparative
fit index (CFI) were all greater than 0.9, indicating an acceptable model fit. The root mean
square error of approximation (RMSEA) was 0.042, which is less than the criterion of 0.05,
indicating a good fit. Therefore, the proposed model was deemed appropriate.

Table 5. Model goodness of fit.

Indicators χ2/df RMSEA GFI IFI CFI

Recommended value <3 <0.05 >0.9 >0.9 >0.9
Actual value 1.724 0.042 0.902 0.947 0.947

5.4. Path Analysis

The standardized path coefficients and their significance levels are presented in Table 6.
The p-values of the paths corresponding to H1, H2, H3, H4, H6, H7, H8, and H9 were all
less than 0.05, indicating that these hypotheses were supported. However, the p-value of
the path corresponding to H5 was greater than 0.05, indicating that the hypothesis that
perceived costs significantly influence usage intention was rejected.
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Table 6. Standardized coefficients.

Estimation Path Coefficient S.E. Hypothesis Results

TTF→PE 0.541 *** 0.078 H1 Supported
TTF→BI 0.163 * 0.068 H2 Supported
PE→BI 0.181 ** 0.045 H3 Supported
EE→BI 0.251 *** 0.064 H4 Supported
PC→BI −0.127 0.082 H5 Partially supported
UT→BI 0.210 ** 0.056 H6 Supported
FC→BI 0.212 *** 0.056 H7 Supported
FC→UB 0.231 *** 0.078 H8 Supported
BI→UB 0.569 *** 0.091 H9 Supported

Notes: *** p < 0.001, ** p < 0.01, * p < 0.05.

In a nutshell, the factors affecting the adoption of BIM are illustrated in Figure 2.
Behavioral intention was influenced by task–technology fit, performance expectancy, effort
expectancy, user trust, and facilitating conditions, in descending order of importance:
task–technology fit > effort expectancy > facilitating conditions > user trust > performance
expectancy. Meanwhile, usage behavior was influenced by facilitating conditions and
behavioral intention, with the relative importance in descending order: behavioral intention
> facilitating conditions.
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5.5. Multiple-Group Analysis

To test whether the proposed model had cross-group stability, this study conducted
a multiple-group path analysis on demographic variables (i.e., gender, education level,
experience, and usage time). The demographic variables did not impact the model if there
were no significant differences. If significant differences were found, it would indicate
that the demographic variables had a moderating effect. First, we grouped participants
based on gender, education level, experience, and usage time. Then, assuming the measure-
ment model was true, we examined the structural model. The p-values of the structural
coefficients were 0.159, 0.585, 0.763, and 0.273 for gender, education level, experience, and
usage time, respectively, all of which were greater than 0.05, indicating that there were no
significant differences in the structural coefficients across the groups.

However, the above description only reflects the overall phenomenon, which may
obscure the inter-group effects of specific factor loads. Therefore, we used parameter
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pairing to test individual paths, and some striking findings emerged in the critical ratios for
differences between parameters (measurement weights). Please refer to Table 7 for specific
results. In the gender grouping, we found that gender played a role in the path from
performance expectancy to behavioral intention. The standardized path coefficients from
performance expectancy to behavioral intention in the male and female group models were
0.306 and 0.062, respectively. The absolute value of the critical ratio difference between
parameters was 2.37 > 1.96, indicating that at the 0.05 significance level, gender had a
moderating effect on the path from performance expectancy to behavioral intention, and
performance expectancy had a more significant impact on male behavioral intention than
female usage intention.

Table 7. Multiple-group analysis.

Gender Education Usage Time

Paths Male Female CRDP Low-Education High-Education CRDP Low-Time High-Time CRDP
TTF→PE 0.564 *** 0.511 *** −0.137 0.525 *** 0.597 *** −0.742 0.511 *** 0.589 *** 1.073
TTF→BI 0.098 0.212 * 0.868 0.187 * 0.187 −0.135 0.155 0.179 0.134
EE→BI 0.287 *** 0.267 ** −0.5 0.274 *** 0.185 * −0.714 0.313 *** 0.096 −1.831
PC→BI −0.097 −0.145 −0.244 −0.095 −0.176 −0.473 −0.075 −0.249 * −1.132
UT→BI 0.293 *** 0.103 −1.829 0.286 *** 0.093 −1.741 0.233 ** 0.207 ** −0.116
FC→BI 0.165 * 0.294 ** 0.714 0.123 0.367 *** 2.015 0.137 0.348 *** 1.547
PE→BI 0.306 ** 0.053 −2.37 0.172 * 0.147 0.024 0.17 * 0.154 −0.32
FC→UB 0.157 0.273 ** 0.612 0.252 ** 0.137 −0.756 0.293 *** 0.016 −2.02
BI→UB 0.556 *** 0.617 *** 0.621 0.550 *** 0.656 *** 0.987 0.55 *** 0.728 *** 1.19

Notes: *** p < 0.001, ** p < 0.01, * p < 0.05; CRDP indicates critical ratio difference between parameters.

Education played a role in the path from facilitating conditions to behavioral intention
in the education grouping, with standardized path coefficients of 0.123 and 0.376 for the
low-education and high-education group models, respectively. The critical ratio difference
between parameters was 2.015 > 1.96, indicating that at the 0.05 significance level, education
had a moderating effect on the path from facilitating conditions to behavioral intention,
and facilitating conditions had a more significant impact on the behavioral intention of the
high education group than the low education group.

However, we did not find any path whose critical ratio value was greater than 1.96
in the experience grouping, so we concluded that experience did not have a moderating
effect on the model. In contrast, usage time played a role in the path from facilitating
conditions to usage behavior, with standardized path coefficients of 0.293 and 0.016 for
the low and high usage time group models, respectively. The absolute value of the critical
ratio difference between parameters was 2.020 > 1.96, indicating that at the 0.05 significance
level, usage time had a moderating effect on the path from facilitating conditions to usage
behavior, and facilitating conditions had a greater impact on the usage behavioral of the
low usage time group than the high usage time group.

6. Discussions

As shown in Table 6, all hypotheses except H7 were supported. The significant positive
correlation between performance expectancy and behavioral intention is consistent with
the basic principle of the UTAUT model. It confirms the findings of Murguia et al. that
users who perceive BIM as helpful for improving productivity and completing work more
effectively will have greater motivation to adopt BIM [51]. However, this result contradicts
the findings of Howard et al., who found that performance expectancy did not significantly
influence individual users’ adoption of BIM in the UK and that BIM adoption was imposed
by organizations and projects rather than a personal choice, therefore perceived as an
additional uncompensated task by practitioners [18]. In addition, significant differences
were found between males and females in the path from performance expectancy to
behavioral intention in multi-group analysis, with males being significant on this path
while females were not, indicating that providing more performance rewards to males will
increase their usage intention.

Effort expectancy significantly impacted behavioral intention, indicating that users
who perceive BIM as easy to use are more willing to use it in projects. In the UK, Ghana, and
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China, effort expectation is also essential for behavioral intention [18,48,52]. Facilitating
conditions significantly influence both behavioral intention and usage behavior, consistent
with the findings of Sargent et al. and Venkatesh et al. [45,85]. In addition, the respondents’
educational level also affects the path, with facilitating conditions having a greater impact
on the usage intention of high-educated groups than on low-educated groups. High-
educated employees have better learning abilities and are more sensitive to facilitating
conditions. Yuan and Yang found that support is an essential factor in adopting BIM in all
companies [86]. Facilitating conditions needs support from the government, suppliers, and
companies to promote the application of BIM. At the same time, the sample’s BIM usage
time moderates the path from facilitating conditions to usage behavior, with employees
with more BIM usage time being less sensitive to facilitating conditions than those with
less usage time. Providing sufficient facilitating conditions will generate strong behavioral
intentions among new employees in the early stages.

Behavioral intention significantly positively affects usage behavior. Psychologists
generally believe that behavioral thoughts govern human behavior, so explaining why
willingness to use affects usage behavior is relatively easy. This view has been confirmed
in related studies in China, Korea, and the UK [18,86,87]. All the hypotheses regarding
the original variables of the UTAUT model have been valid as described above. Next, we
continue to discuss the extended variables of the UTAUT model.

We found that task–technology fit significantly impacts performance expectancy. Task–
technology fit describes the ability of BIM to complete tasks at each stage of a project and
is a competitive feature of BIM [48]. Therefore, task–technology fit plays a crucial role in
performance expectancy. This result confirms the findings of Tulubas Gokuc and Arditi,
who pointed out that BIM can meet the most critical needs of design professionals, including
enhancing visualization and design efficiency [88]. Meanwhile, behavioral intention is
mainly influenced by task–technology fit. Potential BIM adopters always consider the fit of
their work and decide to apply it when the fit is good.

Regarding the path of user trust and behavioral intention, we found that few scholars
in the construction field have focused on the relationship between user trust and behavioral
intention. Therefore, in this study, we explored the relationship between the two, and the
results showed that user trust significantly affects behavioral intention. This finding is
consistent with the research of Nordhoff et al., which indicates that people are only more
willing to use tools if they trust them [64].

In addition, the relationship between perceived cost and usage intention was insignif-
icant. One possible explanation for this finding is that with the increasing popularity of
BIM in China, increasingly more companies are purchasing BIM-related software for their
employees to learn for free. Employees can also acquire BIM-related knowledge from
various other channels.

7. Conclusions

Improving the application rate of BIM is not only an essential measure for the con-
struction industry to respond to digitization but also plays a vital role in enhancing the
competitiveness of China’s construction industry in the international arena. In recent years,
the determinants and mechanisms of increasing the use of BIM have attracted increasing
attention from the academic community, policymakers, and the media. Unlike previous
scholars who mainly focused on the research of application barriers of BIM in industries,
projects, or organizations, this study believes that it is necessary to evaluate the obstacles to
the diffusion of BIM technology from the perspective of practitioners. Through a review of
relevant literature, we designed a questionnaire. Then, taking advantage of the question-
naire survey, we developed an analytical framework to capture individuals’ perceptions
of the barriers to applying BIM. We used SEM to explore the impact of task–technology
fit, effort expectancy, performance expectancy, user trust, perceived cost, and facilitating
conditions on employees’ application of BIM.
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In this empirical analysis, we found that task–technology fit is the most significant
barrier affecting BIM usage by practitioners, emphasizing the importance of aligning
BIM technology with work tasks to increase users’ willingness to adopt it. Therefore, we
recommend ensuring that practitioners’ actual work requirements match the capabilities
of BIM software. Effort expectancy, as the second most significant barrier factor, also
dramatically affects the diffusion of BIM. Improving interoperability between different BIM
tools can reduce practitioners’ effort expectancy and facilitate the integration of BIM into
daily work processes [89].

Facilitating conditions also play a crucial role as a barrier to BIM adoption, impact-
ing users’ intention and behavior. At the enterprise level, top management support and
resource allocation to BIM teams and providing assistance and support to new employ-
ees can promote BIM adoption. Governments should also promote BIM by specifying
its use in government-funded projects and enhancing its implementation in private and
public projects through policy supplements. Professional organizations in the construc-
tion industry can contribute by developing guidelines for data processing procedures
to guide practitioners in incorporating BIM technology effectively. User trust is another
significant factor influencing behavioral intention. To encourage BIM adoption, developers
should improve software security, accuracy, and user experience to build trust among
potential users.

Furthermore, the performance of SEM varies among different social-demographic
groups, particularly in the obstacle factor of facilitating conditions. Multi-group analysis
showed that highly educated fresh graduates are more likely to be favorable candidates
for enterprises seeking to recruit employees for BIM-related tasks. Gender differences
also influence performance expectancy on usage behavior, with males exhibiting a more
vital need for performance. In light of this finding, enterprises should consider providing
appropriate performance rewards to BIM practitioners, especially male employees, to
address performance expectancy barriers. In conclusion, this study highlights critical
barriers to BIM adoption from an individual perspective. It provides valuable insights
for practitioners, enterprises, and policymakers in the construction industry, specifically
focusing on the context of BIM usage in China.

This study provided empirical evidence from an individual perspective on barriers to
BIM adoption, contributing to the growing literature and current relevant theory on the
subject. The research findings revealed the factors influencing barriers to BIM adoption and
identified potential solutions for improving BIM adoption rates. However, there are some
limitations in this study. On the one hand, there are many different types of practitioners
in the construction industry, and most of the survey samples in this paper represent only
one part of the industry chain. In future research, researchers could select specific samples
according to specific links in a more targeted manner. On the other hand, although this
paper expanded the UTAUT model, some barriers were still not included in the actual
process. Therefore, in future research, researchers can continue to explore possible barriers
more carefully and comprehensively based on practical circumstances.
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